JP2007088492A - Manufacturing method of electrostatic chuck and electrostatic chuck - Google Patents

Manufacturing method of electrostatic chuck and electrostatic chuck Download PDF

Info

Publication number
JP2007088492A
JP2007088492A JP2006290709A JP2006290709A JP2007088492A JP 2007088492 A JP2007088492 A JP 2007088492A JP 2006290709 A JP2006290709 A JP 2006290709A JP 2006290709 A JP2006290709 A JP 2006290709A JP 2007088492 A JP2007088492 A JP 2007088492A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric substrate
electrode
plasma
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290709A
Other languages
Japanese (ja)
Inventor
Ikuo Itakura
郁夫 板倉
Shoichiro Himuro
正一郎 氷室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2006290709A priority Critical patent/JP2007088492A/en
Publication of JP2007088492A publication Critical patent/JP2007088492A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrostatic chuck with enhanced resistance to plasma and cooling performance of an object to be adsorbed. <P>SOLUTION: In the basic configuration of the electrostatic chuck 20, an insulation film 22 is formed on the surface of a metallic plate 21 by thermal spraying, a dielectric substrate 24 is joined onto the insulation film 22 via an insulating adhesive layer 23, the front side of the dielectric substrate 24 is used for a placing side of the object W to be adsorbed such as a semiconductor wafer, and the lower side is formed with electrodes 25, 25. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体基板やガラス基板などを吸着する静電チャックとその製造方法に関する。   The present invention relates to an electrostatic chuck that attracts a semiconductor substrate, a glass substrate, and the like, and a method for manufacturing the same.

エッチング、CVD、スパッタリング、イオン注入、アッシングなどを行うプラズマ処理チャンバー内で、半導体基板やガラス基板を吸着保持する手段として、特許文献1〜4に開示される静電チャックが用いられている。   As means for adsorbing and holding a semiconductor substrate or a glass substrate in a plasma processing chamber for performing etching, CVD, sputtering, ion implantation, ashing, etc., electrostatic chucks disclosed in Patent Documents 1 to 4 are used.

上記特許文献1〜2に開示される従来の静電チャックの構造は、図7に示すように、金属プレート100上にシリコーン樹脂等の有機接着剤101を介して電極102を内部に保持した誘電体層103を接着一体化している。そして、誘電体層103内に電極102を埋設する方法としては、焼成することで誘電体層となるセラミックグリーンシートの表面に電極(タングステン)をプリントし、更にこの上に別のセラミックグリーンシートを重ねて焼成(ホットプレス)する方法が採用されている。   As shown in FIG. 7, the structure of the conventional electrostatic chuck disclosed in Patent Documents 1 and 2 is a dielectric in which an electrode 102 is held on a metal plate 100 via an organic adhesive 101 such as silicone resin. The body layer 103 is bonded and integrated. And as a method of embedding the electrode 102 in the dielectric layer 103, an electrode (tungsten) is printed on the surface of the ceramic green sheet which becomes the dielectric layer by firing, and another ceramic green sheet is further formed thereon. A method of baking (hot pressing) is adopted.

実開平4−133443号公報Japanese Utility Model Publication No. 4-133443 特開平10−223742号公報JP-A-10-223742 特開2003−152065号公報Japanese Patent Laid-Open No. 2003-152065 特開2001−338970号公報JP 2001-338970 A

プラズマ処理を行った後のチャンバー内面には、半導体ウェーハや塗膜からの残渣および生成物が付着している。そしてプラズマ処理を繰り返してゆくと、残渣および生成物が次第に堆積し、やがてチャンバー内面から剥離して半導体基板やガラス基板表面に付着して歩留り低下を招く。   Residues and products from the semiconductor wafer and coating film are attached to the inner surface of the chamber after the plasma treatment. When the plasma treatment is repeated, residues and products are gradually deposited, and eventually peel from the inner surface of the chamber and adhere to the surface of the semiconductor substrate or glass substrate, leading to a decrease in yield.

そこで、従来から定期的にチャンバー内をプラズマによってクリーニングし、チャンバー内面に付着した残渣および生成物を除去するようにしている。このとき、従来にあっては静電チャックの表面がプラズマに晒されるのを防止するために、ダミーウェーハで静電チャックの表面を覆った状態でクリーニングを行っているが、最近ではタクトタイムを短縮して生産効率を向上させるため、ダミーウェーハで静電チャックの表面を覆うことを行わずに、クリーニングの際には静電チャックの表面を直接OガスやCFガスなどのクリーニングプラズマに曝す、いわゆるウェーハレスプラズマクリーニングが業界の動向である。 Therefore, conventionally, the inside of the chamber is periodically cleaned by plasma to remove residues and products attached to the inner surface of the chamber. At this time, conventionally, in order to prevent the surface of the electrostatic chuck from being exposed to plasma, cleaning is performed with the surface of the electrostatic chuck covered with a dummy wafer. In order to shorten and improve the production efficiency, the surface of the electrostatic chuck is not covered with a dummy wafer, and the surface of the electrostatic chuck is directly cleaned with cleaning plasma such as O 2 gas or CF 4 gas at the time of cleaning. Exposure, so-called waferless plasma cleaning, is an industry trend.

ところで、通常広く使用されているセラミック原料粉末を用いて製作された静電チャックの焼成後の平均粒子径は5〜50μmであるが、この静電チャックに前記ウェーハレスプラズマクリーニングを実施した場合、セラミックの表面の粒子の脱離および粒界の浸食により、平均粗さ(Ra)が大きくなり、静電吸着力の低下およびウェーハとの固体接触界面の熱伝達率の低下が起きるなどの不具合が発生し、早期に静電チャックを交換しなければならなくなる。   By the way, the average particle diameter after firing of the electrostatic chuck manufactured using the ceramic raw material powder that is generally widely used is 5 to 50 μm. When the waferless plasma cleaning is performed on the electrostatic chuck, Defects on the surface of the ceramic and erosion of the grain boundaries increase the average roughness (Ra), causing problems such as a decrease in electrostatic adsorption force and a decrease in heat transfer coefficient at the solid contact interface with the wafer. Occurs and the electrostatic chuck must be replaced early.

これらを解決する手段として特許文献3に開示されるように、セラミックの平均粒子径を2μm以下に抑えた静電チャックが挙げられているが、従来構造の静電チャックのように誘電体内部に電極を入れ込むために、二枚の誘電体基板を焼成、成型した後に、電極材料を挟み込んでホットプレス等の加熱加圧処理により一体化するなど、技術的に高度で複雑な工程を必要としている。このため、信頼性の低下や工期の長期化、などの課題がある。   As a means for solving these problems, as disclosed in Patent Document 3, there is an electrostatic chuck in which the average particle diameter of the ceramic is suppressed to 2 μm or less. In order to insert electrodes, it requires technically sophisticated and complicated processes, such as firing and molding two dielectric substrates, and sandwiching the electrode material and integrating them by heat and pressure treatment such as hot press. Yes. For this reason, there are problems such as a decrease in reliability and a prolonged construction period.

しかしながら、上記の平均粒子径を2μm以下に抑えたセラミック誘電体基板は、焼成時の脱バインダー性などの都合上、誘電体内部に電極を入れ込んだ状態でグリーンシートを積層し一体焼成して得られるものではない。つまり、プラズマ耐久性のある、従来構造の静電チャックを製作しようとする場合、焼成した誘電層基板の内部に電極を入れ込む技術が必要となる。   However, the ceramic dielectric substrate having the above average particle size suppressed to 2 μm or less is formed by laminating green sheets with the electrodes inserted into the dielectric and firing them integrally for convenience such as debinding during firing. It is not obtained. That is, in order to manufacture an electrostatic chuck having a conventional structure having plasma durability, a technique for inserting an electrode into the fired dielectric layer substrate is required.

これを解決する手段として特許文献4に開示されるように、誘電層基板の表面に電極を形成し、その上にポリイミドなどの絶縁性の樹脂を貼り付けたものを、金属ベースプレートに接合する方法が開示されているが、この構造の場合は絶縁樹脂の熱伝導率の低さによるウェーハ温度の上昇や絶縁の信頼性に課題がある。   As disclosed in Patent Document 4, as a means for solving this problem, a method in which an electrode is formed on the surface of a dielectric layer substrate, and an insulating resin such as polyimide is pasted thereon is bonded to a metal base plate. However, in the case of this structure, there are problems in the increase in wafer temperature and the insulation reliability due to the low thermal conductivity of the insulating resin.

本発明の目的は、製造プロセスが簡便で、ウェーハレスプラズマクリーニングの耐久性が高く、ウェーハ冷却能力が高く、電極と金属プレート間の電気絶縁の信頼性が高い等、上記課題を同時に解決する事ができる静電チャックを提供する事である。   The object of the present invention is to solve the above problems simultaneously, such as a simple manufacturing process, high durability of waferless plasma cleaning, high wafer cooling capability, and high reliability of electrical insulation between the electrode and the metal plate. It is to provide an electrostatic chuck that can be used.

上記課題を解決するため本発明に係る静電チャックの製造方法は、表面に溶射によって絶縁体膜が形成された金属プレートと、表面に電極が形成された誘電体基板とを、前記絶縁体膜と前記電極が対向するように絶縁性接着剤を介在して接合するようにした。また、本願には上記の方法によって得られた静電チャックも含まれる。   In order to solve the above-mentioned problems, an electrostatic chuck manufacturing method according to the present invention includes a metal plate having an insulating film formed on a surface thereof by thermal spraying, and a dielectric substrate having an electrode formed on the surface. And the electrode are opposed to each other with an insulating adhesive interposed therebetween. The present application also includes an electrostatic chuck obtained by the above method.

上記のように、誘電体基板の表面に電極が設けられた場合でも、溶射による絶縁体膜を金属プレート表面に形成することにより、簡単な構造で且つ信頼性の高いウェーハレスプラズマクリーニングに対応できる静電チャックを提供することができる。   As described above, even when an electrode is provided on the surface of a dielectric substrate, it is possible to cope with waferless plasma cleaning with a simple structure and high reliability by forming an insulating film by thermal spraying on the surface of a metal plate. An electrostatic chuck can be provided.

前記誘電体基板を構成する粒子としては平均粒子径が2μm以下のものが耐プラズマ性を向上させる上で好ましい。平均粒子径を2μm以下とする事で、ウェーハレスクリーニングを繰返し行っても、誘電体基板の吸着面粗さの変化が小さい静電チャックを提供することができる。   As the particles constituting the dielectric substrate, those having an average particle diameter of 2 μm or less are preferable for improving the plasma resistance. By setting the average particle diameter to 2 μm or less, it is possible to provide an electrostatic chuck with a small change in the attracting surface roughness of the dielectric substrate even when wafer rescreening is repeated.

前記誘電体基板、絶縁性接着剤及び絶縁膜のトータルの厚みは、0.5mm以上、2.0mm以下である事が好ましい。上記のような厚みにする事で、被吸着物と電極間の電気絶縁性および電極と金属プレート間の電気絶縁性が確保でき、また、被吸着物から金属プレートへの伝熱効率が良好な静電チャックを提供する事ができる。更に好適な例として、誘電被吸着物と金属プレートの間のインピーダンスを抑えるため、誘電体基板、絶縁性接着剤及び絶縁膜のトータルの厚みは、1.5mm以下にすることが望ましい。   The total thickness of the dielectric substrate, the insulating adhesive, and the insulating film is preferably 0.5 mm or more and 2.0 mm or less. By setting the thickness as described above, electrical insulation between the object to be adsorbed and the electrode and electrical insulation between the electrode and the metal plate can be ensured, and the heat transfer efficiency from the object to be adsorbed to the metal plate is excellent An electric chuck can be provided. As a more preferable example, the total thickness of the dielectric substrate, the insulating adhesive, and the insulating film is desirably 1.5 mm or less in order to suppress the impedance between the dielectric adsorbent and the metal plate.

本発明に係る静電チャックの製造方法および当該製造方法にて得られる静電チャックは、製造プロセスが簡便で、表面が吸着面となる誘電体基板を構成する粒子径が小さいため、耐プラズマ性に優れ、ダミーウェーハを用いることなくウェーハレスプラズマクリーニングを行うことができる為、タクトタイムを大幅に減少させることができ、伝熱効率が良好である為、ウェーハ冷却能力が高める事ができ、電極と金属プレート間の電気絶縁の信頼性を高めることができる。   The manufacturing method of the electrostatic chuck according to the present invention and the electrostatic chuck obtained by the manufacturing method have a simple manufacturing process and a small particle diameter constituting the dielectric substrate whose surface is an attracting surface. Because it can perform waferless plasma cleaning without using a dummy wafer, the tact time can be greatly reduced, and the heat transfer efficiency is good. The reliability of electrical insulation between the metal plates can be increased.

具体的には、図4(a)はプラズマ照射前の本発明に係る静電チャックの誘電体基板表面を示す顕微鏡写真、(b)はプラズマ照射前の従来の静電チャックの誘電体層表面を示す顕微鏡写真であり、図5(a)はプラズマ照射後の本発明に係る静電チャックの誘電体基板表面を示す顕微鏡写真、(b)はプラズマ照射後の従来の静電チャックの誘電体層表面を示す顕微鏡写真である。   Specifically, FIG. 4A is a micrograph showing the surface of the dielectric substrate of the electrostatic chuck according to the present invention before plasma irradiation, and FIG. 4B is the surface of the dielectric layer of the conventional electrostatic chuck before plasma irradiation. 5A is a micrograph showing the surface of the dielectric substrate of the electrostatic chuck according to the present invention after plasma irradiation, and FIG. 5B is a dielectric of the conventional electrostatic chuck after plasma irradiation. It is a microscope picture which shows the layer surface.

また、図6は本発明に係る静電チャックの誘電体基板表面と従来の静電チャックの誘電体層表面にプラズマを照射したときの表面粗さの変化を示している。   FIG. 6 shows changes in surface roughness when plasma is irradiated on the surface of the dielectric substrate of the electrostatic chuck according to the present invention and the surface of the dielectric layer of the conventional electrostatic chuck.

これらの写真と図からも明らかなように、本発明に係る静電チャックの誘電体基板表面は、プラズマ照射の前後において表面粗さ(Ra)の変化が極めて小さいことが分かる。   As is apparent from these photographs and drawings, it can be seen that the surface roughness (Ra) of the surface of the dielectric substrate of the electrostatic chuck according to the present invention is extremely small before and after the plasma irradiation.

以下に本発明の実施例を添付図面に基づいて説明する。図1は本発明に係る静電チャックを組み込んだプラズマ処理装置の全体図、図2は同静電チャックの断面図、図3は同静電チャックの組立て手順を説明した図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an overall view of a plasma processing apparatus incorporating an electrostatic chuck according to the present invention, FIG. 2 is a cross-sectional view of the electrostatic chuck, and FIG. 3 is a diagram illustrating an assembly procedure of the electrostatic chuck.

プラズマ処理装置はチャンバー1内にプラズマ発生用の上部電極10と静電チャック20が配置される。またチャンバー1の天井にはCFやO等の反応ガス導入口2と、減圧装置に繋がる排気口3とで形成されている。 In the plasma processing apparatus, an upper electrode 10 for generating plasma and an electrostatic chuck 20 are disposed in a chamber 1. Also on the ceiling of the chamber 1 and the reaction gas inlet 2, such as CF 4 or O 2, it is formed with an exhaust port 3 connected to a vacuum device.

静電チャック20の基本的な構成は、金属プレート21の表面に溶射によって絶縁体膜22が形成され、この絶縁体膜22の上に絶縁性接着剤層23を介して誘電体基板24が接合され、この誘電体基板24の表面は半導体ウェーハ等の被吸着物Wの載置面とされ、下面には電極25,25が形成されている。そして、これら電極25,25に給電するためのリード線26,26が金属プレート21を貫通して下方まで延びている。尚、リード線26と金属プレート21とは絶縁されている。   The basic structure of the electrostatic chuck 20 is that an insulator film 22 is formed on the surface of a metal plate 21 by thermal spraying, and a dielectric substrate 24 is bonded on the insulator film 22 via an insulating adhesive layer 23. The surface of the dielectric substrate 24 is used as a mounting surface for the object W to be adsorbed such as a semiconductor wafer, and electrodes 25 and 25 are formed on the lower surface. Lead wires 26 and 26 for supplying power to the electrodes 25 and 25 extend downward through the metal plate 21. The lead wire 26 and the metal plate 21 are insulated.

前記金属プレート21はアルミニウム合金や銅等の熱伝導性に優れた金属からなり、内部には冷媒通路21aが形成され、また金属プレート21の上面に溶射によって形成される絶縁体膜22としては、無機材料、例えばアルミナ(Al)等が好ましい。 The metal plate 21 is made of a metal having excellent thermal conductivity such as an aluminum alloy or copper, a coolant passage 21a is formed inside, and the insulator film 22 formed on the upper surface of the metal plate 21 by thermal spraying includes: Inorganic materials such as alumina (Al 2 O 3 ) are preferred.

また、誘電体基板24の製作方法としては例えば、平均粒子径0.1μm、純度99.99%以上のアルミナ原料粉末を主成分とし、これに0.2wt%より大きく、0.6wt%以下の酸化チタン(TiO)を混合粉砕し、アクリル系バインダーを添加、調整後スプレードライヤーで造粒し、顆粒粉を作製する。その後、CIP(ラバープレス)またはメカプレス成形後、所定の形状に加工し、1150〜1350℃の還元雰囲気下で焼成する。さらにHIP処理(熱間等方圧加圧)をおこなう。HIP条件はArガス1000気圧以上とし、温度は焼成温度と同じ1150〜1350℃とする。このような条件のもとで、極めて緻密で且つ構成粒子の平均粒子径が2μm以下、20±3℃において体積抵抗率が10〜1011Ωcm、相対密度が99%以上の誘電体基板24が得られる。 In addition, as a method for manufacturing the dielectric substrate 24, for example, an alumina raw material powder having an average particle diameter of 0.1 μm and a purity of 99.99% or more is a main component, and more than 0.2 wt% and 0.6 wt% or less. Titanium oxide (TiO 2 ) is mixed and pulverized, an acrylic binder is added, and after adjustment, the mixture is granulated with a spray dryer to produce granulated powder. Then, after CIP (rubber press) or mechanical press molding, it is processed into a predetermined shape and fired in a reducing atmosphere at 1150 to 1350 ° C. Further, HIP processing (hot isostatic pressing) is performed. The HIP condition is Ar gas of 1000 atm or higher, and the temperature is 1150 to 1350 ° C., which is the same as the firing temperature. Under such conditions, the dielectric substrate 24 is extremely dense and has an average particle diameter of 2 μm or less, a volume resistivity of 10 8 to 10 11 Ωcm and a relative density of 99% or more at 20 ± 3 ° C. Is obtained.

尚、ここで示す平均粒子径とは、以下のプラニメトリック法で求められた粒子径である。まず、S E Mで誘電体基板の写真を撮り、この写真上で面積( A )の既知の円を描き、円内の粒子数nc と円周にかかった粒子数ni から( 1 )式によって単位面積あたりの粒子数N G を求める。
N G = ( nc + 1 / 2 ni ) / ( A / m2 ) … ( 1 )
ここで示すmは写真の倍率である。1 / N G が1個の粒子の占める面積であるから、粒子径は円相当径は2 /√ (π N G )、 で得られる。
In addition, the average particle diameter shown here is a particle diameter calculated | required with the following planimetric methods. First, take a picture of the dielectric substrate with SEM, draw a circle with a known area (A) on this picture, and calculate the unit area from the number of particles nc in the circle and the number of particles ni on the circumference by equation (1). Find the number of particles per particle NG.
NG = (nc + 1/2 ni) / (A / m2)… (1)
M shown here is the magnification of the photograph. Since 1 / NG is the area occupied by one particle, the particle diameter can be obtained as 2 / √ (π NG).

また、前記電極25は誘電体基板24の表面を研削加工した後にCVDやPVDによってTiCやTiなどの導電膜を形成し、この導電膜をサンドブラストやエッチングすることで、所定の電極パターンを得る。   Further, the electrode 25 is obtained by grinding the surface of the dielectric substrate 24, forming a conductive film such as TiC or Ti by CVD or PVD, and sandblasting or etching the conductive film to obtain a predetermined electrode pattern.

上記した極めて緻密な誘電体基板を用いれば、耐プラズマ性が向上し、ダミーウェーハを用いなくても静電チャック表面の粗さの変化が極めて小さく抑えられる。   If the above-mentioned extremely dense dielectric substrate is used, the plasma resistance is improved, and the change in the roughness of the electrostatic chuck surface can be suppressed to a very small level without using a dummy wafer.

また、上記の静電チャック20を組み立てるには、図3に示すように、予め絶縁体膜22が形成された金属プレート21と、電極25が形成された誘電体基板24を用意し、金属プレート21の絶縁体膜22と誘電体基板24の電極25が対向するようにして絶縁性接着剤23を介して両者を接合する。   In order to assemble the electrostatic chuck 20, as shown in FIG. 3, a metal plate 21 on which an insulator film 22 is formed in advance and a dielectric substrate 24 on which an electrode 25 is formed are prepared. The insulating film 22 of 21 and the electrode 25 of the dielectric substrate 24 are bonded to each other through an insulating adhesive 23 so as to face each other.

絶縁性接着剤23としては例えばアルミナやチッ化アルミをフィラーとし、熱伝導率が1W/mk以上、好ましくは1.6W/mK以上のシリコーン樹脂等が挙げられる。   Examples of the insulating adhesive 23 include a silicone resin having alumina or aluminum nitride as a filler and a thermal conductivity of 1 W / mk or more, preferably 1.6 W / mK or more.

本発明に係る静電チャックを組み込んだプラズマ処理装置の全体図Overall view of a plasma processing apparatus incorporating an electrostatic chuck according to the present invention 同静電チャックの断面図Cross section of the electrostatic chuck 同静電チャックの組立て手順を説明した図The figure explaining the assembly procedure of the electrostatic chuck (a)はプラズマ照射前の本発明に係る静電チャックの誘電体基板表面を示す顕微鏡写真、(b)はプラズマ照射前の従来の静電チャックの誘電体層表面を示す顕微鏡写真(A) is a photomicrograph showing the dielectric substrate surface of the electrostatic chuck according to the present invention before plasma irradiation, (b) is a photomicrograph showing the dielectric layer surface of the conventional electrostatic chuck before plasma irradiation. (a)はプラズマ照射後の本発明に係る静電チャックの誘電体基板表面を示す顕微鏡写真、(b)はプラズマ照射後の従来の静電チャックの誘電体層表面を示す顕微鏡写真(A) is a photomicrograph showing the dielectric substrate surface of the electrostatic chuck according to the present invention after plasma irradiation, (b) is a photomicrograph showing the dielectric layer surface of the conventional electrostatic chuck after plasma irradiation. 本発明に係る静電チャックの誘電体基板および従来の静電チャックの誘電体層表面にプラズマを照射したときの表面粗さの変化Changes in surface roughness when plasma is irradiated on the dielectric substrate surface of the electrostatic chuck according to the present invention and the dielectric layer surface of the conventional electrostatic chuck 従来の静電チャックの断面図Cross section of conventional electrostatic chuck

符号の説明Explanation of symbols

1…チャンバー、2…反応ガス導入口、3…排気口、10…上部電極、20…静電チャック、21…金属プレート、21a…冷媒通路、22…絶縁体膜、23…絶縁性接着剤層、24…誘電体基板、25…電極、26…リード線、100…金属プレート、101…有機接着剤、102…電極、103…誘電体層、W…被吸着物。   DESCRIPTION OF SYMBOLS 1 ... Chamber, 2 ... Reaction gas introduction port, 3 ... Exhaust port, 10 ... Upper electrode, 20 ... Electrostatic chuck, 21 ... Metal plate, 21a ... Refrigerant passage, 22 ... Insulator film, 23 ... Insulating adhesive layer 24 ... dielectric substrate, 25 ... electrode, 26 ... lead wire, 100 ... metal plate, 101 ... organic adhesive, 102 ... electrode, 103 ... dielectric layer, W ... adsorbed material.

Claims (4)

表面に溶射によって絶縁体膜が形成された金属プレートと、表面に電極が形成された誘電体基板とを、前記絶縁体膜と前記電極が対向するように絶縁性接着剤を介在して接合することを特徴とする静電チャックの製造方法。 A metal plate with an insulator film formed on the surface is joined to a dielectric substrate with an electrode formed on the surface with an insulating adhesive interposed so that the insulator film and the electrode face each other. A method of manufacturing an electrostatic chuck. 表面に溶射によって絶縁体膜が形成された金属プレートと、表面に電極が形成された誘電体基板とが、前記絶縁体膜と前記電極が対向するように絶縁性接着剤を介在して接合されていることを特徴とする静電チャック。 A metal plate with an insulator film formed on the surface and a dielectric substrate with an electrode formed on the surface are joined together with an insulating adhesive so that the insulator film and the electrode face each other. An electrostatic chuck characterized in that 請求項2に記載の静電チャックにおいて、前記誘電体基板を構成する粒子の平均粒子径は2μm以下であることを特徴とする静電チャック。 3. The electrostatic chuck according to claim 2, wherein an average particle diameter of particles constituting the dielectric substrate is 2 [mu] m or less. 請求項2に記載の静電チャックにおいて、前記誘電体基板と絶縁性接着剤と絶縁体膜とのトータルの厚みは0.5mm以上2.0mm以下であることを特徴とする静電チャック。 3. The electrostatic chuck according to claim 2, wherein a total thickness of the dielectric substrate, the insulating adhesive, and the insulator film is 0.5 mm or more and 2.0 mm or less.
JP2006290709A 2006-10-26 2006-10-26 Manufacturing method of electrostatic chuck and electrostatic chuck Pending JP2007088492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290709A JP2007088492A (en) 2006-10-26 2006-10-26 Manufacturing method of electrostatic chuck and electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290709A JP2007088492A (en) 2006-10-26 2006-10-26 Manufacturing method of electrostatic chuck and electrostatic chuck

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005151483A Division JP2006332204A (en) 2005-05-24 2005-05-24 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2007088492A true JP2007088492A (en) 2007-04-05

Family

ID=37975083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290709A Pending JP2007088492A (en) 2006-10-26 2006-10-26 Manufacturing method of electrostatic chuck and electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2007088492A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133443U (en) * 1991-05-30 1992-12-11 京セラ株式会社 Ceramic electrostatic chuck
JP2001203258A (en) * 2000-01-21 2001-07-27 Tocalo Co Ltd Electrostatic chuck member and its manufacturing method
JP2003152065A (en) * 2001-11-14 2003-05-23 Sumitomo Osaka Cement Co Ltd Electrostatic chuck and its manufacturing method
JP2005057234A (en) * 2003-07-24 2005-03-03 Kyocera Corp Electrostatic chuck
JP2005057214A (en) * 2003-08-07 2005-03-03 Taiheiyo Cement Corp Electrostatic chuck and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133443U (en) * 1991-05-30 1992-12-11 京セラ株式会社 Ceramic electrostatic chuck
JP2001203258A (en) * 2000-01-21 2001-07-27 Tocalo Co Ltd Electrostatic chuck member and its manufacturing method
JP2003152065A (en) * 2001-11-14 2003-05-23 Sumitomo Osaka Cement Co Ltd Electrostatic chuck and its manufacturing method
JP2005057234A (en) * 2003-07-24 2005-03-03 Kyocera Corp Electrostatic chuck
JP2005057214A (en) * 2003-08-07 2005-03-03 Taiheiyo Cement Corp Electrostatic chuck and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2006332204A (en) Electrostatic chuck
JP5441020B1 (en) Electrostatic chuck
JP4031732B2 (en) Electrostatic chuck
JP5441019B1 (en) Electrostatic chuck
JP5441021B1 (en) Electrostatic chuck
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
JP2008160097A (en) Electrostatic chuck and manufacturing method thereof, and substrate-treating device
JP4811790B2 (en) Electrostatic chuck
JP4369765B2 (en) Electrostatic chuck
JP2005063991A (en) Semiconductor manufacturing equipment
JP2006127900A (en) Annular heater
JP4052343B2 (en) Electrostatic chuck
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP2005150370A (en) Electrostatic chuck
JP2007088492A (en) Manufacturing method of electrostatic chuck and electrostatic chuck
JP2012178415A (en) Electrostatic chuck
JP2007243149A (en) Electrostatic chuck
JP2004259805A (en) Electrostatic chuck
JP2005072286A (en) Electrostatic chuck
JP2007142456A (en) Electrostatic chuck
JP2008227190A (en) Electrostatic chuck, method of manufacturing the same, and substrate processing apparatus
JP2005063990A (en) Semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214