JPH0519822B2 - - Google Patents

Info

Publication number
JPH0519822B2
JPH0519822B2 JP58053531A JP5353183A JPH0519822B2 JP H0519822 B2 JPH0519822 B2 JP H0519822B2 JP 58053531 A JP58053531 A JP 58053531A JP 5353183 A JP5353183 A JP 5353183A JP H0519822 B2 JPH0519822 B2 JP H0519822B2
Authority
JP
Japan
Prior art keywords
conductivity type
concentration impurity
impurity region
region
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053531A
Other languages
Japanese (ja)
Other versions
JPS59181048A (en
Inventor
Katsuhiro Kawabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58053531A priority Critical patent/JPS59181048A/en
Publication of JPS59181048A publication Critical patent/JPS59181048A/en
Publication of JPH0519822B2 publication Critical patent/JPH0519822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、相補型半導体装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a complementary semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

相補型半導体装置としては、従来第1図に示す
如くpチヤネルMOSトランジスタ1とnチヤネ
ルMOSトランジスタ2とを接続したC−MOSイ
ンバータが知られている。このC−MOSインバ
ータは、出力がH(high)レベル、L(low)レベ
ルのいずれの場合にあつても定常電流が流れない
構造のため、消費電力の問題に悩まされることな
く高集積化をはかることができ、今後の大規模な
メモリやロジツク等の集積回路を構成する基本素
子として将来的に有望視されている。
As a complementary semiconductor device, a C-MOS inverter in which a p-channel MOS transistor 1 and an n-channel MOS transistor 2 are connected as shown in FIG. 1 is conventionally known. This C-MOS inverter has a structure in which no steady current flows even when the output is at the H (high) level or the L (low) level, so it can be highly integrated without suffering from power consumption problems. It is seen as a promising basic element in the future as a basic element for configuring large-scale integrated circuits such as memory and logic.

第2図はC−MOSインバータの概略構造を示
す断面図であり、図中3はn型Si基板、4はp型
不純物領域(以後pウエルと略記する)である。
基板3の表面層であるn型不純物領域にはソー
ス・ドレイン領域5,6及びゲート電極7からな
るpチヤネルMOSトランジスタ1が形成され、
pウエル4にはソース・ドレイン領域8,9及び
ゲート電極からなるnチヤネルMOSトランジス
タ2が形成されている。また、上記各領域の間に
はpウエル4の深さに比して厚みの小さい素子分
離用酸化膜11が、例えばLOCOS法で形成され
ている。このような構造であれば、入力がHのと
きはトランジスタ1がOFF、トランジスタ2が
ONで出力はLとなり、また入力がLのときはト
ランジスタ1がON、トランジスタ2がOFFで出
力はHとなる。つまり、出力がH,Lのいずれの
場合にあつてもトランジスタ1,2の一方が
OFFとなり、定常電流は流れないことになる。
FIG. 2 is a cross-sectional view showing a schematic structure of a C-MOS inverter. In the figure, 3 is an n-type Si substrate, and 4 is a p-type impurity region (hereinafter abbreviated as p-well).
A p-channel MOS transistor 1 consisting of source/drain regions 5 and 6 and a gate electrode 7 is formed in an n-type impurity region that is the surface layer of the substrate 3.
An n-channel MOS transistor 2 consisting of source/drain regions 8, 9 and a gate electrode is formed in the p-well 4. Further, between each of the above regions, an element isolation oxide film 11 having a thickness smaller than the depth of the p-well 4 is formed by, for example, the LOCOS method. With this structure, when the input is H, transistor 1 is OFF and transistor 2 is OFF.
When ON, the output becomes L; when the input is L, transistor 1 is ON; when transistor 2 is OFF, the output becomes H. In other words, whether the output is H or L, one of transistors 1 and 2 is
It will be OFF and no steady current will flow.

しかしながら、この種の装置にあつてはラツチ
アツプと称される特有の現象が発生し、このラツ
チアツプが高集積化を妨げる大きな要因となつて
いる。ラツチアツプとは、pチヤネルMOSトラ
ンジスタ1のソース5(p+領域)、n型Si基板3、
pウエル及びnチヤネルトランジスタ2のソース
8で形成されるpnpn構造の寄生サイリスタが、
基板電流等のトリガでON状態となる現象であ
る。この結果、素子内に大電流が流れ、素子の破
壊にまで至ることもある。上記pnpn構造は、次
の2つの寄生パイポーラトランジスタとして考え
ることができる。すなわち、トランジスタ1のソ
ース5をエミツタ、基板3をベース及びpウエル
4をコレクタとするPNP型パイポーラトランジ
スタAと、トランジスタ2のソース8をエミツ
タ、pウエルをベース及び基板3をコレクタとす
るNPN型パイポーラトランジスタBとに分解で
きる。トランジスタA,Bの各電流増幅率をそれ
ぞれβPNP,βNPNとすると、ラツチアツプはβPNP×
βNPN>1の条件下で起こることが知られている。
C−MOSインバータで構成される集積回路の集
積度を高める目的で微細化を施すと、寄生バイポ
ーラトランジスタのベース幅が狭くなりβが大き
くなり、その結果ラツチアツプが起こり易くな
る。このため、高集積化をはかることが困難であ
つた。
However, in this type of device, a peculiar phenomenon called latch-up occurs, and this latch-up is a major factor hindering higher integration. The latchup consists of the source 5 (p + region) of the p-channel MOS transistor 1, the n-type Si substrate 3,
A parasitic thyristor with a pnpn structure formed by the p-well and the source 8 of the n-channel transistor 2 is
This is a phenomenon in which the circuit turns on due to a trigger such as a substrate current. As a result, a large current flows within the element, which may even lead to destruction of the element. The above pnpn structure can be considered as the following two parasitic bipolar transistors. That is, a PNP type bipolar transistor A has the source 5 of the transistor 1 as the emitter, the substrate 3 as the base, and the p-well 4 as the collector, and the NPN type bipolar transistor A has the source 8 of the transistor 2 as the emitter, the p-well as the base, and the substrate 3 as the collector. It can be decomposed into type bipolar transistor B. If the current amplification factors of transistors A and B are β PNP and β NPN , respectively, the latch up is β PNP ×
It is known that this occurs under the condition of β NPN >1.
When an integrated circuit constituted by a C-MOS inverter is miniaturized for the purpose of increasing the degree of integration, the base width of the parasitic bipolar transistor becomes narrower, β becomes larger, and as a result, latch-up becomes more likely to occur. For this reason, it has been difficult to achieve high integration.

ラツチアツプを防止する1つの手段として、第
3図aに示す如くPウエル4の下部にp型の高濃
度不純物領域(p+領域)12を設けた構造が提
案されている(International Electron Device
Meeting、1978年、230頁)。この構造ではp+領域
12の存在によつて前記NPNトランジスタBの
ベース領域のグンメル(Gummel)数が増大し、
βNPNが減少する。その結果、ラツチアツプの発生
をある程度抑えることはできる。しかしながら、
ラツチアツプの発生を完全に防止することはでき
ない。すなわち、NPNトランジスタBのコレク
タ電流の経路には、第3図a中矢印に示す如く
p+領域12を経由する経路13と、p+領域を経
由しない経路14との2種類がある。経路13で
は、コレクタであるn型Si基板3に流入しようと
する電子は、その相当数がp+領域12で再結合
を起こしベース電流となり、βNPNを低下させる。
また、経路14では、電子を再結合させることな
くn型Si基板3に流入することになるので、βNPN
の低下に何等寄与しない。したがつて、ラツチア
ツプを十分に抑えることは困難であつた。
As one means to prevent latch-up, a structure has been proposed in which a p-type high concentration impurity region (p + region) 12 is provided at the bottom of the P well 4 as shown in FIG. 3a (International Electron Device
Meeting, 1978, p. 230). In this structure, the Gummel number in the base region of the NPN transistor B increases due to the presence of the p + region 12,
β NPN decreases. As a result, the occurrence of latch-up can be suppressed to some extent. however,
It is not possible to completely prevent the occurrence of latchups. In other words, the path of the collector current of NPN transistor B is as shown by the arrow in Figure 3a.
There are two types of routes: a route 13 that passes through the p + area 12 and a route 14 that does not pass through the p + area. In the path 13, a considerable number of electrons attempting to flow into the n-type Si substrate 3, which is the collector, causes recombination in the p + region 12 and becomes a base current, reducing β NPN .
In addition, in the path 14, the electrons flow into the n-type Si substrate 3 without recombining, so β NPN
does not contribute in any way to the decline in Therefore, it has been difficult to sufficiently suppress latch up.

一方、ラツチアツプを防止する他の手法とし
て、最近第3図bに示す如く素子分離用酸化膜1
5の厚みをpウエル4の深さ(5〜7μm)より
大きくし、NPNトランジスタBの実効的なベー
ス幅を増大させ、βNPNを減少させる構造が提案さ
れている(第43回応用物理学会学術講演会予稿
集、1982年、30P−Q−5)。しかしながら、こ
の構造では前記第3図aに示した経路13を通る
電流を阻止することはできず、ベース幅の実効的
な増大量もあまり大きくすることはできない。つ
まり、ラツチアツプを十分に抑えることは困難で
ある。また、5〜7〔μm〕を越える厚みの酸化
膜15を埋め込み形成することは技術的に極めて
困難であり、実用性に乏しい手法であつた。
On the other hand, as another method for preventing latch-up, recently, as shown in FIG.
A structure has been proposed in which the thickness of the NPN transistor B is made larger than the depth (5 to 7 μm) of the p-well 4, thereby increasing the effective base width of the NPN transistor B and reducing the β NPN (43rd Japan Society of Applied Physics Proceedings of an academic conference, 1982, 30P-Q-5). However, with this structure, it is not possible to block the current passing through the path 13 shown in FIG. 3a, and the effective amount of increase in the base width cannot be increased very much. In other words, it is difficult to sufficiently suppress latch-up. Further, it is technically extremely difficult to form an embedded oxide film 15 with a thickness exceeding 5 to 7 [μm], and this method is impractical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ラツチアツプの発生を確実に
防止することができ、高集積化に適した構造の相
補型半導体装置の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a complementary semiconductor device that can reliably prevent latch-up and has a structure suitable for high integration.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、前記第3図aに示した電流経
由13,14の両方を同時に阻害し、寄生トラン
ジスタの実効的ベース幅を大幅に拡大することに
ある。
The gist of the present invention is to simultaneously inhibit both current paths 13 and 14 shown in FIG. 3a, thereby significantly expanding the effective base width of the parasitic transistor.

すなわち本発明は、第1導電型半導体基板の表
面にpチヤネル及びnチヤネルのMISトランジス
タを作成する相補型半導体装置の製造方法におい
て、第1導電型半導体基板の表面層に第2導電型
の高濃度不純物領域を選択的に形成したのち、基
板上にエピタキシヤル層を成長して、第2導電型
の高濃度不純物領域上に該エピタキシヤル層から
なる第2導電型の低濃度不純物領域(ウエル)
を、これに隣接して該エピタキシヤル層からなる
第1導電型の低濃度不純物領域(ウエル)を形成
し、次いでエピタキシヤル層の各領域間に第2導
電型の高濃度不純物領域に達する素子分離用溝を
形成し、次いでこの溝に素子分離用絶縁膜を埋込
み形成するようにした方法である。
That is, the present invention provides a method for manufacturing a complementary semiconductor device in which p-channel and n-channel MIS transistors are formed on the surface of a first conductivity type semiconductor substrate, in which a second conductivity type high-density transistor is formed on the surface layer of the first conductivity type semiconductor substrate. After selectively forming the impurity concentration region, an epitaxial layer is grown on the substrate, and a low concentration impurity region (well) of the second conductivity type consisting of the epitaxial layer is grown on the high concentration impurity region of the second conductivity type. )
, a first conductivity type low concentration impurity region (well) made of the epitaxial layer is formed adjacent to this, and then a second conductivity type high concentration impurity region is formed between each region of the epitaxial layer. In this method, an isolation trench is formed and then an element isolation insulating film is buried in the trench.

また本発明は、第1導電型半導体基板の表面に
pチヤネル及びnチヤネルのMISトランジスタを
作成する相補型半導体装置の製造方法において、
第1導電型半導体基板の表面層に第1導電型の高
濃度不純物と第2導電型の高濃度不純物領域を選
択的に形成したのち、基板上にエピタキシヤル層
を成長して、第2導電型の高濃度不純物領域上に
該エピタキシヤル層からなる第2導電型の低濃度
不純物領域(ウエル)を、第1導電型の高濃度不
純物領域上に該エピタキシヤル層からなる第1導
電型の低濃度不純物領域(ウエル)を形成し、次
いでエピタキシヤル層の各領域間に各高濃度不純
物領域に達する素子分離用溝を形成し、次いでこ
の溝に素子分離用絶縁膜を埋込み形成するように
した方法である。
The present invention also provides a method for manufacturing a complementary semiconductor device in which p-channel and n-channel MIS transistors are formed on the surface of a first conductivity type semiconductor substrate, including:
After selectively forming a first conductivity type high concentration impurity region and a second conductivity type high concentration impurity region in the surface layer of the first conductivity type semiconductor substrate, an epitaxial layer is grown on the substrate to form a second conductivity type semiconductor substrate. A low concentration impurity region (well) of the second conductivity type made of the epitaxial layer is placed on the high concentration impurity region of the mold, and a low concentration impurity region (well) of the first conductivity type made of the epitaxial layer is placed on the high concentration impurity region of the first conductivity type. A low concentration impurity region (well) is formed, then an element isolation trench reaching each high concentration impurity region is formed between each region of the epitaxial layer, and then an element isolation insulating film is buried in this trench. This is the method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、素子分離用絶縁膜及び第2導
電型の高濃度不純物領域の作用により、寄生トラ
ンジスタのコレクタ電流は必ず上記不純物領域を
経由しなければならず、大半の電子はこの不純物
領域で再結合し、その結果寄生トランジスタの実
効的ベース幅が拡大することになる。このため、
βNPN若しくはβPNPが大幅に小さくなり、ラツチア
ツプの発生を確実に防止することができる。さら
に、第1及び第2導電型の各領域に埋め込む絶縁
膜の厚さは、第2導電型領域の深さより小さくて
済む。このため、絶縁膜の厚みを1〜2〔μm〕
と小さくすることができ、絶縁膜の形成が容易で
ある。また、第1及び第2導電型の各領域の下部
に高濃度不純物領域を形成した場合、前記ベース
幅の拡大がより顕著となりβNPN及びβPNPの大幅な
減少をはかることができ、ラツチアツプの発生を
より確実に防止し得る等の効果が得られる。
According to the present invention, due to the effects of the element isolation insulating film and the second conductivity type high concentration impurity region, the collector current of the parasitic transistor must necessarily pass through the impurity region, and most of the electrons are transferred to this impurity region. As a result, the effective base width of the parasitic transistor increases. For this reason,
β NPN or β PNP becomes significantly smaller, and the occurrence of latchup can be reliably prevented. Furthermore, the thickness of the insulating film buried in each of the first and second conductivity type regions may be smaller than the depth of the second conductivity type region. For this reason, the thickness of the insulating film is set to 1 to 2 [μm].
It can be made small and the insulating film can be easily formed. In addition, when a high concentration impurity region is formed under each region of the first and second conductivity type, the expansion of the base width becomes more remarkable, and β NPN and β PNP can be significantly reduced. Effects such as being able to prevent occurrence more reliably can be obtained.

また本発明によれば、低濃度不純物領域として
のpウエル及びnウエルをエピタキシヤル層で形
成しているので、高濃度不純物領域と低濃度不純
物領域(ウエル)のキヤリア濃度を独立に制御す
ることができ、素子特性の向上に寄与することが
できる。
Further, according to the present invention, since the p-well and n-well as low concentration impurity regions are formed by epitaxial layers, the carrier concentration of the high concentration impurity region and the low concentration impurity region (well) can be controlled independently. This can contribute to improving device characteristics.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の一実施例に係わるC−MOS
インバータの概略構成を示す断面図である。n型
Si基板(第1導電型半導体基板)21の表面層の
一部にはpウエル(第2導電型領域)22が形成
されており、pウエル22と該ウエル22に隣接
するn型領域(第1導電型領域)23との間には
酸化膜(素子分離用絶縁膜)24が埋め込まれて
いる。pウエル22の下部には、該ウエル22に
比して高濃度の不純物を含むp+層(高濃度不純
物)25が形成され、このp+層25の上面の一
部は酸化膜24の下部に接触するものとなつてい
る。n型領域23にはソース・ドレイン領域をな
すp+層26,27が形成され、n型領域23上
にはゲート酸化膜(図示せず)を介してゲート電
極28が形成されている。そして、これらp+
26,27及びゲート電極28からpチヤネル
MOSトランジスタが構成される。また、pウエ
ル22及びその上面には、上記と同様にソース・
ドレイン領域をなすn+層29,30及びゲート
電極31が形成され、これらからnチヤネル
MOSトランジスタが構成される。そして、ドレ
インをなすp+層27及びn+層30を共通接続す
ると共に、ゲート電極28,31を共通接続する
ことによつて、前記第1図に示すC−MOSイン
バータが構成されるものとなつている。
FIG. 4 shows a C-MOS according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of an inverter. n-type
A p-well (second conductivity type region) 22 is formed in a part of the surface layer of the Si substrate (first conductivity type semiconductor substrate) 21. An oxide film (insulating film for element isolation) 24 is buried between the first conductivity type region) 23 and the first conductivity type region) 23. A p + layer (high concentration impurity) 25 containing impurities at a higher concentration than that of the well 22 is formed below the p well 22 , and a part of the upper surface of this p + layer 25 is formed under the oxide film 24 . It has come into contact with P + layers 26 and 27 forming source/drain regions are formed in the n-type region 23, and a gate electrode 28 is formed on the n-type region 23 via a gate oxide film (not shown). A p channel is formed from these p + layers 26, 27 and gate electrode 28.
A MOS transistor is configured. In addition, the p-well 22 and its upper surface are provided with a source as well as the above.
N + layers 29 and 30 forming the drain region and a gate electrode 31 are formed, and an n channel is formed from these.
A MOS transistor is configured. The C-MOS inverter shown in FIG. 1 is constructed by commonly connecting the p + layer 27 and the n + layer 30 that form the drain, and also connecting the gate electrodes 28 and 31 in common. It's summery.

次に、上記構成のC−MOSインバータの製造
方法について説明する。まず、第5図aに示す如
く比抵抗1〔Ωcm〕のn型(100)Si基板21に、
イオン注入技術を用いて注入量1×1015〔cm-3
の条件でホウ素を選択的に添加し、p+領域25
を形成する。次いで、気相エピタキシヤル成長技
術を用い、第5図bに示す如く比抵抗4〔Ωcm〕
のn型エピタキシヤル層41を1.5〔μm〕の膜厚
に成長形成する。その後、第5図cに示す如く
CVD酸化膜42をマスクとして用い、エピタキ
シヤル層41を選択エツチングする。次いで、露
光技術とイオン注入技術を用い、p+領域25上
のエピタキシヤル層41′の側壁にホウ素をイオ
ン注入する。同様にして残部のエピタキシヤル層
41″の側壁にヒ素をイオン注入する。続いて
CVD酸化膜32を除去したのち、エピタキシヤ
ル層41′の表面にホウ素をイオン注入する。こ
れにより、第5図dに示す如くp+領域上のエピ
タキシヤル層41′をp型層に転化、つまり前記
pウエル22が形成され、また残部のエピタキシ
ヤル層41″から前記n型領域が形成される。
Next, a method for manufacturing the C-MOS inverter having the above configuration will be described. First, as shown in FIG. 5a, an n-type (100) Si substrate 21 with a specific resistance of 1 [Ωcm] is
Using ion implantation technology, the implantation amount was 1×10 15 [cm -3 ]
Selectively add boron under the conditions of p + region 25
form. Next, using a vapor phase epitaxial growth technique, the resistivity was reduced to 4 [Ωcm] as shown in Figure 5b.
An n-type epitaxial layer 41 is grown to a thickness of 1.5 [μm]. After that, as shown in Figure 5c,
Using the CVD oxide film 42 as a mask, the epitaxial layer 41 is selectively etched. Next, boron ions are implanted into the sidewalls of the epitaxial layer 41' on the p + region 25 using exposure technology and ion implantation technology. In the same manner, arsenic ions are implanted into the sidewalls of the remaining epitaxial layer 41''.Subsequently,
After removing the CVD oxide film 32, boron ions are implanted into the surface of the epitaxial layer 41'. As a result, as shown in FIG. 5d, the epitaxial layer 41' on the p + region is converted into a p-type layer, that is, the p-well 22 is formed, and the n-type region is formed from the remaining epitaxial layer 41''. It is formed.

ここで、pウエル22はn層をp型イオン注入
によりp層に転化して形成されるが、n層のキヤ
リア濃度が低いため、p転化によりp層のキヤリ
ア濃度を制御性良く設定することができる。これ
は、トランジスタのしきい値決定のために極めて
重要である。次いで、酸化膜埋め込み技術を用
い、第5図eに示す如くpウエル22とn型領域
23との間に酸化膜24を埋め込み形成する。そ
の後、周知の技術を用い、ソース・ドレイン領域
及びゲート電極等を形成することによつて、前記
第4図に示す構造が実現されることになる。
Here, the p-well 22 is formed by converting the n-layer into a p-layer by p-type ion implantation, but since the carrier concentration of the n-layer is low, the carrier concentration of the p-layer can be set with good controllability by p-conversion. I can do it. This is extremely important for determining the transistor threshold. Next, using an oxide film burying technique, an oxide film 24 is buried between the p well 22 and the n type region 23 as shown in FIG. 5e. Thereafter, the structure shown in FIG. 4 is realized by forming source/drain regions, gate electrodes, etc. using well-known techniques.

かくして製造されたC−MOSインバータにお
いては、nチヤネルMOSトランジスタのソース
29からpウエル22に注入され、基板21に流
入しようとするマイ)リテイキヤリアは、必ず
p+領域25を経由しなければならず、大半のマ
イノリテイキヤリアはこのp+領域で再結合する。
このため、上記ソース29、pウエル22及び基
板21等からなるNPNバイポーラトランジスタ
(寄生トランジスタ)のβNPNが大幅に減少するこ
とになる。その結果、ラツチアツプの発生を確実
に防止することができる。特に、p+領域25の
不純物濃度が1×1017〔cm-3〕を越えると上記再
結合が顕著に起こり、ラツチアツプの防止に効果
的であつた。また、本実施例構造では埋め込み絶
縁膜24の厚みは1.5〔μm〕と比較的小さくて済
むことになり、したがつて絶縁膜24の形成を容
易に行い得る等の利点がある。
In the C-MOS inverter manufactured in this way, the mi)return carrier that is injected from the source 29 of the n-channel MOS transistor into the p-well 22 and tries to flow into the substrate 21 is always
must pass through the p + region 25, and most minority carriers recombine in this p + region.
Therefore, β NPN of the NPN bipolar transistor (parasitic transistor) consisting of the source 29, p-well 22, substrate 21, etc. is significantly reduced. As a result, the occurrence of latch-up can be reliably prevented. In particular, when the impurity concentration of the p + region 25 exceeded 1×10 17 [cm -3 ], the above-mentioned recombination occurred significantly and was effective in preventing latchup. Further, in the structure of this embodiment, the thickness of the buried insulating film 24 can be relatively small at 1.5 [μm], which has the advantage that the insulating film 24 can be easily formed.

また、pウエル22は高濃度のp+層25とは
独立に形成され、かつキヤリア濃度の低いn型の
エピタキシヤル層をイオン注入によりp層に転化
して形成させるため、p+層25の不純物濃度を
十分に高くすると共にpウエル22のキヤリア濃
度を制御性良く設定することができ、ラツチアツ
プの確実な防止と共にトランジスタ特性の向上を
図ることができる。
In addition, the p-well 22 is formed independently of the high-concentration p + layer 25 and is formed by converting an n-type epitaxial layer with a low carrier concentration into a p - layer by ion implantation. In addition to making the impurity concentration sufficiently high, the carrier concentration of the p-well 22 can be set with good controllability, and latch-up can be reliably prevented and transistor characteristics can be improved.

第6図は他の実施例に係わるC−MOSインバ
ータの概略構成を示す断面図である。なお、第4
図と同一部分には同一符号を付して、その詳しい
説明は省略する。この実施例が先に説明した実施
例と異なる点は、pウエル22の下部のみなら
ず、pウエル22及びn型領域23の下部にも高
濃度不純物層を形成したことにある。すなわち、
pウエル22の下部に先の実施例と同様にp+
域25が形成されると共に、n型領域23の下部
にはn+領域51が形成されている。そして、n+
領域51はp+領域25と同様に、その上面の一
部が絶縁膜24と接触するものとなつている。ま
た、上記構成を実現するには、先の実施例で示し
た第5図aの工程で、第7図に示す如くn型Si基
板21の表面にホウ素及びヒ素を選択的にイオン
注入してp+領域25及びn+領域51を形成すれ
ばよい。
FIG. 6 is a sectional view showing a schematic configuration of a C-MOS inverter according to another embodiment. In addition, the fourth
The same parts as those in the figures are given the same reference numerals, and detailed explanation thereof will be omitted. This embodiment differs from the previously described embodiments in that a high concentration impurity layer is formed not only under the p-well 22 but also under the p-well 22 and the n-type region 23. That is,
A p + region 25 is formed under the p well 22 as in the previous embodiment, and an n + region 51 is formed under the n type region 23. And n +
Similar to the p + region 25, the region 51 has a portion of its upper surface in contact with the insulating film 24. In addition, in order to realize the above structure, boron and arsenic are selectively implanted into the surface of the n-type Si substrate 21 as shown in FIG. 7 in the step of FIG. 5a shown in the previous embodiment. What is necessary is to form the p + region 25 and the n + region 51.

このような構成であつても先の実施例と同様の
効果が得られるのは勿論のことである。また、本
実施例ではn+領域51の存在により、pチヤネ
ルMOSトランジスタのソース26、n型領域2
3及びpウエル22等からなるPNPバイポーラ
トランジスタ(寄生トランジスタ)のβPNPをも大
幅に小さくすることができる。このため、ラツチ
アツプの発生をより確実に防止することが可能で
ある。
Of course, even with such a configuration, the same effects as in the previous embodiment can be obtained. Further, in this embodiment, due to the existence of the n + region 51, the source 26 of the p-channel MOS transistor and the n-type region 2
β PNP of a PNP bipolar transistor (parasitic transistor) consisting of P-well 22 and P-well 22 can also be significantly reduced. Therefore, it is possible to more reliably prevent the occurrence of latch-up.

なお、本発明は上述した各実施例に限定される
ものではない。例えば、前記高濃度不純物領域
(p+領域25,n+領域51)は、第8図a〜eに
示す如く形成されたものであつてもよい。第8図
aは高濃度不純物領域25の上面の一部と側面の
一部とが素子分離用絶縁膜24に接触している
例、同図bは高濃度不純物領域25の側面が絶縁
膜24に接触している例、同図cは高濃度不純物
領域25の上面の一部が絶縁膜24の下部全面に
接触している例である。つまり、高濃度不純物層
はその一部が素子分離用絶縁膜と接触しているも
のであればよい。また、半導体基板の導電型はn
型に限るものではなく、p型であつてもよいのは
勿論のことである。さらに、半導体基板として、
SiO2等の絶縁膜上に半導体膜を形成したものを
用いることも可能である。また、高濃度不純物領
域の不純物濃度は、仕様に応じて適宜定めればよ
い。その他、本発明の要旨を逸脱しない範囲で、
種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the high concentration impurity regions (p + region 25, n + region 51) may be formed as shown in FIGS. 8a to 8e. 8a shows an example in which a part of the upper surface and a part of the side surface of the high concentration impurity region 25 are in contact with the element isolation insulating film 24, and in FIG. 8b, the side surface of the high concentration impurity region 25 is in contact with the insulating film Figure c is an example in which a part of the upper surface of the high concentration impurity region 25 is in contact with the entire lower part of the insulating film 24. In other words, the high concentration impurity layer may be one in which a portion thereof is in contact with the element isolation insulating film. Also, the conductivity type of the semiconductor substrate is n
Of course, it is not limited to the type, and may be p-type. Furthermore, as a semiconductor substrate,
It is also possible to use a semiconductor film formed on an insulating film such as SiO 2 . Further, the impurity concentration of the high concentration impurity region may be determined as appropriate according to specifications. In addition, without departing from the gist of the present invention,
Various modifications can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来のC−MOS
インバータを説明するためのもので第1図は等価
回路図、第2図は構造断面図、第3図a,bはラ
ツチアツプの改善をはかつた従来装置の概略構造
を示す断面図、第4図は本発明の一実施例の概略
構造を示す断面図、第5図a〜eは上記実施例を
説明するための工程断面図、第6図は他の実施例
の概略構成を示す断面図、第7図は上記他の実施
例を説明するための断面図、第8図a〜eは変形
例を説明するための断面図である。 21……n型Si基板(第1導電型半導体基板)、
22……pウエル(第2導電型領域)、23……
n型領域(第1導電型領域)、24……酸化膜
(素子分離用絶縁膜)、25……p+領域(高濃度
不純物領域)、26,27……p+領域(ソース・
ドレイン領域)、28,31……ゲート電極、2
9,30……n+領域(ソース・ドレイン領域)、
41……n型エピタキシヤル層、42……CVD
酸化膜、51……n+領域(高濃度不純物領域)。
Figures 1 and 2 are respectively conventional C-MOS
Figure 1 is an equivalent circuit diagram, Figure 2 is a cross-sectional view of the structure, Figures 3a and b are cross-sectional views showing the schematic structure of a conventional device with an improved latch-up, and Figure 4 is a cross-sectional view to explain the inverter. The figure is a sectional view showing a schematic structure of an embodiment of the present invention, FIGS. 5 a to 5 e are process sectional views for explaining the above embodiment, and FIG. , FIG. 7 is a sectional view for explaining the other embodiment, and FIGS. 8 a to 8 e are sectional views for explaining modified examples. 21... n-type Si substrate (first conductivity type semiconductor substrate),
22...p well (second conductivity type region), 23...
n-type region (first conductivity type region), 24... oxide film (insulating film for element isolation), 25... p + region (high concentration impurity region), 26, 27... p + region (source/
drain region), 28, 31...gate electrode, 2
9, 30...n + region (source/drain region),
41...n-type epitaxial layer, 42...CVD
Oxide film, 51...n + region (high concentration impurity region).

Claims (1)

【特許請求の範囲】 1 第1導電型半導体基板の表面にpチヤネル及
びnチヤネルのMISトランジスタを作成する相補
型半導体装置の製造方法において、 第1導電型半導体基板の表面層に第2導電型の
高濃度不純物領域を選択的に形成する工程と、前
記基板上にエピタキシヤル層を成長し、第2導電
型の高濃度不純物領域上に該エピタキシヤル層か
らなる第2導電型の低濃度不純物領域を、これに
隣接して該エピタキシヤル層からなる第1導電型
の低濃度不純物領域を形成する工程と、前記エピ
タキシヤル層の各領域間に前記第2導電型の高濃
度不純物領域に達する素子分離用溝を形成し、こ
の溝に素子分離用絶縁膜を埋込み形成する工程と
を含むことを特徴とする相補型半導体装置の製造
方法。 2 前記エピタキシヤル層からなる第1及び第2
導電型の低濃度不純物領域を形成する工程とし
て、前記基板上に第1導電型の低濃度不純物領域
をエピタキシヤル成長したのち、前記第2導電型
の高濃度不純物領域上のエピタキシヤル層をイオ
ン注入により第2導電型の低濃度不純物領域に転
化することを特徴とする特許請求の範囲第1項記
載の相補型半導体装置の製造方法。 3 第1導電型半導体基板の表面にpチヤネル及
びnチヤネルのMISトランジスタを作成する相補
型半導体装置の製造方法において、 第1導電型半導体基板の表面層に第1導電型の
高濃度不純物領域と第2導電型の高濃度不純物領
域を選択的に形成する工程と、前記基板上にエピ
タキシヤル層を成長し、第2導電型の高濃度不純
物領域上に該エピタキシヤル層からなる第2導電
型の低濃度不純物領域を、第1導電型の高濃度不
純物領域上に該エピタキシヤル層からなる第1導
電型の低濃度不純物領域を形成する工程と、前記
エピタキヤル層の各領域間に前記各高濃度不純物
領域に達する素子分離用溝を形成し、この溝に素
子分離用絶縁膜を埋込み形成する工程とを含むこ
とを特徴とする相補型半導体装置の製造方法。 4 前記エピタキシヤル層からなる第1及び第2
導電型の低濃度不純物領域を形成する工程とし
て、前記基板上に第1導電型の低濃度不純物領域
をエピタキシヤル成長したのち、前記第2導電型
の高濃度不純物領域上のエピタキシヤル層をイオ
ン注入により第2導電型の低濃度不純物領域に転
化することを特徴とする特許請求の範囲第3項記
載の相補型半導体装置の製造方法。
[Scope of Claims] 1. A method for manufacturing a complementary semiconductor device in which p-channel and n-channel MIS transistors are formed on the surface of a first conductivity type semiconductor substrate, wherein a second conductivity type is formed on the surface layer of the first conductivity type semiconductor substrate. selectively forming a high concentration impurity region on the substrate, growing an epitaxial layer on the substrate, and depositing a second conductivity type low concentration impurity formed on the epitaxial layer on the second conductivity type high concentration impurity region; forming a low concentration impurity region of a first conductivity type made of the epitaxial layer adjacent to the region; and reaching a high concentration impurity region of the second conductivity type between each region of the epitaxial layer. 1. A method for manufacturing a complementary semiconductor device, comprising the steps of: forming an element isolation trench; and filling the trench with an element isolation insulating film. 2 the first and second layers comprising the epitaxial layer;
In the step of forming a low concentration impurity region of a conductivity type, after epitaxially growing a low concentration impurity region of a first conductivity type on the substrate, the epitaxial layer on the high concentration impurity region of a second conductivity type is grown using ions. 2. The method of manufacturing a complementary semiconductor device according to claim 1, wherein the region is converted into a low concentration impurity region of a second conductivity type by implantation. 3. In a method for manufacturing a complementary semiconductor device in which p-channel and n-channel MIS transistors are formed on a surface of a first conductivity type semiconductor substrate, a first conductivity type high concentration impurity region is formed in a surface layer of the first conductivity type semiconductor substrate. selectively forming a second conductivity type high concentration impurity region; and growing an epitaxial layer on the substrate, and forming a second conductivity type high concentration impurity region on the second conductivity type high concentration impurity region. forming a first conductivity type low concentration impurity region of the epitaxial layer on the first conductivity type high concentration impurity region; 1. A method for manufacturing a complementary semiconductor device, comprising the steps of: forming a trench for element isolation reaching a concentration impurity region; and filling the trench with an insulating film for element isolation. 4 the first and second layers comprising the epitaxial layer;
In the step of forming a low concentration impurity region of a conductivity type, after epitaxially growing a low concentration impurity region of a first conductivity type on the substrate, the epitaxial layer on the high concentration impurity region of a second conductivity type is grown using ions. 4. The method of manufacturing a complementary semiconductor device according to claim 3, wherein the region is converted into a low concentration impurity region of the second conductivity type by implantation.
JP58053531A 1983-03-31 1983-03-31 Complementary semiconductor device Granted JPS59181048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053531A JPS59181048A (en) 1983-03-31 1983-03-31 Complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053531A JPS59181048A (en) 1983-03-31 1983-03-31 Complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS59181048A JPS59181048A (en) 1984-10-15
JPH0519822B2 true JPH0519822B2 (en) 1993-03-17

Family

ID=12945391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053531A Granted JPS59181048A (en) 1983-03-31 1983-03-31 Complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS59181048A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128555A (en) * 1984-11-27 1986-06-16 Mitsubishi Electric Corp Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5493981A (en) * 1978-01-09 1979-07-25 Toshiba Corp Semiconductor device
JPS5575265A (en) * 1978-12-01 1980-06-06 Fujitsu Ltd Complementary type field-effect metal-insulator- semiconductor device
JPS5919347A (en) * 1982-07-23 1984-01-31 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5493981A (en) * 1978-01-09 1979-07-25 Toshiba Corp Semiconductor device
JPS5575265A (en) * 1978-12-01 1980-06-06 Fujitsu Ltd Complementary type field-effect metal-insulator- semiconductor device
JPS5919347A (en) * 1982-07-23 1984-01-31 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit and manufacture thereof

Also Published As

Publication number Publication date
JPS59181048A (en) 1984-10-15

Similar Documents

Publication Publication Date Title
KR100275962B1 (en) Semiconductor device and manufacturing method thereof
JP2965783B2 (en) Semiconductor device and manufacturing method thereof
US4805008A (en) Semiconductor device having MOSFET and deep polycrystalline silicon region
JP2004515915A (en) Substrate wafer layer
JPH06151723A (en) Bipolar transistor structure of monolithic semiconductor element and manufacture of said monolithic semiconductor element
JP3958388B2 (en) Semiconductor device
EP0118102B1 (en) Method for manufacturing a semiconductor device
EP0138563A2 (en) Lateral transistors
JPH0582986B2 (en)
JPH0519822B2 (en)
JPS60117654A (en) Complementary semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JP2611450B2 (en) Semiconductor integrated circuit and manufacturing method thereof
KR930009125B1 (en) Twin well cmos protected from latch up
JPH10189755A (en) Semiconductor device and its manufacturing method
JPS61501736A (en) Latch-up resistant CMOS structure for VLSI
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
KR19990065744A (en) Bipolar transistor having a diode between a collector and an emitter and a manufacturing method thereof
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPS6235666A (en) Mos transistor
KR100218263B1 (en) A semiconductor device and a fabricating method thereof
JPH0513705A (en) Semiconductor device
JPS63244876A (en) Complementary mis type semiconductor device and manufacture thereof
JPH05109748A (en) Semiconductor device and manufacture of the same
JPH05109745A (en) Semiconductor device