JPS5919347A - Semiconductor integrated circuit and its manufacturing method - Google Patents

Semiconductor integrated circuit and its manufacturing method

Info

Publication number
JPS5919347A
JPS5919347A JP57129352A JP12935282A JPS5919347A JP S5919347 A JPS5919347 A JP S5919347A JP 57129352 A JP57129352 A JP 57129352A JP 12935282 A JP12935282 A JP 12935282A JP S5919347 A JPS5919347 A JP S5919347A
Authority
JP
Japan
Prior art keywords
semiconductor
region
thin film
film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57129352A
Other languages
Japanese (ja)
Inventor
Tadanaka Yoneda
米田 忠央
Kazuya Kikuchi
菊池 和也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57129352A priority Critical patent/JPS5919347A/en
Publication of JPS5919347A publication Critical patent/JPS5919347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76278Vertical isolation by selective deposition of single crystal silicon, i.e. SEG techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/40Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00 with at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of IGFETs with BJTs
    • H10D84/401Combinations of FETs or IGBTs with BJTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent the decrease in the reverse withstand voltage between the base and the collector by providing a thin semiconductor region in which the bottom surface is contacted through the first single crystal semiconductor region and an insulating film and the side surfaces are contacted through an insulating film with the second single crystal semiconductor region. CONSTITUTION:An N<+> type buried layer, an epitaxial layer and a reflecting film 23 are formed on a P type silicon substrate 20. With a photoresist film 24 as a mask the film 23 is removed. Subsequently, grooves 25, 26 are formed by reactive ion etching, boron ions are implanted in the bottoms of the grooves 25, 26 to form implanted regions 27, 28. Then, a light is emitted under the prescribed condition to form an SiO2 film 33, and an amorphous silicon films 34, 35 are further formed. Then, a laser light is emitted while heating, the films 34, 35 are formed in a thin silicon film near single crystal, and a semiconductor element such as gate oxidized film 38 and a gate electrode 39 are formed thereon.

Description

【発明の詳細な説明】 本発明は高速のバイポーラトランジスタおよびMOS)
ランジスタ抵抗、容量等を一体化した半導体集積回路お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to high-speed bipolar transistors and MOS transistors.
This invention relates to a semiconductor integrated circuit that integrates transistor resistance, capacitance, etc., and a method for manufacturing the same.

従来のバイポーラトランジスタと0MO8トランジスタ
を同一基板に形成した場合の断面構造図を第1図A、H
に示す。
Figure 1A and H are cross-sectional structural diagrams when a conventional bipolar transistor and an 0MO8 transistor are formed on the same substrate.
Shown below.

p形シリコン基板1にヒソの拡散によりシートΩ 抵抗約40 /のn+ 形埋込領域2、分離形成領口 域およびnチャンネルMOSトランジスタ形成領域にシ
ート抵抗約3oOΩルのp形埋込領域3゜4を形成し、
n形1Ω−m、厚さ約2μmのエピタキシアル層6を形
成する。そして分離形成領域およびnチャンネルMO3
)ランリスタ形成領域に約2 X 10” 1ons/
dのポロンイオンと注入し110o″Cで約4時間熱処
理するとp形埋込領域3゜4およびイオン注入したボロ
ンの拡散により、分離領域6.pウェル領域7が形成さ
れる。この場合、n%埋込領域2も拡散によりヒソがエ
ピタキシアル層5側に拡散してn+形持ち上り領域8が
形5・“−ジ 成される(第1図A)。
The p-type silicon substrate 1 has an n+ type buried region 2 with a sheet resistance of about 40 ohms by diffusion, and a p-type buried region 3.4 with a sheet resistance of about 300 ohms in the isolation formation region and the n-channel MOS transistor formation region. form,
An n-type epitaxial layer 6 of 1 Ω-m and a thickness of about 2 μm is formed. and isolation formation region and n-channel MO3
) Approximately 2 x 10” 1ons/
When boron ions of d are implanted and heat treated at 110° C. for about 4 hours, a p-type buried region 3.4 and an isolation region 6 and a p-well region 7 are formed by diffusion of the implanted boron ions.In this case, n % buried region 2 is also diffused to the epitaxial layer 5 side, forming an n+ type raised region 8 of 5.0 mm (FIG. 1A).

次にn)コレクタコンタクト領域9を形成する。Next, n) a collector contact region 9 is formed.

そしてn−p−n)ランリスタのベース領域1゜とpチ
ャンネルMO3)ランリスタのソス・ドレイン領域11
を同時に形成する。さらに、”P−n)ランリスタのエ
ミッタ領域12とnチャンネルMO8)ランリスタのソ
ース拳ドレイン領域13を同時に形成する。そしてゲー
ト酸化膜14゜ゲート電極15を形成する(第1図B)
and n-p-n) base region 1° of the run lister and p-channel MO3) sos/drain region 11 of the run lister
are formed at the same time. Furthermore, the emitter region 12 of the ``P-n'' run lister and the source region 13 of the n-channel MO8) run lister are simultaneously formed.Then, a gate oxide film 14° and a gate electrode 15 are formed (FIG. 1B).
.

上記工程において、pウェル領域7を形成する際高温で
長時間熱処理するため♂形埋込領域2中のヒソがエピタ
キシアル層6に拡散して形成された♂ 形持ち上り領域
8がベース領域1oと接するか、もしくは近づいてコレ
クタ・ベース間の逆方向耐圧が低下したり、p−n接合
容量が増加するという問題がある。特に高周波集積回路
はエピタキシアル層が薄いために上記の影響が顕泰であ
る。
In the above process, since the p-well region 7 is heat-treated at a high temperature for a long time, the male-shaped buried region 2 is diffused into the epitaxial layer 6, resulting in a male-shaped raised region 8 formed in the base region 1o. There are problems in that the reverse breakdown voltage between the collector and base decreases and the pn junction capacitance increases when the collector-base contacts or comes close to each other. In particular, since the epitaxial layer of high-frequency integrated circuits is thin, the above-mentioned effects are noticeable.

さらに、nチャンネルMO8,)ランリスタのソース・
ドレイン領域13.pウェル領域7、エピ6ページ タキシアル層6、pチャンネルMO8)ランリスタのソ
ース・ドレイン領域11間でn −p −n −pのサ
イリスタ効果による異状電流(ラッチアップ)が生じ、
信頼性試験で不良となる。特に、微細パターンになると
上記ラッチアップが生じゃすい。
Furthermore, the source of the n-channel MO8,) run lister
Drain region 13. An abnormal current (latch-up) occurs between the source and drain regions 11 of the p-well region 7, epitaxial layer 6, and p-channel MO 8) due to the n-p-n-p thyristor effect.
Fails in reliability test. In particular, the above-mentioned latch-up is likely to occur when fine patterns are used.

また第2図に示すように、Si○2膜16上に形成した
多結晶St  の抵抗体17上にS 102膜18を介
してAl配線19を形成してクロスオーバー配線にする
場合、抵抗体17の断差のためにA/配線19の断線も
しくは配線間のショートが生じるため微細パターン形成
は困難である。
Further, as shown in FIG. 2, when an Al wiring 19 is formed on a polycrystalline St 2 resistor 17 formed on a Si○2 film 16 via an S102 film 18 to form a crossover wiring, the resistor It is difficult to form a fine pattern because the difference between the lines 17 and 17 causes a disconnection of the A/wiring 19 or a short between the wirings.

また、第3図に示すようにコレクタコンタクト領域と同
時に形成したn+ 影領域9′上にゲート酸化膜14を
形成し、Al電極19′  で形成したMO8容量で容
量値を大きくする場合、MO8容量の占有面積が大きく
なる。
Furthermore, as shown in FIG. 3, if a gate oxide film 14 is formed on the n+ shadow region 9' formed at the same time as the collector contact region, and the capacitance value is increased by the MO8 capacitor formed with the Al electrode 19', the MO8 capacitor occupies a larger area.

本発明は従来の欠点にかんがみなされたもので同一基板
にバイポーラトランジスタと0MO8)ランリスタを同
一基板に形成する場合、ベース・コ7   :ル フタ間p −n接合の逆方向耐圧が低下せず、しかもp
 −n接合容量も大きくならない半導体集積回路および
その製造方法を提供せんとするものである。さらに他の
目的はラッチアップの生じない0MO3を形成できる半
導体集積回路およびその製造方法を提供せんとするもの
である。
The present invention was developed in view of the conventional drawbacks, and when a bipolar transistor and a 0MO8) run lister are formed on the same substrate, the reverse withstand voltage of the p-n junction between base and co7:lufter does not decrease. p
It is an object of the present invention to provide a semiconductor integrated circuit and a method for manufacturing the same in which the -n junction capacitance does not increase. Still another object of the present invention is to provide a semiconductor integrated circuit that can form an OMO3 structure without latch-up, and a method for manufacturing the same.

さらに他の目的は微細パターン形成可能なりロスオーバ
ー配線および占有面積の小さなMO8容量を形成できる
半導体集積回路を提供せんとするものである。
Still another object of the present invention is to provide a semiconductor integrated circuit in which a fine pattern can be formed and a lossover wiring and an MO8 capacitor occupying a small area can be formed.

本発明は一導電形第1の単結晶半導体領域上に反対導電
形の第2の単結晶半導体領域が形成され、底面が絶縁膜
を介して第1の単結晶半導体領域と接し側面が絶縁膜を
介して第2の単結晶半導体領域に接した半導体薄膜領域
を形成し、少くとも前記半導体薄膜領域をレーザーアニ
ールのような極部加熱をして再結晶化させた後、能動素
子および受動素子を形成してベース・コレクタ間の逆方
向耐圧低下、p−n接合容量が大きくならないバイポー
ラトランジスタとラッチアップの生じない0MO3を同
一基板に形成することができる半導体集積回路およびそ
の製造方法を提供せんとするものである。
In the present invention, a second single crystal semiconductor region of an opposite conductivity type is formed on a first single crystal semiconductor region of one conductivity type, the bottom surface is in contact with the first single crystal semiconductor region via an insulating film, and the side surface is an insulating film. A semiconductor thin film region is formed in contact with a second single crystal semiconductor region through a semiconductor thin film region, and after recrystallizing at least the semiconductor thin film region by extreme heating such as laser annealing, an active element and a passive element are formed. To provide a semiconductor integrated circuit and a method for manufacturing the same, in which a bipolar transistor that does not cause a drop in reverse breakdown voltage between the base and collector and an increase in p-n junction capacitance by forming a transistor, and an 0MO3 transistor that does not cause latch-up can be formed on the same substrate. That is.

また半導体薄膜領域を抵抗体もしくはMOS 容量の一
方の電極とすることにより高密度の集積回路を提供せん
とするものである。
Furthermore, by using the semiconductor thin film region as one electrode of a resistor or MOS capacitor, it is intended to provide a high-density integrated circuit.

本発明の第一の実施例としてn −p −n トランジ
スタと0MO8を同一基板に形成する場合を第4図A〜
第4図Eに示す。
As a first embodiment of the present invention, the case where an n-p-n transistor and an 0MO8 are formed on the same substrate is shown in FIGS.
It is shown in Figure 4E.

まずp形10Ω・mシリコン基板2Qのn −p−n)
ランリスタ・pチャンネルMO3)7ンジスタ形成領域
に約100Ω/口、拡散深さ約0.5μmのヒソを拡散
した♂ 形埋込領域21を形成する。さらにn形1Ω−
m 、厚さ1.5μmのエピタキシアル層22を形成す
る。そしてエピタキシアル層22表面上に光線を反射す
る反射膜23(例えば厚さ0゜6μmのAl膜)を形成
する。そして、n −p −n トランジスタ形成領域
、pチャンネルMOSトランジスタ形成領域の反射膜2
3上にホトレジスト膜24を残し、ホトレジスト膜24
を9べ・:。
First, p-type 10Ω・m silicon substrate 2Q (n-p-n)
A ♂-shaped buried region 21 in which a hysterol is diffused and has a resistance of about 100 Ω/hole and a diffusion depth of about 0.5 μm is formed in the runlister/p-channel MO3)7 resistor formation region. Furthermore, n-type 1Ω-
m, and an epitaxial layer 22 with a thickness of 1.5 μm is formed. Then, a reflective film 23 (for example, an Al film with a thickness of 0.6 μm) is formed on the surface of the epitaxial layer 22 to reflect light. Then, the reflective film 2 in the n-p-n transistor formation region and the p-channel MOS transistor formation region
3, leaving the photoresist film 24 on top of the photoresist film 24.
9be:.

マスクにして反射膜23を除去する(第4図A)。The reflective film 23 is removed using a mask (FIG. 4A).

次に、ホトレジスト膜24をマスクにしてエピタキシア
ル層22およびn+ 形埋込領域21をリアクティブイ
オンエツチング法により除去し、分離形成領域に溝26
.nチャンネルMO8)ランリスタ形成領域に溝26を
形成する。さらにホトレジスト膜24、反射膜23をマ
スクにして溝26゜26+ ノ底部1c60KeV、l
X10”。nシー のボロンイオンを注入し、注入領域
27.28を形成する(第4図B)。
Next, using the photoresist film 24 as a mask, the epitaxial layer 22 and the n+ type buried region 21 are removed by reactive ion etching, and grooves 22 are formed in the isolation formation region.
.. n-channel MO8) Form a groove 26 in the run lister formation region. Furthermore, using the photoresist film 24 and the reflective film 23 as a mask, the bottom of the groove 26°26+ is 1c60KeV,1
Boron ions of x10".ncy are implanted to form implanted regions 27 and 28 (FIG. 4B).

次に、ホトレジスト膜24を除去する。そして第5図に
示すように、冷却基板30,31.透明ガラス窓32で
囲まれた反応装置の冷却基板3゜上にシリコン基板20
を置く。そして反応装置内をS I H4ガス、o2ガ
スの混合ガス雰囲気にする。
Next, the photoresist film 24 is removed. As shown in FIG. 5, cooling boards 30, 31 . A silicon substrate 20 is placed on a cooling substrate 3° of a reaction device surrounded by a transparent glass window 32.
put Then, the inside of the reactor is made into a mixed gas atmosphere of S I H4 gas and O2 gas.

そして反射膜23によって反前し易く、Si 基板は吸
収し易い波長の光l(例えばArレーザー光、YAGレ
ーザ−、キセノンランプの光等の0.4μ〜1μ の波
長の光)をガラス窓32を通して照射する。
The reflection film 23 allows light of a wavelength that is easily deflected and easily absorbed by the Si substrate (for example, light of a wavelength of 0.4 μ to 1 μ such as Ar laser light, YAG laser light, light from a xenon lamp, etc.) to the glass window 32. irradiate through.

10ページ そうすると、第6図に示すように反射膜23」二は光が
反射して温度が上昇しないが、溝25.26はシリコン
基板が露出しているため光が吸収され、溝25.26の
領域の温度が上る。冷却基板3゜はフレオンガスもしく
は冷却水を流して約30″Cに冷却しているので、溝2
5.26領域で発生した熱りはシリコン基板2oの裏側
の方へ流れる。
Page 10 Then, as shown in FIG. 6, the reflective film 23'2 reflects light and the temperature does not rise, but since the silicon substrate is exposed in the grooves 25 and 26, light is absorbed and the grooves 25 and 26 The temperature in the area increases. Cooling board 3° is cooled to about 30"C by flowing Freon gas or cooling water, so groove 2
The heat generated in the 5.26 area flows toward the back side of the silicon substrate 2o.

そのために反射膜23直下のシリコン基板2oはあまり
温度が上らない。そこで、溝25.26の領域の温度が
S I H4ガスと02ガスが反応してS x 02膜
が生成する温度(約360°C)になるように、レーザ
のパワーもしくはランプの電力を設定する。
Therefore, the temperature of the silicon substrate 2o directly under the reflective film 23 does not rise much. Therefore, set the laser power or lamp power so that the temperature in the grooves 25 and 26 reaches the temperature (approximately 360°C) at which the S I H4 gas and the 02 gas react to form the S x 02 film. do.

上記条件で光を照射すると、第4図Cに示すように溝2
5.26の周辺に厚さ約0.3μmの5i02膜33が
形成される。一方、反射膜23上は温度が上らないため
ほとんどS 102膜が形成されない。
When irradiated with light under the above conditions, the groove 2 appears as shown in Figure 4C.
A 5i02 film 33 having a thickness of approximately 0.3 μm is formed around the 5.26. On the other hand, the S102 film is hardly formed on the reflective film 23 because the temperature does not rise.

さらに、SiHガスとB2H6ガスを含んだガスに切り
かえると、5i02膜330周辺に無定形シリコン膜3
4.35が形成し、溝25.26が埋11  − まる(第4図C)。
Furthermore, when switching to a gas containing SiH gas and B2H6 gas, an amorphous silicon film 3 is formed around the 5i02 film 330.
4.35 is formed and the groove 25.26 is filled (FIG. 4C).

さらに基板を約300″Cで加熱しながら、10Wのア
ルゴンレーザー光を照射すると、無定形シリコン膜34
.35がp型約1Ωmの単結晶に近いシリコン薄膜36
.37となる。このとき無定形シリコン中の水素原子が
蒸発し、膜厚は約1Q係減少する(第4図D)。
Furthermore, when the substrate is heated to about 300"C and irradiated with 10W argon laser light, the amorphous silicon film 34
.. 35 is a p-type approximately 1Ωm silicon thin film 36 close to single crystal
.. It becomes 37. At this time, hydrogen atoms in the amorphous silicon evaporate, and the film thickness decreases by about 1Q (FIG. 4D).

次にゲート酸化膜38、ゲート電極39を形成する。ま
た、シート抵抗150Ω71拡散深さ096μmのp+
形領領域形成してn −p −n )ランリスタのベー
ス領域40とpチャンネルMO3)ランリスタのソース
・ドレイン領域を41同時に形成する。またシート抵抗
40Ω7佃、拡散深さ0.4μmのn4−影領域を形成
してn−p−n)ランリスタのエミッタ領域42とnチ
ャンネルMO8)ランリスタのソース・ドレイン領域4
3を同時に形成する。
Next, a gate oxide film 38 and a gate electrode 39 are formed. In addition, p+ with sheet resistance 150Ω71 diffusion depth 096μm
A base region 40 of an n-p-n (n-p-n) run lister and a source/drain region 41 of a p-channel MO (3) run lister are simultaneously formed. In addition, an n4-shadow region with a sheet resistance of 40Ω7 and a diffusion depth of 0.4 μm is formed to form n-p-n) emitter region 42 of the runlister and n-channel MO8) source/drain region 4 of the runlister.
3 at the same time.

また、5102膜3了とシリコン薄膜37とで素子間分
離ができ、注入領域27は寄生MO3効果のチャンネル
スト・ンノく−となる(第4図E)。
In addition, the 5102 film 3 and the silicon thin film 37 provide isolation between elements, and the implanted region 27 becomes a channel block due to the parasitic MO3 effect (FIG. 4E).

このようにして、素子間がすべて分離された半導体集積
回路が作成される。
In this way, a semiconductor integrated circuit in which all elements are isolated is created.

本発明の第2の実施例を第7図A〜第7図りに示す。A second embodiment of the present invention is shown in FIGS. 7A-7.

第1の実施例の場合と同じようにp形10Ω−cnLシ
リコン基板2oにn+形埋込領域21を形成し、n形エ
ピタキシアル層22を形成する。そしてエビタギシアル
層22表面に厚さ0゜03μmのS 102膜50.厚
さo、06μmノSi3N4膜51、厚さ0.06μm
のリンもしくはヒソを含んだS i02膜(ドープドオ
キサイド膜)52を形成する。そしてpチャンネルMO
8I−ランリスタおよびn −p−n)ランリスタ形成
領域にホトレジスト膜52を形成する(第7図A)。
As in the case of the first embodiment, an n+ type buried region 21 is formed in a p type 10Ω-cnL silicon substrate 2o, and an n type epitaxial layer 22 is formed. Then, an S102 film 50 with a thickness of 0.03 μm is applied to the surface of the epitagitial layer 22. Thickness o, 06 μm Si3N4 film 51, thickness 0.06 μm
An Si02 film (doped oxide film) 52 containing phosphorus or hisso is formed. and p channel MO
A photoresist film 52 is formed in the 8I-run lister and n-p-n) run lister formation region (FIG. 7A).

次にリアクティブイオンエッチもしくはリアクティブス
パッタエッチ法によりドープドオキサイド膜62、Si
3N4膜61.5i02膜50を除去し、さらにエピタ
キシアル層22およびn 形埋込領域21を除去し、溝
54.56を形成するOそして溝54.55の底部K 
60 KeV、 I Xl 0 ”13べ一:゛ tons/c11 のボロンをイオン注入し、注入領域
56゜67を形成する(第7図B)。
Next, the doped oxide film 62 and Si are etched by reactive ion etching or reactive sputter etching.
The 3N4 film 61.5i02 film 50 is removed, and the epitaxial layer 22 and the n-type buried region 21 are removed to form a trench 54.56 and the bottom K of the trench 54.55.
Boron ions of 60 KeV and 13 tons/c11 are implanted to form an implanted region 56°67 (FIG. 7B).

次にホトレジスト膜53を除去し、酸化雰囲気中で熱処
理して溝54.55の周辺に厚さ約O93/jmのSi
○2膜68全68する。そしてスパッタ法もしくはCV
D法により無定形もしくは多結晶のボロンを含んだSi
 薄膜59を形成して溝54゜66を埋める。そして9
00〜1000″C中で熱処理するとドープドオキサイ
ド膜中のリンもしくはヒソがSi薄膜68中に拡散して
n+形のSt薄膜6oになる(第7図C)。
Next, the photoresist film 53 is removed and heat treated in an oxidizing atmosphere to form a Si film with a thickness of about 093/jm around the trench 54.55.
○2 membranes 68 total 68. And sputtering method or CV
Si containing amorphous or polycrystalline boron by D method
A thin film 59 is formed to fill the grooves 54°66. And 9
When heat-treated at 00 to 1000''C, phosphorus or histo in the doped oxide film diffuses into the Si thin film 68, forming an n+ type St thin film 6o (FIG. 7C).

−tの後HNOHF、CH3CO0Hの混合液に浸漬3
? すると、n+形St薄膜60とSi  薄膜69とのエ
ッチ速度比率が約6倍となる。そのためにn加St薄膜
6oが除去され、Si薄膜69が残る(第7図D)。
- After t, immersion in a mixture of HNOHF and CH3COOH 3
? Then, the etch rate ratio between the n+ type St thin film 60 and the Si thin film 69 becomes approximately six times. For this purpose, the n-doped St thin film 6o is removed and the Si thin film 69 remains (FIG. 7D).

そしてレーザーアニールによりSi薄膜69をp形約1
Ω−濡の単結晶に近いSi薄膜61を形成した後第4図
Eに示すように0MO8)ランリスタとn−p−nトラ
ンジスタを形成する。
Then, by laser annealing, the Si thin film 69 is made into p-type approximately 1
After forming an Ω-wet Si thin film 61 similar to a single crystal, a MO8) run lister and an npn transistor are formed as shown in FIG. 4E.

14ページ 上記第4図、第7図の工程では分離領域とSi薄膜領域
を同時に形成することができるので工程数をあまり増加
させることなくバイポーラトランジスタと0MO3+−
ランリスタを一体化できる。
Page 14 In the steps shown in FIGS. 4 and 7 above, the isolation region and the Si thin film region can be formed at the same time, so the bipolar transistor and 0MO3+- can be formed without increasing the number of steps.
Runlister can be integrated.

また、第4図、第7図の分離領域のSi薄膜37゜61
に、抵抗体MO8容量の一方の端子等の受動素子もしく
はトランジスタ等の能動素子を形成してもSiO2膜3
3.58で素子間分離が可能であるので分離領域の占め
る面積が小さく高密度の集積回路を実現することができ
る。
In addition, the Si thin film 37°61 in the isolation region in FIGS. 4 and 7
Even if a passive element such as one terminal of the resistor MO8 capacitor or an active element such as a transistor is formed on the SiO2 film 3,
Since isolation between elements is possible at 3.58, the area occupied by the isolation region is small and a high-density integrated circuit can be realized.

また、上記工程では高温の加熱工程なしでnチャンネル
MOSトランジスタ形成領域を形成することができるの
でn+形埋込領域21中のヒソがエピタキシアル層22
中にほとんど拡散しないのでベース・コレクタ間逆方向
耐圧が低下することはない。また分離領域直下のボロン
イオン注入領域27中のボロンもほとんど拡散せずn′
−形埋込領域21と接しないので、コレクタ、基板間の
耐圧低下はないし、p−n接合容量も大きくならない0
さらに、nチャンネルMO8)ランリスタの周辺15 
  ・ はS z O2膜33で囲まれているためラッチアップ
が生じることはない。まだ、pチャンネルMOSトラン
ジスタ直下にn+形埋込領域21が形成されているため
ソース・ドレイン41をエミッタ。
In addition, in the above process, the n-channel MOS transistor formation region can be formed without a high-temperature heating process, so that the hyps in the n+ type buried region 21 are removed from the epitaxial layer 22.
Since it hardly diffuses into the inside, the reverse breakdown voltage between the base and the collector does not decrease. In addition, boron in the boron ion implanted region 27 directly under the isolation region is also hardly diffused and n'
- Since it does not contact the buried region 21, there is no drop in breakdown voltage between the collector and the substrate, and the pn junction capacitance does not increase.
Furthermore, n-channel MO8) peripheral 15 of the run lister
• Since it is surrounded by the S z O2 film 33, latch-up will not occur. Since the n+ type buried region 21 is still formed directly under the p-channel MOS transistor, the source/drain 41 is used as the emitter.

エピタキシアル層22をベース、基板20をコレクタと
した寄生p−n−pl−ランジスタのhリスは低い。
The parasitic p-n-pl transistor having the epitaxial layer 22 as the base and the substrate 20 as the collector has a low h-list.

第4図に示す工程において、Si薄膜36を抵抗体とし
て使用する場合を第8図に示す。第8図Aが平面図で、
第8図BがAのa−a’  断面図である。Si薄膜3
6にリンもしくはボロンを導入して所望のシート抵抗の
Si 薄膜62として両端にコンタクト窓あけをし、A
4  配線62を行う。
FIG. 8 shows a case where the Si thin film 36 is used as a resistor in the process shown in FIG. 4. Figure 8A is a plan view,
FIG. 8B is a sectional view taken along the line a-a' of A. Si thin film 3
Phosphorus or boron is introduced into 6 to form a Si thin film 62 with the desired sheet resistance, and contact windows are opened at both ends.
4 Perform wiring 62.

Al配線64は抵抗上を通過するクロスオーバー配線で
ある。」二記抵抗体の表面は基板表面と同一高さである
のでクロスオーバー配線64は抵抗体領域上で断線ショ
ートが生じることはないので微細なりロスオーバー配線
ができる。
The Al wiring 64 is a crossover wiring that passes over the resistor. 2. Since the surface of the resistor is at the same height as the substrate surface, the cross-over wiring 64 will not be disconnected or short-circuited on the resistor region, so that a fine loss-over wiring can be formed.

第4図に示す工程においてSi薄膜36をMO8容量の
一方の電極にした場合を第9図に示すOn+形の埋込領
域21」二にコレクタコンタクト領域形成と同時にn4
−影領域65、n+形Si 薄膜66を形成し、Al電
極67.68を形成する。そうするとSiO2膜33が
絶縁膜、n+形領領域6666を電極とするMO8容量
が形成される。
In the process shown in FIG. 4, when the Si thin film 36 is used as one electrode of the MO8 capacitor, FIG.
- forming a shadow region 65, an n+ type Si thin film 66, and forming Al electrodes 67 and 68; Then, an MO8 capacitor is formed using the SiO2 film 33 as an insulating film and the n+ type region 6666 as an electrode.

上記MO8容量は基板の縦方向に形成しているため占有
面積を小さくても大面積の容量を形成することができる
Since the MO8 capacitor is formed in the vertical direction of the substrate, a large-area capacitor can be formed even if the occupied area is small.

上記Si薄膜領域には実施例以外にpチャンネルMO3
)ランリスタ・バイポーラトランジスタ等の素子も形成
することができる。
In addition to the examples, the Si thin film region has p-channel MO3
) Elements such as run-lister bipolar transistors can also be formed.

以上のように、本発明によればn+形埋込領域の持ち上
りによる逆方向耐圧低下を防ぐことができる。また、ボ
ロンイオン等の注入領域の拡散も小さいので、コレクタ
・基板間耐圧低下およびp−n接合容量増大が生じない
。さらにラッチアップの生じない0MO8)ランリスタ
を形成することができる。さらに、抵抗体上を通るクロ
スオーバー配線は微細なパターンを形成できる。また占
有面積の小さい割に大きな容量の容量を形成すると17
ページ とができる。
As described above, according to the present invention, it is possible to prevent a decrease in reverse breakdown voltage due to lifting of the n+ type buried region. Further, since the diffusion of boron ions and the like in the implanted region is small, a decrease in breakdown voltage between the collector and the substrate and an increase in pn junction capacitance do not occur. Furthermore, a 0MO8) run lister that does not cause latch-up can be formed. Furthermore, the cross-over wiring that passes over the resistor can form a fine pattern. In addition, if a large capacity is formed in spite of the small occupied area, 17
Pages can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、Bは従来のバイポーラトランジスタと0MO
8)ランリスタを一体化した集積回路の製造工程断面図
、第2図は従来の多結晶Si抵抗上をA7配線がクロス
オーバーする場合の断面図、第3図は従来のMO8容量
の断面図、第4図A〜Eは本発明の第一の実施例のバイ
ポーラトランジスタと0MO8)ランリスタを一体化し
た集積回路の製造工程m1面図、第6図、第6図は本発
明の第一の実施例の絶縁膜および半導体薄膜を形成する
場合の装置の概略構成図、第7図A−Dは本発明の第二
の実施例のバイポーラトランジスタとCMOSトランジ
スタを一体化した集積回路の製造工程断面図、第8図A
、Bは本発明の抵抗体上をAl配線がクロスオーバーす
る場合の平面図および断面図、第9図は本発明にかかる
MO8容量の断面構造図である。 20・・・・−ep形シリコン基板、22・・00工ピ
タキシアル層、33.48・・・・・・溝周辺の810
218ページ 膜、36.51・・・・・・半導体薄膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名’o
  怖 \  \ 特開昭59−19347(6)
Figure 1 A and B are conventional bipolar transistors and 0MO
8) A cross-sectional view of the manufacturing process of an integrated circuit that integrates a run lister. Figure 2 is a cross-sectional view of the case where A7 wiring crosses over a conventional polycrystalline Si resistor. Figure 3 is a cross-sectional view of a conventional MO8 capacitor. 4A to 4E are top views showing the manufacturing process of an integrated circuit integrating a bipolar transistor and an 0MO8) run lister according to the first embodiment of the present invention, and FIGS. A schematic configuration diagram of an apparatus for forming an insulating film and a semiconductor thin film according to an example, and FIGS. 7A to 7D are cross-sectional views of a manufacturing process of an integrated circuit integrating a bipolar transistor and a CMOS transistor according to a second embodiment of the present invention. , Figure 8A
, B are a plan view and a cross-sectional view when an Al wiring crosses over the resistor of the present invention, and FIG. 9 is a cross-sectional structural diagram of an MO8 capacitor according to the present invention. 20...-ep type silicon substrate, 22...00 pitaxial layer, 33.48...810 around the groove
Page 218 Film, 36.51...Semiconductor thin film. Name of agent: Patent attorney Toshio Nakao and one other person'o
Scary \ \ Japanese Patent Publication No. 59-19347 (6)

Claims (1)

【特許請求の範囲】[Claims] (1)−導電形の第1の単結晶半導体領域上に形成され
た反対導電形の第2の単結晶半導体領域と、底面が前記
第1の単結晶半導体領域と絶縁膜を介して接し側面が絶
縁膜を介して前記第2の単結晶半導体領域と接する半導
体薄膜領域を有し、前記薄膜領域および第2の単結晶領
域に半導体素子が形成されてなる半導体集積回路。 (功 半導体薄膜領域にnチャンネルMO8)ランリス
タ、第2の単結晶半導体領域にバイポーラトランジスタ
およびpチャンネルMO8)ランリスタが形成されてい
ることを特徴とする特許請求の範囲第1項に記載の半導
体集積回路。 (鵡 半導体薄膜領域が抵抗体であることを特徴とする
特許請求の範囲第1項に記載の半導体集積回路。 (4半導体薄膜領域がMO8容量の一方の端子で2ペー
ジ あることを特徴とする特許請求の範囲第1項に記載の半
導体集積回路。 (時 −導電形半導体基板上に反対導電形半導体層を形
成する工程、所定の領域の少くとも前記半導体層を除去
して溝を形成する工程、前記溝の周辺に所定の厚さの絶
縁膜を形成する工程、半導体薄膜で前記溝を埋める工程
、少くとも前記半導体薄膜 膜表面を巻部加熱し、単結晶もしくは単結晶に近い半導
体薄膜にする工程、前記半導体層および半導体薄膜に半
導体素子を形成する工程とを備え七−ととを特徴とする
半導体集積回路の製造方法。 (@ 溝を形成する工程と半導体薄膜槽を埋める工程が
、半導体層表面上に光線を反射する反射膜を形成し、所
定の領域の前記反射膜を除去し、さらに少くとも前記半
導体層を除去して溝を形成し、前記半導体基板を絶縁膜
形成用ガスを含んだ雰囲気中におき、前記基板表面にエ
ネルギー線を照射して前記溝周辺に所定の厚さの絶縁膜
を形成し、さらに半導体薄膜形成用ガス雰囲気中におき
前記溝部を半導体薄膜で埋める工程よりなることを特3
ページ 徴とする特許請求の範囲第5項に記載の半導体集積回路
の製造方法。 (′7)  半導体層表面上に前記半導体層の酸化を阻
止する酸化阻止膜を形成し、さらにその上に所定の不純
物を含んだ第1の絶縁膜を形成する工程、所定の領域の
前記酸化阻止膜および前記第1の絶縁膜を除去し、さら
に少くとも前記半導体層の一部を除去して溝を形成する
工程、前記溝の周辺に所定の厚さの第2の絶縁膜を形成
する工程、前記基板表面に半導体薄膜を形成して前記溝
を埋める工程、前記基板を加熱して前記第1の絶縁膜中
の不純物を所定の領域の前記半導体薄膜中に拡散する工
程、前記不純物が拡散された領域のエツチング速度が速
いことを利用して前記不純物が拡散された半導体薄膜を
除去し、前記溝の中の半導体薄膜を残す工程 少くとも
前記半導体薄膜表面を極部加熱して単結晶もしくは単結
晶に近い半導体薄膜とし、前記半導体層および半導体薄
膜に半導体素子を形成する工程とを備えたことを特徴と
する半導体集積回路の製造方法。
(1) - A second single crystal semiconductor region of an opposite conductivity type formed on a first single crystal semiconductor region of a conductivity type, the bottom surface of which is in contact with the first single crystal semiconductor region via an insulating film, and a side surface of the first single crystal semiconductor region of the opposite conductivity type; has a semiconductor thin film region in contact with the second single crystal semiconductor region via an insulating film, and a semiconductor element is formed in the thin film region and the second single crystal semiconductor region. A semiconductor integrated circuit according to claim 1, characterized in that an n-channel MO8) run lister is formed in the semiconductor thin film region, and a bipolar transistor and a p-channel MO8) run lister are formed in the second single crystal semiconductor region. circuit. (The semiconductor integrated circuit according to claim 1, characterized in that the semiconductor thin film region is a resistor. (The semiconductor integrated circuit is characterized in that the four semiconductor thin film regions are two pages at one terminal of the MO8 capacitor. Semiconductor integrated circuit according to claim 1. (Step - forming an opposite conductivity type semiconductor layer on a conductivity type semiconductor substrate, removing at least the semiconductor layer in a predetermined region to form a groove. a step of forming an insulating film of a predetermined thickness around the groove; a step of filling the groove with a semiconductor thin film; heating at least the surface of the semiconductor thin film at the winding portion to form a single crystal or near-single crystal semiconductor thin film; A method for manufacturing a semiconductor integrated circuit, comprising a step of forming a semiconductor layer and a step of forming a semiconductor element on the semiconductor layer and the semiconductor thin film. , forming a reflective film that reflects light on the surface of the semiconductor layer, removing the reflective film in a predetermined region, further removing at least the semiconductor layer to form a groove, and using the semiconductor substrate for forming an insulating film. Placed in an atmosphere containing a gas, the surface of the substrate is irradiated with energy rays to form an insulating film of a predetermined thickness around the grooves, and further placed in a gas atmosphere for forming a semiconductor thin film, the grooves are covered with a semiconductor thin film. The special feature is that it consists of a filling process.
The method for manufacturing a semiconductor integrated circuit according to claim 5, wherein the page mark is a page mark. ('7) A step of forming an oxidation prevention film on the surface of the semiconductor layer to prevent oxidation of the semiconductor layer, and further forming a first insulating film containing a predetermined impurity thereon; removing the blocking film and the first insulating film, and further removing at least a part of the semiconductor layer to form a groove; forming a second insulating film of a predetermined thickness around the groove; a step of forming a semiconductor thin film on the surface of the substrate to fill the groove; a step of heating the substrate to diffuse impurities in the first insulating film into the semiconductor thin film in a predetermined region; A step of removing the semiconductor thin film in which the impurities have been diffused by taking advantage of the high etching speed of the diffused region and leaving the semiconductor thin film in the groove. A step of heating at least the surface of the semiconductor thin film in the extreme region to form a single crystal. Alternatively, a method for manufacturing a semiconductor integrated circuit, comprising a step of forming a semiconductor thin film close to a single crystal, and forming a semiconductor element on the semiconductor layer and the semiconductor thin film.
JP57129352A 1982-07-23 1982-07-23 Semiconductor integrated circuit and its manufacturing method Pending JPS5919347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57129352A JPS5919347A (en) 1982-07-23 1982-07-23 Semiconductor integrated circuit and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129352A JPS5919347A (en) 1982-07-23 1982-07-23 Semiconductor integrated circuit and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS5919347A true JPS5919347A (en) 1984-01-31

Family

ID=15007475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129352A Pending JPS5919347A (en) 1982-07-23 1982-07-23 Semiconductor integrated circuit and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5919347A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181048A (en) * 1983-03-31 1984-10-15 Toshiba Corp Complementary semiconductor device
JPS6089957A (en) * 1983-10-24 1985-05-20 Nippon Telegr & Teleph Corp <Ntt> Complementary semiconductor device
JPS61128555A (en) * 1984-11-27 1986-06-16 Mitsubishi Electric Corp Semiconductor device
JPS61177770A (en) * 1985-01-28 1986-08-09 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of semiconductor having complementary area
JPS63140562A (en) * 1986-10-06 1988-06-13 フェアチャイルド セミコンダクタ コーポレーション Selective epitaxy BiCMOS process
JPS6436892U (en) * 1987-08-27 1989-03-06
JPH0228952A (en) * 1988-02-12 1990-01-31 American Teleph & Telegr Co <Att> Manufacture of device insulated by dielectric
JPH07152380A (en) * 1994-08-19 1995-06-16 Yamaha Corp Musical sound control information generating device
US5705440A (en) * 1995-09-13 1998-01-06 Samsung Electronics Co., Ltd. Methods of fabricating integrated circuit field effect transistors having reduced-area device isolation regions
EP0996151A2 (en) * 1998-10-20 2000-04-26 Siemens Aktiengesellschaft Method for fabricating transistors

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181048A (en) * 1983-03-31 1984-10-15 Toshiba Corp Complementary semiconductor device
JPH0519822B2 (en) * 1983-03-31 1993-03-17 Tokyo Shibaura Electric Co
JPH0530074B2 (en) * 1983-10-24 1993-05-07 Nippon Telegraph & Telephone
JPS6089957A (en) * 1983-10-24 1985-05-20 Nippon Telegr & Teleph Corp <Ntt> Complementary semiconductor device
JPS61128555A (en) * 1984-11-27 1986-06-16 Mitsubishi Electric Corp Semiconductor device
JPS61177770A (en) * 1985-01-28 1986-08-09 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of semiconductor having complementary area
JPS63140562A (en) * 1986-10-06 1988-06-13 フェアチャイルド セミコンダクタ コーポレーション Selective epitaxy BiCMOS process
JPS6436892U (en) * 1987-08-27 1989-03-06
JPH0228952A (en) * 1988-02-12 1990-01-31 American Teleph & Telegr Co <Att> Manufacture of device insulated by dielectric
JPH07152380A (en) * 1994-08-19 1995-06-16 Yamaha Corp Musical sound control information generating device
JP2699886B2 (en) * 1994-08-19 1998-01-19 ヤマハ株式会社 Music control information generator
US5705440A (en) * 1995-09-13 1998-01-06 Samsung Electronics Co., Ltd. Methods of fabricating integrated circuit field effect transistors having reduced-area device isolation regions
EP0996151A2 (en) * 1998-10-20 2000-04-26 Siemens Aktiengesellschaft Method for fabricating transistors
EP0996151A3 (en) * 1998-10-20 2000-06-07 Siemens Aktiengesellschaft Method for fabricating transistors
CN1294646C (en) * 1998-10-20 2007-01-10 西门子公司 Method for producing transistor

Similar Documents

Publication Publication Date Title
US4160991A (en) High performance bipolar device and method for making same
EP0052450B1 (en) Method of manufacturing a semiconductor device with polycrystalline semiconductor cum metal electrodes
US5166767A (en) Sidewall contact bipolar transistor with controlled lateral spread of selectively grown epitaxial layer
US4236294A (en) High performance bipolar device and method for making same
KR100196085B1 (en) High performance semiconductor device and manufacturing method thereof
US5023193A (en) Method for simultaneously fabricating bipolar and complementary field effect transistors using a minimal number of masks
US4343080A (en) Method of producing a semiconductor device
JPS5919347A (en) Semiconductor integrated circuit and its manufacturing method
US4735912A (en) Process of fabricating a semiconductor IC device
EP0030147B1 (en) Method for manufacturing a semiconductor integrated circuit
EP0274217B1 (en) Method of producing a semiconductor device
JPH0241170B2 (en)
US4691436A (en) Method for fabricating a bipolar semiconductor device by undercutting and local oxidation
US5389561A (en) Method for making SOI type bipolar transistor
JPH04363046A (en) Manufacturing method of semiconductor device
JP3228609B2 (en) Semiconductor device and manufacturing method thereof
US4231819A (en) Dielectric isolation method using shallow oxide and polycrystalline silicon utilizing a preliminary etching step
EP0076147B1 (en) Method of producing a semiconductor device comprising an isolation region
EP0034341A1 (en) Method for manufacturing a semiconductor device
EP0287318A2 (en) Integrated transistor and manufacturing process therefor
JPH03138946A (en) Semiconductor device
JPH0239091B2 (en)
KR20010078344A (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPS59103377A (en) Manufacture of semiconductor device