JPH05195952A - Cryopanel device - Google Patents

Cryopanel device

Info

Publication number
JPH05195952A
JPH05195952A JP627092A JP627092A JPH05195952A JP H05195952 A JPH05195952 A JP H05195952A JP 627092 A JP627092 A JP 627092A JP 627092 A JP627092 A JP 627092A JP H05195952 A JPH05195952 A JP H05195952A
Authority
JP
Japan
Prior art keywords
vacuum
chamber
cooling
side chamber
cryopanel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP627092A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
博由 田中
Fumitoshi Nishiwaki
文俊 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP627092A priority Critical patent/JPH05195952A/en
Publication of JPH05195952A publication Critical patent/JPH05195952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To reduce required refrigerator capacity by providing a vacuum side chamber for gas communicatable to a vacuum chamber and in gas flow impedible structure so as to allow the cooling face, exposed to the vacuum chamber, to be closed onto the vacuum side chamber. CONSTITUTION:A vacuum side chamber 10 is provided in line with the vacuum chamber 13 of a cryopanel device through a cooling panel 8. The vacuum chamber 13 is exhausted by a diffusion pump 14 and a rotary pump 15. At the exhaust time of the vacuum chamber 13, the cooling face of the cooling panel 8 is half opened to exhaust also the vacuum side chamber 10. Upon reaching a certain degree of vacuum, refrigerant cooled by a refrigerator is circulated onto the cooling face so as to suck the residual gas in the vacuum chamber 13 and vacuum side chamber 10. At this time, it is desirable to operate a turbo- molecular pump 11 and a rotary pump 12 from the viewpoint of increasing vacuum exhaust speed. When the degree of vacuum is saturated to the fixed value, the cooling face of the cooling panel 8 is turned toward the vacuum side chamber 10 to cut off its communication with the vacuum chamber 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高真空を得るために、冷
却面を真空中に露出させ気体分子を捕捉させる方法を用
いた補助的な真空排気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an auxiliary evacuation device using a method of exposing a cooling surface in a vacuum to trap gas molecules in order to obtain a high vacuum.

【0002】[0002]

【従来の技術】図4は従来のクライオパネルを用いた蒸
着装置の概略図である。図4のごとく、従来のクライオ
パネル装置は、主として冷凍機1と冷却パネル2からな
り、冷凍機1によって冷却された液体窒素温度以下の液
体もしくはガスを、管路3によって真空室内に設置され
た金属の冷却パネル2に循環させる構成を有す。
2. Description of the Related Art FIG. 4 is a schematic view of a conventional vapor deposition apparatus using a cryopanel. As shown in FIG. 4, the conventional cryopanel device mainly includes a refrigerator 1 and a cooling panel 2, and a liquid or gas cooled by the refrigerator 1 and having a temperature equal to or lower than the liquid nitrogen temperature is installed in a vacuum chamber through a pipe line 3. The cooling panel 2 made of metal is circulated.

【0003】冷却されたパネル2の表面は、内部を流れ
る冷却媒体の温度に近くなる。そのため、真空室4内に
存在する気体分子の内、その温度以上で凝縮する気体
は、冷却パネル2の表面に捕捉される。そのため真空室
4は拡散ポンプ5とロータリーポンプ6で排気するより
早く高真空に到達する。
The cooled surface of the panel 2 approaches the temperature of the cooling medium flowing inside. Therefore, of the gas molecules existing in the vacuum chamber 4, the gas condensed at the temperature or higher is captured on the surface of the cooling panel 2. Therefore, the vacuum chamber 4 reaches a high vacuum earlier than exhausting with the diffusion pump 5 and the rotary pump 6.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
クライオパネル装置では、一度冷却面に付着した気体分
子は、冷却を停止すると再びガス化し、真空装置内の真
空度を低下させてしまうため、真空装置の稼働中はパネ
ルの冷却は継続的に行う必要があり、ランニングコスト
がかさむという問題があった。またEB蒸着等の運転に
より装置が加熱したときにも、クライオパネルの温度の
上昇を抑える必要があるため、かなり大きな熱負荷に耐
えうる冷凍機が必要であり、設備費が非常に高くなると
いう問題もあった。
However, in the conventional cryopanel device, the gas molecules once attached to the cooling surface are gasified again when the cooling is stopped, and the degree of vacuum in the vacuum device is lowered. It is necessary to continuously cool the panel while the device is in operation, which causes a problem of high running cost. Further, even when the apparatus is heated by the operation such as EB vapor deposition, it is necessary to suppress the rise in the temperature of the cryopanel, so a refrigerator capable of withstanding a considerably large heat load is required, and the facility cost is very high. There was also a problem.

【0005】そこで、本発明は上記問題点に鑑み、ラン
ニングコストがかからず、初期投資も少なくて済むクラ
イオパネルを提供することを目的としてなしたものであ
る。
In view of the above problems, the present invention has an object to provide a cryopanel which requires no running cost and requires little initial investment.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに本発明に於いては、真空室と隔離可能に連結された
真空側室を設け、必要な時にのみクライオパネルの冷却
面を真空室内に露出し、不要時には真空室から真空側室
に隔離することができる構成、およびその隔離壁の一方
の面を冷却面をとする構成、および真空側室に隔離密閉
した際に、冷却面を昇温することで、吸着ガスを放出さ
せ、放出されたガスを排気し、冷却面の再生を行う構成
を備えたクライオパネル装置により従来の課題解決を図
るものである。
In order to solve the above problems, in the present invention, a vacuum side chamber is provided which is separably connected to the vacuum chamber, and the cooling surface of the cryopanel is provided only when necessary. Exposed to the outside and can be separated from the vacuum chamber to the vacuum side chamber when unnecessary, one side of the isolation wall is used as a cooling surface, and the cooling surface is heated when the vacuum side chamber is isolated and sealed. By doing so, the conventional problem is solved by the cryopanel device having a configuration in which the adsorbed gas is released, the released gas is exhausted, and the cooling surface is regenerated.

【0007】[0007]

【作用】本発明による上記手段によって、真空室内でク
ライオパネルの冷却面に吸着、凍結したガスは、必要に
応じて真空室とは隔離された真空側室に放出できるよう
になり、その間はクライオパネルの冷却を停止、もしく
は冷却能力を低下させても真空室の真空度を低下させる
ことがない。また真空側室を排気することで、クライオ
パネル表面を再生し、清浄な表面を出現させ、再び真空
室にて効率よく冷却面にガスを吸着できる。
By the above means according to the present invention, the gas adsorbed and frozen on the cooling surface of the cryopanel in the vacuum chamber can be released to the vacuum side chamber which is separated from the vacuum chamber as needed, and the cryopanel is in the meantime. Even if the cooling is stopped or the cooling capacity is lowered, the degree of vacuum in the vacuum chamber is not lowered. Further, by exhausting the vacuum side chamber, the surface of the cryopanel is regenerated, a clean surface appears, and the gas can be efficiently adsorbed to the cooling surface again in the vacuum chamber.

【0008】[0008]

【実施例】以下本発明の一実施例のクライオパネル装置
について、図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A cryopanel device according to one embodiment of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の実施例におけるクライオパ
ネル装置を設置した蒸着装置概略図である。図1におい
てクライオパネル装置は冷凍機7、冷却パネル8、管路
9、真空側室10、ターボ分子ポンプ11、ロータリー
ポンプ12から構成される。
FIG. 1 is a schematic view of a vapor deposition apparatus equipped with a cryopanel device according to an embodiment of the present invention. In FIG. 1, the cryopanel device includes a refrigerator 7, a cooling panel 8, a pipe line 9, a vacuum side chamber 10, a turbo molecular pump 11, and a rotary pump 12.

【0010】真空側室10は真空室13に連結されてお
り、真空室13は拡散ポンプ14とロータリ−ポンプ1
5によって排気される。真空室13の排気時には、冷却
パネル8の冷却面は中開きの状態にあって真空側室10
も排気される。
The vacuum side chamber 10 is connected to a vacuum chamber 13, and the vacuum chamber 13 includes a diffusion pump 14 and a rotary pump 1.
Exhausted by 5. When the vacuum chamber 13 is evacuated, the cooling surface of the cooling panel 8 is in the state of being opened inward, and the vacuum side chamber 10
Is also exhausted.

【0011】ある程度の真空度に達すると冷却面には冷
凍機7によって冷却された液体窒素温度の冷媒が循環し
始め、真空室13と真空側室10に残っている気体を吸
着する。この時ターボ分子ポンプ11とロータリーポン
プ12は運転している方が真空排気速度を増す上で望ま
しい。
When the degree of vacuum reaches a certain degree, the cooling medium having the liquid nitrogen temperature cooled by the refrigerator 7 begins to circulate on the cooling surface and adsorbs the gas remaining in the vacuum chamber 13 and the vacuum side chamber 10. At this time, it is desirable to operate the turbo molecular pump 11 and the rotary pump 12 in order to increase the evacuation speed.

【0012】真空度が一定の値に飽和すると、冷却パネ
ル8の冷却面を真空側室10に向けて、真空室13と真
空側室10を隔離する。その後、冷凍機7を停止すると
共に、冷却パネル8に埋め込まれたヒータによって冷却
面を加熱し、脱ガスを行う。放出ガスはターボ分子ポン
プによって排気される。
When the degree of vacuum is saturated to a certain value, the cooling surface of the cooling panel 8 faces the vacuum side chamber 10 and the vacuum chamber 13 and the vacuum side chamber 10 are separated from each other. Then, the refrigerator 7 is stopped, and the cooling surface is heated by the heater embedded in the cooling panel 8 to degas. The released gas is exhausted by a turbo molecular pump.

【0013】次に真空室13の排気が必要となった時、
冷凍機7を稼働させて、真空側室10内の真空度を真空
室13の真空度より降下させた後、冷却パネル8を回転
させて、真空室13と真空側室10を連絡させる。
Next, when it is necessary to exhaust the vacuum chamber 13,
The refrigerator 7 is operated to lower the degree of vacuum in the vacuum side chamber 10 below the degree of vacuum in the vacuum chamber 13, and then the cooling panel 8 is rotated to connect the vacuum chamber 13 and the vacuum side chamber 10.

【0014】図2は図1の冷却パネル8を拡大して示し
たものである。冷却パネル8の冷却面には低温の冷媒が
流動する冷却管17とヒータ18が取り付けられ、表面
にはゼオライト等の吸着剤を溶射によってコ−ティング
している。この冷却パネル8は駆動機19によって回転
し、Oリング20によって、真空室13と真空側室10
を密閉隔離できる。
FIG. 2 is an enlarged view of the cooling panel 8 shown in FIG. A cooling pipe 17 through which a low-temperature refrigerant flows and a heater 18 are attached to the cooling surface of the cooling panel 8, and an adsorbent such as zeolite is coated on the surface by thermal spraying. The cooling panel 8 is rotated by a driving machine 19, and an O-ring 20 is used to rotate the vacuum chamber 13 and the vacuum side chamber 10.
Can be sealed and isolated.

【0015】このような構造によって、冷却面が真空室
13に面している際には急速にガスが吸着し、拡散ポン
プだけでは到達し得ない排気速度が得られる。また吸着
したガスは、真空側室10にてヒータ18の作用によっ
て速やかに放出され、次に排気が必要なときに備える事
ができる。
With such a structure, gas is rapidly adsorbed when the cooling surface faces the vacuum chamber 13, and an exhaust speed that cannot be reached by the diffusion pump alone is obtained. Further, the adsorbed gas is promptly released by the action of the heater 18 in the vacuum side chamber 10 and can be prepared when the next evacuation is required.

【0016】次に、本発明の第2の実施例について図面
によって説明する。図3は本発明の第2の実施例を示す
クライオパネル装置の概略図である。同図において、2
1は真空室、23は真空側室、22は冷却パネルであ
り、冷却パネル22は内部が中空となっており、液体窒
素26で満たされている。真空側室はベロー24で構成
され、冷却パネル22を真空側室23と真空室21の間
で出し入れすることが可能なようにされている。真空室
21と真空側室23は仕切りバルブ25によって、隔離
できる。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic view of a cryopanel device showing a second embodiment of the present invention. In the figure, 2
Reference numeral 1 is a vacuum chamber, 23 is a vacuum side chamber, 22 is a cooling panel, the cooling panel 22 has a hollow interior, and is filled with liquid nitrogen 26. The vacuum side chamber is constituted by a bellows 24, and the cooling panel 22 can be put in and taken out between the vacuum side chamber 23 and the vacuum chamber 21. The vacuum chamber 21 and the vacuum side chamber 23 can be isolated by a partition valve 25.

【0017】真空室21の高速排気が必要なときに、冷
却パネル22内に液体窒素を満たし、ガスを吸着し、不
要となると、ベロー23を引き延ばして、冷却パネル2
2を真空側室23の中に収納し、仕切り弁25を閉じ
る。
When high speed evacuation of the vacuum chamber 21 is required, the cooling panel 22 is filled with liquid nitrogen to adsorb the gas, and when it is no longer needed, the bellows 23 is stretched to cool the cooling panel 2.
2 is stored in the vacuum side chamber 23, and the gate valve 25 is closed.

【0018】一度冷却パネル22にガスを吸着させる
と、真空室21に冷却パネルを露出させる時にはつね
に、冷却パネル22内に液体窒素26を満たす必要があ
る。しかし、一度真空側室23内に、冷却パネル22を
収納した後は、液体窒素の供給は不要である。真空室2
1を高速で排気した後、冷却パネル22に吸着したガス
は真空側室23にて液体窒素23の蒸発によって放出さ
れるが、真空室21の真空度に影響を及ぼすことがな
い。
Once the cooling panel 22 has adsorbed the gas, it is necessary to fill the cooling panel 22 with liquid nitrogen 26 whenever the cooling panel is exposed to the vacuum chamber 21. However, once the cooling panel 22 is housed in the vacuum side chamber 23, it is not necessary to supply liquid nitrogen. Vacuum chamber 2
After exhausting 1 at high speed, the gas adsorbed on the cooling panel 22 is released by evaporation of the liquid nitrogen 23 in the vacuum side chamber 23, but does not affect the vacuum degree of the vacuum chamber 21.

【0019】[0019]

【発明の効果】以上のように本発明は、真空室に隔離可
能な真空側室を設け、必要な時にのみクライオパネルの
冷却面を真空室内に露出し、不要時には真空室から真空
側室に隔離することができる構成としたために、小さな
冷凍機の能力で、高速に真空排気できるクライオパネル
の実現が可能となったものである。つまり、初期投資コ
スト、ランニングコストがわずかで、高速真空排気を可
能とする大きな効果を有する補助排気装置を実現するも
のである。
As described above, according to the present invention, the vacuum side chamber which can be isolated is provided in the vacuum chamber, the cooling surface of the cryopanel is exposed to the vacuum chamber only when necessary, and is separated from the vacuum chamber to the vacuum side chamber when unnecessary. Since it is possible to realize such a structure, it is possible to realize a cryopanel capable of vacuum evacuation at high speed with a small refrigerator capacity. That is, the present invention realizes an auxiliary exhaust device that has a small initial investment cost and running cost and has a great effect of enabling high-speed vacuum exhaust.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクライオパネル装置の第1の実施例を
設置した真空蒸着装置の構成図
FIG. 1 is a configuration diagram of a vacuum vapor deposition device in which a first embodiment of a cryopanel device of the present invention is installed.

【図2】同実施例パネル装置の拡大図FIG. 2 is an enlarged view of the panel device of the same embodiment.

【図3】本発明の第2の実施例の構成図FIG. 3 is a configuration diagram of a second embodiment of the present invention.

【図4】従来のクライオパネル装置を設置した真空蒸着
装置の構成図
FIG. 4 is a configuration diagram of a vacuum vapor deposition device equipped with a conventional cryopanel device.

【符号の説明】[Explanation of symbols]

1、7 冷凍機 4、13 真空室 10 真空側室 8、22 冷却パネル 1, 7 Refrigerator 4, 13 Vacuum chamber 10 Vacuum side chamber 8, 22 Cooling panel

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】真空室と気体が流通可能に連結され、かつ
気体の流通を閉止できる構成を有する真空側室を設け、
前記真空室に露出した冷却面が前記真空側室に密閉でき
る構造としたクライオパネル装置。
1. A vacuum-side chamber is provided, which is connected to a vacuum chamber so that gas can flow therethrough and has a structure capable of closing the flow of gas.
A cryopanel device having a structure in which a cooling surface exposed to the vacuum chamber can be sealed in the vacuum side chamber.
【請求項2】真空室と気体が流通可能に連結され、かつ
気体の流通を閉止できる構成を有する真空側室を設け、
前記真空室と前記真空側室を密閉する仕切り弁板の表面
に冷却面を構成したクライオパネル装置。
2. A vacuum-side chamber is provided which is connected to the vacuum chamber so that gas can flow therethrough and has a structure capable of closing the flow of gas.
A cryopanel device in which a cooling surface is formed on a surface of a partition valve plate that seals the vacuum chamber and the vacuum side chamber.
【請求項3】真空室と気体が流通可能に連結され、かつ
気体の流通を閉止できる構成を有し、個別に真空排気装
置を設けた真空側室を設け、前記真空室に露出した冷却
面を前記真空側室へ密閉できる構成とし、前記冷却面を
前記真空側室へ密閉した際に前記冷却面を昇温させる構
成を有するクライオパネル装置。
3. A vacuum chamber which is connected to a vacuum chamber so that gas can flow therethrough and which can close the flow of gas, is provided with a vacuum evacuation device, and the cooling surface exposed to the vacuum chamber is provided. A cryopanel device having a structure capable of being sealed in the vacuum side chamber and having a structure in which the temperature of the cooling face is raised when the cooling face is sealed in the vacuum side chamber.
【請求項4】冷却面に取り付けたヒータによって冷却面
を昇温させることを特徴とする請求項3記載のクライオ
パネル装置。
4. The cryopanel device according to claim 3, wherein the temperature of the cooling surface is raised by a heater attached to the cooling surface.
【請求項5】冷却面に吸着剤を塗布したことを特徴とす
る請求項1、2または3記載のクライオパネル装置。
5. The cryopanel device according to claim 1, 2 or 3, wherein an adsorbent is applied to the cooling surface.
JP627092A 1992-01-17 1992-01-17 Cryopanel device Pending JPH05195952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP627092A JPH05195952A (en) 1992-01-17 1992-01-17 Cryopanel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP627092A JPH05195952A (en) 1992-01-17 1992-01-17 Cryopanel device

Publications (1)

Publication Number Publication Date
JPH05195952A true JPH05195952A (en) 1993-08-06

Family

ID=11633739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP627092A Pending JPH05195952A (en) 1992-01-17 1992-01-17 Cryopanel device

Country Status (1)

Country Link
JP (1) JPH05195952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326358A1 (en) * 2008-02-12 2010-12-30 Kyu-Jeong Choi Batch type atomic layer deposition apparatus
JP2015104720A (en) * 2013-12-02 2015-06-08 住友重機械工業株式会社 Cold trap
US10920315B2 (en) 2014-03-06 2021-02-16 Applied Materials, Inc. Plasma foreline thermal reactor system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326358A1 (en) * 2008-02-12 2010-12-30 Kyu-Jeong Choi Batch type atomic layer deposition apparatus
JP2015104720A (en) * 2013-12-02 2015-06-08 住友重機械工業株式会社 Cold trap
US10920315B2 (en) 2014-03-06 2021-02-16 Applied Materials, Inc. Plasma foreline thermal reactor system

Similar Documents

Publication Publication Date Title
US5259735A (en) Evacuation system and method therefor
JP2574586B2 (en) Method for regenerating a cryopump and a cryopump suitable for performing the method
US4614093A (en) Method of starting and/or regenerating a cryopump and a cryopump therefor
US5357760A (en) Hybrid cryogenic vacuum pump apparatus and method of operation
WO2005052369A1 (en) Method and apparatus for regenerating water
JPH05195952A (en) Cryopanel device
JPH03258976A (en) Reproducing method of vacuum in vacuum device
JP3862263B2 (en) Vacuum processing apparatus and operation method thereof
JPH1047245A (en) Evacuating device
JPH0278281A (en) Cryostat provided with adsorber
JP4301532B2 (en) Cryopump regeneration method
JP2002070737A (en) Regenerating method of cryopump
JP5342367B2 (en) Vacuum exhaust device and method of using vacuum exhaust device
JP3604228B2 (en) Vacuum exhaust device
JP2674591B2 (en) Operating method of vacuum processing equipment
JP3383861B2 (en) Cryopump and operating method thereof
JP3200668B2 (en) Exhaust method in cryopump and micromachining equipment
USRE36610E (en) Evacuation apparatus and evacuation method
JPS61185690A (en) Cryopump
JP3424940B2 (en) Evacuation method and apparatus using turbo molecular pump
JPH04187873A (en) Evacuation device
JP3052096B2 (en) Cryopump
JP3019471B2 (en) Cryopump
JPH06341375A (en) Low temperature trap
JP2946733B2 (en) Vacuum exhaust device