JPH05190809A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05190809A
JPH05190809A JP4004922A JP492292A JPH05190809A JP H05190809 A JPH05190809 A JP H05190809A JP 4004922 A JP4004922 A JP 4004922A JP 492292 A JP492292 A JP 492292A JP H05190809 A JPH05190809 A JP H05190809A
Authority
JP
Japan
Prior art keywords
film
spacer
sio2
sio
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4004922A
Other languages
Japanese (ja)
Inventor
Yuzuru Yamada
譲 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4004922A priority Critical patent/JPH05190809A/en
Publication of JPH05190809A publication Critical patent/JPH05190809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to achieve high integration density by suppressing the effects of the machining-size errors and the position deviation of a photo- mask. CONSTITUTION:A nitride film 220 is formed on an SiO2 film 210. The nitride film 220 is removed by anisotropic plasma etching so that the sidewall part of the SiO2 film 210 remains. The nitride film, which remains at the sidewall part of the SiO2 film 210, becomes a spacer 22Oa. Then, an SiO2 film 230 is formed. At this time, the spacer 220 acts as a mask for forming the SiO2. The SiO2 film 230 is formed at a part, where the spacer 22Oa is not present. The thick part of SiO2 is used as an etching mask, and the etching is performed down to a polysilicon film 110. Thus a stack gate is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、NAND型メモリセル
を有する半導体装置(半導体メモリ及びこれを含んだI
C)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a NAND type memory cell (semiconductor memory and I including the same).
C) manufacturing method.

【0002】[0002]

【従来の技術】EPROMの集積度を上げる構造として
NAND型メモリセルが知られている。NAND型メモ
リセルは、2層のゲート(フローティングゲート,コン
トロールゲート)を所定の間隔で並べたスタックゲート
のパターニングが行われ、等価的にメモリセルをカスケ
ード接続した回路であらわされる。より集積度の高いN
AND型メモリセルの製造方法が「IEDM 90−1
03」に記載されている。「IEDM 90−103」
記載の製造方法を簡単に説明するとつぎのようになる。
2. Description of the Related Art A NAND memory cell is known as a structure for increasing the integration degree of EPROM. The NAND type memory cell is equivalent to a circuit in which memory cells are equivalently cascade-connected by patterning a stack gate in which two layers of gates (floating gates and control gates) are arranged at predetermined intervals. Higher integration N
The manufacturing method of the AND type memory cell is "IEDM 90-1.
03 ". "IEDM 90-103"
The manufacturing method described will be briefly described as follows.

【0003】フローティングゲート,コントロールゲー
トとなる2層のポリシリコン層を半導体基板上に設け
る。つぎに、窒化膜を一定の間隔で設け、窒化膜の間に
レジストをパターニングする(図3(a)参照)。窒化
膜及びレジストをマスクとしてエッチングし、スタック
ゲートを形成する(図3(b)参照)。窒化膜及びレジ
ストの幅は0.6μm、窒化膜とレジストの間隔は0.
3μmとなっている。
Two layers of polysilicon, which serve as a floating gate and a control gate, are provided on a semiconductor substrate. Next, nitride films are provided at regular intervals, and a resist is patterned between the nitride films (see FIG. 3A). Etching is performed using the nitride film and the resist as a mask to form a stack gate (see FIG. 3B). The width of the nitride film and the resist is 0.6 μm, and the distance between the nitride film and the resist is 0.
It is 3 μm.

【0004】[0004]

【発明が解決しようとする課題】前述の半導体装置の製
造方法では、窒化膜及びレジストをパターニングする
際、それぞれ別のフォトマスクを用いてなされる。これ
らのフォトマスクの加工寸法誤差や位置ずれなどのため
に、窒化膜及びレジストのパターンに誤差を生じ、所定
の寸法,間隔でスタックゲートの加工ができない恐れが
ある。さらに、前述の誤差のためにゲート間隔の微少化
に限界がある。そのため、高集積化に限界を生じてい
る。
In the method of manufacturing a semiconductor device described above, different photomasks are used for patterning the nitride film and the resist. Due to the processing dimensional error and positional deviation of these photomasks, an error may occur in the patterns of the nitride film and the resist, and the stack gate may not be processed with a predetermined size and interval. Further, there is a limit to the miniaturization of the gate interval due to the above error. Therefore, there is a limit to high integration.

【0005】本発明は、前述の問題点に鑑み、フォトマ
スクの加工寸法誤差や位置ずれなどの影響を受けず、よ
り高集積化が可能な半導体装置の製造方法を提案する。
In view of the above-mentioned problems, the present invention proposes a method of manufacturing a semiconductor device which is not affected by a processing dimensional error of a photomask, a positional deviation, and the like, and which enables higher integration.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の半導体装置の製造方法は、スタックゲート
を備えたNAND型メモリセルを有する半導体装置の製
造方法であって、スタックゲート用の導体層(例えば、
ポリシリコン)を有する半導体基板上に、第1の絶縁膜
(例えば、SiO2 )を成膜し、この第1の絶縁膜の所
定の部分を厚くしてパターニングを施す第1の工程と、
第2の絶縁膜(例えば、窒化膜)を成膜し、第1の工程
で形成された第1の絶縁膜のパターンの側面近傍のスペ
ーサとなる部分を残して除去する第2の工程と、スペー
サをマスクとしてエッチングマスクとなる第3の絶縁膜
(例えば、SiO2 )を形成する第3の工程と、スペー
サを除去し、スペーサがあった部分を導体層の下までエ
ッチングしてスタックゲートを形成する第4の工程とを
有することを特徴とする。
In order to solve the above problems, a method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a semiconductor device having a NAND type memory cell having a stack gate. Conductor layers (for example,
A first step of forming a first insulating film (for example, SiO 2 ) on a semiconductor substrate having polysilicon), thickening a predetermined portion of the first insulating film, and performing patterning;
A second step of forming a second insulating film (for example, a nitride film) and removing a portion of the pattern of the first insulating film formed in the first step, which will be a spacer in the vicinity of the side surface, A third step of forming a third insulating film (for example, SiO 2 ) that serves as an etching mask using the spacer as a mask, the spacer is removed, and the portion where the spacer is present is etched to below the conductor layer to form a stack gate. And a fourth step of forming.

【0007】[0007]

【作用】本発明の半導体装置の製造方法では、第1の工
程で第1の絶縁膜にパターニングを施し、第2の工程で
このパターンの側面近傍にスペーサを形成する。第3の
工程でスペーサをマスクとしてエッチングマスク(第3
の絶縁膜)を形成している。このとき、エッチングマス
クはスペーサに対し自己整合的に形成される。そして、
第4の工程でスペーサの部分が導体層の下までエッチン
グされてスタックゲートが形成される。エッチングされ
る部分はスペーサの幅とほぼ同じであり、これがスタッ
クゲートの間隔になっている。
In the method of manufacturing a semiconductor device according to the present invention, the first insulating film is patterned in the first step, and the spacer is formed in the vicinity of the side surface of the pattern in the second step. In the third step, the etching mask (third
Insulating film) is formed. At this time, the etching mask is formed in self alignment with the spacer. And
In the fourth step, the spacer portion is etched under the conductor layer to form a stack gate. The portion to be etched is almost the same as the width of the spacer, which is the distance between the stack gates.

【0008】[0008]

【実施例】本発明の実施例を図面を参照して説明する。
前述の従来例と同一または同等のものについてはその説
明を簡略化し若しくは省略するものとする。
Embodiments of the present invention will be described with reference to the drawings.
Description of the same or equivalent elements as those of the above-mentioned conventional example will be simplified or omitted.

【0009】図1,図2には、本発明の一実施例の工程
のうち特徴的な部分が示されている。この工程は気相を
用いて行われおり、この工程を順を追って説明する。ま
ず、半導体基板101上に20〜150オングストロー
ム程度の薄いSiO2 膜103と50〜300オングス
トローム程度のSiO2 膜又はONO複合膜105とを
介して0.2〜0.5μmのポリシリコン膜110,1
20を形成する(図1(a)参照)。つぎに、ポリシリ
コン膜120上に0.1〜0.7μm程度のSiO2
210を成長させ、エッチングして所定の形状にする。
これがのちのスタックゲートパターニングの第1のエッ
チングマスクになる。SiO2 膜210のエッチングの
際、ポリシリコン膜120上にSiO2 を20〜200
オングストローム程度残しておく。これは、のちで行う
窒化膜のエッチングのストッパにするためである(図1
(b)参照)。
FIG. 1 and FIG. 2 show characteristic parts of the process of one embodiment of the present invention. This step is performed using a gas phase, and this step will be described step by step. First, on the semiconductor substrate 101, a thin SiO 2 film 103 of about 20 to 150 Å and a polysilicon film 110 of 0.2 to 0.5 μm with a SiO 2 film of about 50 to 300 Å or an ONO composite film 105 interposed. 1
20 is formed (see FIG. 1A). Next, a SiO 2 film 210 having a thickness of about 0.1 to 0.7 μm is grown on the polysilicon film 120 and etched to have a predetermined shape.
This will be the first etching mask for later stack gate patterning. During etching of the SiO 2 film 210, SiO 2 of 20 to 200 is formed on the polysilicon film 120.
Leave about angstroms. This is to serve as a stopper for later etching of the nitride film (see FIG. 1).
(See (b)).

【0010】SiO2 膜210上に窒化膜220を成膜
する(図1(c)参照)。窒化膜220に対して垂直方
向から異方性プラズマエッチングを行い、SiO2 膜2
10の側壁部に窒化膜220によるスペーサ220aを
残す(図1(d)参照)。SiO2 膜210の側壁部に
残った窒化膜はスペーサ220aとなる。つぎに、0.
1〜0.7μm程度のSiO2 膜230をCVDまたは
熱酸化で成膜する(図2(e)参照)。このとき、スペ
ーサ220aがSiO2 形成のマスクとして働き、スペ
ーサ220aがない部分にSiO2 膜230が形成され
る。これがスタックゲートパターニングの第2のエッチ
ングマスクになっている。スペーサ220aをエッチン
グで除去する(図2(f)参照)。そして、SiO2
210,220によってSiO2 が厚くなっている部分
をエッチングマスクとしてポリシリコン膜110までエ
ッチングし、スタックゲートを形成する(図2(g)参
照)。この後、ドレイン領域を形成してメモリセルを完
成する。
A nitride film 220 is formed on the SiO 2 film 210 (see FIG. 1C). Anisotropic plasma etching is performed on the nitride film 220 from the vertical direction to remove the SiO 2 film 2.
The spacers 220a made of the nitride film 220 are left on the sidewalls of 10 (see FIG. 1D). The nitride film left on the side wall of the SiO 2 film 210 becomes the spacer 220a. Next, 0.
A SiO 2 film 230 having a thickness of about 1 to 0.7 μm is formed by CVD or thermal oxidation (see FIG. 2E). At this time, the spacer 220a acts as a mask for forming SiO 2 , and the SiO 2 film 230 is formed in a portion where the spacer 220a is not present. This is the second etching mask for stack gate patterning. The spacer 220a is removed by etching (see FIG. 2 (f)). Then, the polysilicon film 110 is etched using the portion of the SiO 2 films 210 and 220 where the SiO 2 is thick as an etching mask to form a stack gate (see FIG. 2G). Then, the drain region is formed to complete the memory cell.

【0011】図2(e)において、SiO2 が厚くなっ
ている部分が、スタックゲートパターニングのエッチン
グマスクになり、これらのマスクの間隔はスペーサ22
0aの幅で決まる。そのため、この間隔は窒化膜220
の成膜時(図1(c))の膜厚により制御でき、微少な
寸法にすることが可能である。スタックゲートの間隔
は、スペーサ220aの幅と同じであり、この間隔は窒
化膜220の膜厚により微少な寸法にでき、より高集積
化が可能になる。
In FIG. 2E, the thickened SiO 2 portion serves as an etching mask for stack gate patterning, and the spacing between these masks is the spacer 22.
Determined by the width of 0a. Therefore, this space is equal to
The film thickness can be controlled by the film thickness at the time of film formation (FIG. 1 (c)), and it is possible to make the size very small. The distance between the stack gates is the same as the width of the spacer 220a, and this distance can be made very small depending on the film thickness of the nitride film 220, and higher integration can be achieved.

【0012】また、SiO2 膜230は、SiO2 膜2
10及びスペーサ220aでパターニングされており、
専用のフォトマスクを用いていない。そのため、SiO
2 膜210,SiO2 膜230用の2つのフォトマスク
の加工寸法誤差や位置ずれなどの影響を全く受けないよ
うになっている。
The SiO 2 film 230 is the SiO 2 film 2.
10 and spacers 220a are patterned,
No dedicated photomask is used. Therefore, SiO
The two photomasks for the 2 film 210 and the SiO 2 film 230 are not affected by the processing dimensional error or the positional deviation.

【0013】[0013]

【発明の効果】以上の通り本発明の半導体装置の製造方
法によれば、エッチングマスクはスペーサに対し自己整
合的に形成され、スペーサの幅がスタックゲートの間隔
となるので、フォトマスクの加工寸法誤差や位置ずれな
どの影響を受けず、スペーサの幅でスタックゲートの間
隔を調整することができる。そして、スペーサの幅を小
さくすることで、スタックゲートの間隔を狭め得ること
ができ、集積度の高い半導体装置を作ることができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, the etching mask is formed in a self-aligned manner with respect to the spacers, and the width of the spacers becomes the distance between the stack gates. The spacing of the stack gates can be adjusted by the width of the spacers without being affected by errors or displacement. Then, by reducing the width of the spacer, the distance between the stack gates can be reduced, and a highly integrated semiconductor device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の工程図(前半)。FIG. 1 is a process diagram (first half) of an embodiment of the present invention.

【図2】本発明の一実施例の工程図(後半)。FIG. 2 is a process diagram (second half) of an embodiment of the present invention.

【図3】従来例の説明図。FIG. 3 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

101…半導体基板,110,120…ポリシリコン,
210,230…SiO2 膜,220…窒化膜,220
a…スペーサ
101 ... Semiconductor substrate, 110, 120 ... Polysilicon,
210, 230 ... SiO 2 film, 220 ... Nitride film, 220
a ... Spacer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スタックゲートを備えたNAND型メモ
リセルを有する半導体装置の製造方法であって、 前記スタックゲート用の導体層を有する半導体基板上
に、第1の絶縁膜を成膜し、この第1の絶縁膜の所定の
部分を厚くしてパターニングを施す第1の工程と、 第2の絶縁膜を成膜し、前記第1の工程で形成された前
記第1の絶縁膜のパターンの側面近傍のスペーサとなる
部分を残して除去する第2の工程と、 前記スペーサをマスクとして、エッチングマスクとなる
第3の絶縁膜を形成する第3の工程と、 前記スペーサを除去し、前記スペーサがあった部分を前
記導体層の下までエッチングして前記スタックゲートを
形成する第4の工程とを有することを特徴とする半導体
装置の製造方法。
1. A method of manufacturing a semiconductor device having a NAND-type memory cell having a stack gate, wherein a first insulating film is formed on a semiconductor substrate having a conductor layer for the stack gate. A first step of thickening a predetermined portion of the first insulating film to perform patterning, a second insulating film is formed, and a pattern of the first insulating film formed in the first step is formed. A second step of removing a portion that becomes a spacer in the vicinity of the side surface; a third step of forming a third insulating film that serves as an etching mask by using the spacer as a mask; And a fourth step of forming a portion of the stack gate by etching the existing portion to the bottom of the conductor layer.
JP4004922A 1992-01-14 1992-01-14 Manufacture of semiconductor device Pending JPH05190809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004922A JPH05190809A (en) 1992-01-14 1992-01-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004922A JPH05190809A (en) 1992-01-14 1992-01-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05190809A true JPH05190809A (en) 1993-07-30

Family

ID=11597108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004922A Pending JPH05190809A (en) 1992-01-14 1992-01-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05190809A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288291A (en) * 1994-04-19 1995-10-31 Nec Corp Non-volatile semiconductor memory device
EP0905770A1 (en) * 1997-09-25 1999-03-31 Siemens Aktiengesellschaft Method of fabrication semiconductor chips with silicide and implanted junctions
EP0977267A1 (en) * 1998-07-30 2000-02-02 STMicroelectronics S.r.l. Non volatile memory structure and corresponding manufacturing process
US6027972A (en) * 1995-09-19 2000-02-22 Siemens Aktiengesellschaft Method for producing very small structural widths on a semiconductor substrate
EP1032029A1 (en) * 1999-02-26 2000-08-30 STMicroelectronics S.r.l. Process for manufacturing semiconductor integrated electronic memory devices having a virtual ground cells matrix
WO2003054963A1 (en) * 2001-12-20 2003-07-03 Koninklijke Philips Electronics N.V. Fabrication of non-volatile memory cell
WO2005091369A1 (en) * 2004-03-12 2005-09-29 Sandisk Corporation Self aligned non-volatile memory cells and processes for fabrication
US7170131B2 (en) 2002-10-09 2007-01-30 Sandisk Corporation Flash memory array with increased coupling between floating and control gates
JP2009164205A (en) * 2007-12-28 2009-07-23 Tokyo Electron Ltd Pattern forming method, semiconductor manufacturing equipment, and storage medium
CN108231770A (en) * 2016-12-22 2018-06-29 联华电子股份有限公司 The method for forming pattern
US11018006B2 (en) 2018-05-01 2021-05-25 United Microelectronics Corp. Method for patterning a semiconductor structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288291A (en) * 1994-04-19 1995-10-31 Nec Corp Non-volatile semiconductor memory device
US6027972A (en) * 1995-09-19 2000-02-22 Siemens Aktiengesellschaft Method for producing very small structural widths on a semiconductor substrate
EP0905770A1 (en) * 1997-09-25 1999-03-31 Siemens Aktiengesellschaft Method of fabrication semiconductor chips with silicide and implanted junctions
EP0977267A1 (en) * 1998-07-30 2000-02-02 STMicroelectronics S.r.l. Non volatile memory structure and corresponding manufacturing process
EP1032029A1 (en) * 1999-02-26 2000-08-30 STMicroelectronics S.r.l. Process for manufacturing semiconductor integrated electronic memory devices having a virtual ground cells matrix
US6365456B1 (en) 1999-02-26 2002-04-02 Stmicroelectronics, S.R.L. Process for manufacturing semiconductor integrated memory devices with cells matrix having virtual ground
WO2003054963A1 (en) * 2001-12-20 2003-07-03 Koninklijke Philips Electronics N.V. Fabrication of non-volatile memory cell
US7170131B2 (en) 2002-10-09 2007-01-30 Sandisk Corporation Flash memory array with increased coupling between floating and control gates
US7517756B2 (en) 2002-10-09 2009-04-14 Sandisk Corporation Flash memory array with increased coupling between floating and control gates
WO2005091369A1 (en) * 2004-03-12 2005-09-29 Sandisk Corporation Self aligned non-volatile memory cells and processes for fabrication
US7183153B2 (en) 2004-03-12 2007-02-27 Sandisk Corporation Method of manufacturing self aligned non-volatile memory cells
JP2009164205A (en) * 2007-12-28 2009-07-23 Tokyo Electron Ltd Pattern forming method, semiconductor manufacturing equipment, and storage medium
CN108231770A (en) * 2016-12-22 2018-06-29 联华电子股份有限公司 The method for forming pattern
US11018006B2 (en) 2018-05-01 2021-05-25 United Microelectronics Corp. Method for patterning a semiconductor structure

Similar Documents

Publication Publication Date Title
JP4530552B2 (en) Semiconductor device and manufacturing method thereof
KR100190261B1 (en) Method of fabricating gate stack having a reduced height
JP2003124339A (en) Semiconductor device and its manufacturing method
JPH0590603A (en) Manufacture of nonvolatile semiconductor memory
JPH05190809A (en) Manufacture of semiconductor device
KR100225327B1 (en) Semiconductor device having a polycide structure and method of manufacturing the same
US8048764B2 (en) Dual etch method of defining active area in semiconductor device
KR100368322B1 (en) Method of forming a floating gate in a flash memory device
US7754568B2 (en) Semiconductor device and method of fabricating the same
KR100367501B1 (en) Method for forming self-align contact of semiconductor device
JP2754202B2 (en) Method for manufacturing semiconductor device
JP3042804B2 (en) Element isolation method and semiconductor device
JP2001326287A (en) Method for manufacturing semiconductor device
KR0172768B1 (en) Method of fabricating transistor having gate electrode of polycide structure
JPH06196691A (en) Forming method for gate electrode and gate electrode
TW202347440A (en) Method for manufacturing semiconductor device
TW202401741A (en) Memory device and method of manufacturing the same
KR100237758B1 (en) Manufacture of semiconductor device
JPH04209543A (en) Manufacture of semiconductor device
JPH0653519A (en) Semiconductor non-volatile memory and fabrication thereof
JPH05326503A (en) Forming method of line pattern
JPH0555252A (en) Manufacture of thin film transistor
JPH04209542A (en) Manufacture of semiconductor device
JPH0697129A (en) Fabrication of semiconductor device
US20070196971A1 (en) Scalable embedded EEPROM memory cell