JPH0518768B2 - - Google Patents

Info

Publication number
JPH0518768B2
JPH0518768B2 JP58251950A JP25195083A JPH0518768B2 JP H0518768 B2 JPH0518768 B2 JP H0518768B2 JP 58251950 A JP58251950 A JP 58251950A JP 25195083 A JP25195083 A JP 25195083A JP H0518768 B2 JPH0518768 B2 JP H0518768B2
Authority
JP
Japan
Prior art keywords
core
cladding
optical fiber
base material
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58251950A
Other languages
Japanese (ja)
Other versions
JPS60141635A (en
Inventor
Kyoshi Yokogawa
Kazuo Kamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP25195083A priority Critical patent/JPS60141635A/en
Publication of JPS60141635A publication Critical patent/JPS60141635A/en
Publication of JPH0518768B2 publication Critical patent/JPH0518768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Description

【発明の詳細な説明】 本発明は、光フアイバー用母材の透明前駆体に
関するものであり、特には各種設計値の光フアイ
バー用母材の製造に共通して使用することができ
る該前駆体の提供を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transparent precursor of a base material for optical fiber, and in particular to a precursor that can be commonly used in the production of base materials for optical fiber with various design values. The purpose is to provide.

光フアイバーは基本的にはコア中心層とこれを
とり囲むクラツド層とからなつており、このコア
径とクラツド径が正確にコントロールされている
ことが必要とされる。特にシングルモードフアイ
バーにおいては、このコアークラツド径は λc=2πa/2.405√1 22 2 λc:カツトオフ波長 a:コア径 n1:コアの屈折率 n2:クラツドの屈折率 で表わされるカツトオフ波長を設計値に合わせる
ことが重要とされる。
Optical fibers basically consist of a central core layer and a cladding layer surrounding it, and it is necessary that the core diameter and cladding diameter be precisely controlled. In particular, in a single mode fiber, the core cladding diameter is λ c = 2πa/2.405√ 1 22 2 λ c : cutoff wavelength a : core diameter n 1 : refractive index of the core n 2 : cutoff expressed by the refractive index of the cladding. It is important to match the wavelength to the design value.

上記カツトオフ波長は使用される波長によつて
選択されるものであつて、その場合コア径とクラ
ツド径の比はそれぞれの設計値により異なつた寸
法で正確にコントロールされていることが必要と
される。
The above cutoff wavelength is selected depending on the wavelength used, and in this case, the ratio of the core diameter to the cladding diameter needs to be precisely controlled with different dimensions depending on the respective design values. .

上記理由から光フアイバー用母材(コアークラ
ツドロツド)に関しても、コアークラツド径が正
確にコントロールされていることが必要とされ、
かかる技術的課題のもとに光フアイバー用母材の
有利な製造法の研究が進められているところであ
る。
For the above reasons, it is necessary to accurately control the core clad diameter of the optical fiber base material (core clad rod).
In view of these technical issues, research is currently underway into an advantageous manufacturing method for optical fiber base materials.

本発明者らは鋭意研究を重ねた結果、コア径と
クラツド径が正確にコントロールされた光フアイ
バー用母材を得るためには、コア中心層と該コア
をとり囲むクラツド層よりなり、該クラツド層の
厚みがシングルモード用光フアイバー用母材とし
て要求されるクラツド厚みの10〜80%であるシン
グルモード用光フアイバー用母材の透明前駆体、
またはマルチモード用光フアイバー用母材として
要求されるクラツド厚みの3〜60%であるマルチ
モード用光フアイバー用母材の透明前駆体をあら
かじめ製造しておくと、きわめて好都合であるこ
とを見出し本発明を完成した。
As a result of extensive research, the present inventors have found that in order to obtain an optical fiber base material in which the core diameter and cladding diameter are precisely controlled, the base material consists of a core center layer and a cladding layer surrounding the core. A transparent precursor for a single-mode optical fiber base material, the layer thickness of which is 10 to 80% of the cladding thickness required for a single-mode optical fiber base material;
Also, it has been found that it is extremely convenient to prepare in advance a transparent precursor for the base material for multimode optical fiber, which has a clad thickness of 3 to 60% of the required cladding thickness for the base material for multimode optical fiber. Completed the invention.

本発明が提案する上記光フアイバー用母材の透
明前駆体は、(1)目的とする光フアイバーのコアー
クラツド径に対応させて所要量のクラツド用スー
トを堆積させガラス化させることによりコアーク
ラツド径が正確にコントロールされた光フアイバ
ー用母材が容易に得られる、(2)いずれの設計値の
光フアイバー用母材を製造する場合にも共通に使
用することができる、(3)コアーのみからなるもの
に比べてクラツド層が設けられていることから取
扱いにそれほど厳格さは要求されず、このまま出
荷する場合あるいは次工程に送る場合に容易であ
る等の利点を有する。
The transparent precursor of the optical fiber base material proposed by the present invention can be obtained by: (1) depositing and vitrifying a required amount of soot for the core cladding in accordance with the core cladding diameter of the intended optical fiber; (2) Can be used in common when manufacturing optical fiber base materials of any design value; (3) Consists of only a core. Since a cladding layer is provided, handling is not required to be as strict as compared to the conventional method, and it has the advantage of being easier to ship as is or to send to the next process.

本発明の透明前駆体は、ガラス形成材の火炎加
水分解で発生したシリカ微粒子を基体に堆積して
コア層とクラツド層を作り、ついで該コアークラ
ツド用スートを脱水、ガラス化し、冷却すること
によつて製造される。コアークラツド用スートを
堆積させる方法としては、コア部となるガラス原
料を火炎加水分解して、これにより得られるスー
トを軸方向に成長させると同時にクラツド部とな
るスートをコア部の周囲に連続して堆積させる方
法、あるいはコア部を形成し、つぎにこのコア部
の周囲にクラツド部となるスートを堆積させる方
法のいずれでもよく、さらにまた単一のバーナで
あつても周辺部がきわめて低密度となるように調
整された条件で堆積することにより、次のガラス
化工程で周辺部のドーパントを揮散させクラツド
層を形成する方法であつてもよい。
The transparent precursor of the present invention is produced by depositing silica particles generated by flame hydrolysis of a glass forming material on a substrate to form a core layer and a cladding layer, and then dehydrating, vitrifying and cooling the core cladding soot. manufactured by The method for depositing soot for the core cladding is to flame-hydrolyze the glass raw material that will become the core part, grow the resulting soot in the axial direction, and simultaneously deposit the soot that will become the cladding part continuously around the core part. It is possible to use either a method of depositing soot, or a method of forming a core and then depositing soot to form a cladding around the core.Furthermore, even with a single burner, the peripheral region has a very low density. The method may be such that the dopant is deposited under conditions adjusted so that the dopant in the periphery is volatilized in the next vitrification step to form a cladding layer.

なお、火炎加水分解によりガラスとなり得る化
合物としては、従来公知のものたとえば主成分と
して酸化あるいは加水分解可能なけい素化合物、
ドーパントとしてゲルマニウム化合物、リン化合
物などが挙げられ、一般には四塩化けい素、四塩
化ゲルマニウム、塩化ホスホリルなどが用いられ
る。
Compounds that can be converted into glass by flame hydrolysis include conventionally known compounds, such as silicon compounds that can be oxidized or hydrolyzed as a main component;
Examples of dopants include germanium compounds and phosphorus compounds, and silicon tetrachloride, germanium tetrachloride, phosphoryl chloride, and the like are generally used.

上記のようにして製造したコアークラツド用ス
ートを次に脱水、ガラス化し、冷却する。この脱
水・ガラス化は、従来公知とされている方法、す
なわち、ハロゲンあるいはハロゲン化合物の雰囲
気にさらし、焼結温度まで加熱してガラス化(透
明化)するという方法により行えばよく、この脱
水、ガラス化し、冷却することによりコアー部分
クラツドよりなる透明前駆体(ロツド)が得られ
る。
The core cladding soot produced as described above is then dehydrated, vitrified and cooled. This dehydration and vitrification may be performed by a conventionally known method, that is, a method of exposing to an atmosphere of halogen or halogen compound and vitrification (transparency) by heating to a sintering temperature. A transparent precursor (rod) consisting of a core-part cladding is obtained by vitrification and cooling.

本発明においては、このコアをとり囲む部分ク
ラツド層の厚みが、光フアイバー用母材として要
求される最終クラツド厚みの3〜80%に調整され
ていることが必要とされる。部分クラツド層の厚
さがこれよりも薄い場合には、このクラツド層の
上に残りの必要クラツド層を形成した場合にその
界面に光のパワーがかなり伝搬し、散乱損失等が
増加するし、さらに該残りの必要クラツド層を多
量に形成せねばならず、このために目標最終厚み
の誤差が大きくなる。一方80%よりも厚い場合に
は、仮にコア部の分布形状、屈折率差などが不合
格であつた場合、製造コストのうえからもロスが
大きくなる不利があるほか、残りのクラツド層を
必然的に薄くせざるを得ず、コントロール精度が
低くなる不利がある。
In the present invention, it is necessary that the thickness of the partial cladding layer surrounding this core be adjusted to 3 to 80% of the final cladding thickness required as a base material for optical fiber. If the thickness of the partial cladding layer is thinner than this, and the remaining necessary cladding layer is formed on top of this cladding layer, a considerable amount of light power will propagate to the interface, increasing scattering loss, etc. Furthermore, the remaining required cladding layer must be formed in large quantities, which increases the error in the target final thickness. On the other hand, if it is thicker than 80%, if the distribution shape of the core part, refractive index difference, etc. fail, there will be a disadvantage in terms of manufacturing cost and loss, and the remaining cladding layer will inevitably be removed. This has the disadvantage of reducing control accuracy.

以上述べた理由から本発明の透明前駆体におい
ては、部分クラツド層の厚さは光フアイバー用母
材として要求される最終クラツド厚みの3〜80%
とされるのであるが、この点をマルチモードフア
イバーとシングルモードフアイバーの個々につい
て述べると次のとおりである。すなわち、マルチ
モードフアイバーにおいては、光パワーのクラツ
ド部への拡がりが小さいために、部分クラツド層
は薄くても十分に有効に作用する。この場合の厚
みは最終厚みの3〜60%であることが好ましい。
一方シングルモードフアイバーにおいてはクラツ
ド層へかなり光パワーが拡がつて伝搬するため
に、部分クラツド層が厚い方が好ましく、最終ク
ラツド厚みに対して10〜80%の範囲に調整するこ
とが望ましい。
For the reasons stated above, in the transparent precursor of the present invention, the thickness of the partial cladding layer is 3 to 80% of the final cladding thickness required as a base material for optical fiber.
However, this point can be explained individually for multimode fiber and single mode fiber as follows. That is, in a multimode fiber, since the spread of optical power to the cladding portion is small, the partial cladding layer is sufficiently effective even if it is thin. In this case, the thickness is preferably 3 to 60% of the final thickness.
On the other hand, in a single-mode fiber, since the optical power is considerably spread and propagated to the cladding layer, it is preferable that the partial cladding layer is thick, and it is desirable to adjust the partial cladding layer to a range of 10 to 80% of the final cladding thickness.

本発明の光フアイバー用透明前駆体は、その部
分クラツド層がコア中心層と同様に気相法(火炎
分解法)により形成されたシリカを主成分とし、
シリカ単独かあるいはふつ素、ほう素等でシリカ
よりも屈折率を低くしたものの中から選択される
こと、およびコア部分と同様に低OH基含有の合
成石英ガラスを主成分とするものであることが望
ましい。
The transparent precursor for optical fiber of the present invention has a partial cladding layer mainly composed of silica formed by a vapor phase method (flame decomposition method), like the core center layer,
It must be selected from silica alone or fluorine, boron, etc. with a lower refractive index than silica, and the main component must be synthetic silica glass containing low OH groups, like the core part. is desirable.

つぎに具体的実施例をあげる。 Next, a specific example will be given.

実施例 1 同心4重管構造の石英バーナの中心部に、
SiCl4105ml/分、GeCl420ml/分、POCl3、3
ml/分を搬送用のアルゴンガス370ml/分と均一
混合した原料ガスを、その外側にH22.8/分、
Ar0.6/分、O25.6/分の順でそれぞれの管に
流して酸水素炎を形成し、ガラス微粒子を形成し
た。このガラス微粒子を回転移動する出発材に堆
積、軸方向に成長させ50mmφの円柱状のコアーク
ラツド用スートを得た。
Example 1 In the center of a quartz burner with a concentric quadruple tube structure,
SiCl 4 105ml/min, GeCl 4 20ml/min, POCl 3 , 3
ml/min of raw material gas uniformly mixed with 370 ml/min of argon gas for conveyance, and H 2 2.8/min on the outside.
An oxyhydrogen flame was formed by flowing Ar into each tube in the order of 0.6/min and O 2 5.6/min to form glass particles. The glass particles were deposited on a rotating starting material and grown in the axial direction to obtain a 50 mm diameter cylindrical soot for core cladding.

このコアークラツド用スートを、周辺部の
GeO2が揮散するに充分な高濃度のCl2(20容量%)
で処理したのち、He雰囲気中でガラス化し室温
に冷却して、25mmφの透明ガラスロツドのコアー
部分クラツドよりなる透明前駆体を得た。このロ
ツドの屈折率分布は最大屈折率差約1.0%のほぼ
二乗分布を示すものであつた。またコア部の径は
17.5mmφ、クラツド厚さは3.75mmであつた。
This suit for core cladding is applied to the peripheral area.
High concentration of Cl 2 (20% by volume) sufficient to volatilize GeO 2
After treatment, the material was vitrified in a He atmosphere and cooled to room temperature to obtain a transparent precursor consisting of a 25 mm diameter transparent glass rod core portion cladding. The refractive index distribution of this rod was approximately a square distribution with a maximum refractive index difference of about 1.0%. Also, the diameter of the core part is
The diameter was 17.5 mm, and the cladding thickness was 3.75 mm.

参考例 1 上記実施例1で得た前駆体から50μmコア、
125μmクラツドの光フアイバーを作ることがで
きる母材を得るために、さらに外付CVD法によ
つてスートを堆積させ、約8.5mmφのスートとし
てガラス化し、43.75mmφの光フアイバー用母材
を得た。
Reference Example 1 From the precursor obtained in Example 1 above, a 50 μm core,
In order to obtain a base material from which a 125 μm clad optical fiber could be made, soot was further deposited by an external CVD method, and the soot was vitrified to a diameter of approximately 8.5 mm to obtain a base material for an optical fiber with a diameter of 43.75 mm. .

このようにして得た母材を2100℃の電気炉で加
熱溶融し紡糸して外径125μmの光フアイバーを
製造したが、このフアイバーのコア径の変動幅は
50μmに対して±1μm以下であつた。
The base material thus obtained was heated and melted in an electric furnace at 2100°C and spun to produce an optical fiber with an outer diameter of 125 μm, but the variation range of the core diameter of this fiber was
It was less than ±1 μm with respect to 50 μm.

実施例 2 実施例1と同様の石英バーナの中心に、
SiCl420ml/分、GeCl42ml/分を搬送用のアルゴ
ンガスと共に供給して、コア用スートを堆積さ
せ、さらに予備バーナでこのスートの側面を連続
的に加熱して、20mmφのコア用スートロツドを得
た。このスートロツドにさらにガラス原料として
SiCl4のみを含むクラツド用バーナでクラツドス
ートを外付し、75mmφのスートを得た。次にこの
スートをCl2濃度0.5%の雰囲気でガラス化し室温
に冷却してコア部8mmφ、外径35mmφに透明ガラ
スロツドのコアー部分クラツドよりなる透明前駆
体を得た。
Example 2 At the center of a quartz burner similar to Example 1,
20 ml/min of SiCl 4 and 2 ml/min of GeCl 4 are supplied together with argon gas for transport to deposit core soot, and the side of this soot is continuously heated with a preliminary burner to build up a 20 mmφ core soot rod. I got it. This soot rod is further used as a raw material for glass.
A clad soot was attached externally using a clad burner containing only SiCl 4 to obtain a soot of 75 mmφ. Next, this soot was vitrified in an atmosphere with a Cl 2 concentration of 0.5% and cooled to room temperature to obtain a transparent precursor consisting of a core portion cladding of a transparent glass rod having a core portion of 8 mmφ and an outer diameter of 35 mmφ.

参考例 2 実施例2で得たコア部8mmφ、外径35mmφの光
フアイバー用母材前駆体を外径15mmφに延伸した
のち外周にスートを付着させガラス化したとこ
ろ、外径51mmφの光フアイバー用母材が得られ
た。この母材を2100℃電気炉で加熱溶融し紡糸し
て光フアイバーを得たところ、このものはコア径
8.4μm、カツトオフ波長1.19μmであり、1.3μm帯
でのシングルモード伝送に好適とされるものであ
つた。
Reference Example 2 The optical fiber base material precursor with a core part of 8 mmφ and an outer diameter of 35 mmφ obtained in Example 2 was drawn to an outer diameter of 15 mmφ, and then soot was attached to the outer periphery and vitrified. A base material was obtained. This base material was heated and melted in an electric furnace at 2100℃ and spun to obtain an optical fiber, which had a core diameter of
It had a cutoff wavelength of 8.4 μm and a cutoff wavelength of 1.19 μm, and was considered suitable for single mode transmission in the 1.3 μm band.

参考例 3 実施例2で得たコア部8mmφ、外径35mmφの光
フアイバー用母材前駆体を外径15mmφに延伸した
のち外周にスートを付着させガラス化したとこ
ろ、外径75mmφの光フアイバー用母材が得られ
た。この母材を参考例2と同様にして紡糸して光
フアイバーを得たところ、このものはコア径5.7μ
m、カツトオフ波長0.81μmであり、0.85μm常の
シングルモード伝送に好適とされるものであつ
た。
Reference Example 3 The optical fiber base material precursor with a core part of 8 mmφ and an outer diameter of 35 mmφ obtained in Example 2 was drawn to an outer diameter of 15 mmφ, and then soot was attached to the outer periphery and vitrified. A base material was obtained. This base material was spun in the same manner as in Reference Example 2 to obtain an optical fiber, which had a core diameter of 5.7μ.
m, the cutoff wavelength was 0.81 μm, and it was considered suitable for single mode transmission at a wavelength of 0.85 μm.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス形成材の火炎加水分解で発生した微粒
子を基本に堆積してコア層とクラツド層を作り、
ついでこれを脱水、ガラス化し、冷却して得たコ
ア中心層と該コアをとり囲むクラツド層よりなる
透明前駆体において、該クラツド層の厚みが光フ
アイバー用母材として要求されるクラツド厚みの
3〜80%である光フアイバー用母材の透明前駆
体。
1. A core layer and a cladding layer are created by depositing fine particles generated by flame hydrolysis of glass forming materials.
This is then dehydrated, vitrified, and cooled to obtain a transparent precursor consisting of a core center layer and a cladding layer surrounding the core, in which the thickness of the cladding layer is 3 times the cladding thickness required as a base material for optical fiber. ~80% transparent precursor of matrix for optical fiber.
JP25195083A 1983-12-28 1983-12-28 Precursor of parent material for optical fiber Granted JPS60141635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25195083A JPS60141635A (en) 1983-12-28 1983-12-28 Precursor of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25195083A JPS60141635A (en) 1983-12-28 1983-12-28 Precursor of parent material for optical fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33270993A Division JPH06293531A (en) 1993-12-27 1993-12-27 Precursor of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPS60141635A JPS60141635A (en) 1985-07-26
JPH0518768B2 true JPH0518768B2 (en) 1993-03-12

Family

ID=17230390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25195083A Granted JPS60141635A (en) 1983-12-28 1983-12-28 Precursor of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60141635A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721497A (en) * 1980-07-12 1982-02-04 Ishikawajima Harima Heavy Ind Extraction device for separating and collecting fats from pieces of animal or like
JPS5792532A (en) * 1980-11-28 1982-06-09 Nippon Telegr & Teleph Corp <Ntt> Preparation of oxide powder rod for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721497A (en) * 1980-07-12 1982-02-04 Ishikawajima Harima Heavy Ind Extraction device for separating and collecting fats from pieces of animal or like
JPS5792532A (en) * 1980-11-28 1982-06-09 Nippon Telegr & Teleph Corp <Ntt> Preparation of oxide powder rod for optical fiber

Also Published As

Publication number Publication date
JPS60141635A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
CA1121160A (en) Method of manufacturing optical fibers
JPH0380740B2 (en)
CN1472150A (en) Method for producing fibre-optical precast stick
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPH0518768B2 (en)
JPS6131324A (en) Production of base material for optical fiber
JPH0525818B2 (en)
JPH0463365B2 (en)
JPH0460930B2 (en)
JPH0559052B2 (en)
JPH0551542B2 (en)
KR870000383B1 (en) Preparation for making of fiber glass preform
JPH06293531A (en) Precursor of preform for optical fiber
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPS60145927A (en) Production of base material for optical fiber
JPH0327491B2 (en)
JPS5910938B2 (en) Method of manufacturing optical transmission glass
JPH04349147A (en) Radiation-resistant optical fiber and its production
JPS6140843A (en) Optical fiber
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JPS6252137A (en) Production of material for optical transmission
JPS6344692B2 (en)
JPS61236626A (en) Production of base material for optical fiber
JPS5946898B2 (en) Optical fiber manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term