JPS5946898B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JPS5946898B2
JPS5946898B2 JP5952577A JP5952577A JPS5946898B2 JP S5946898 B2 JPS5946898 B2 JP S5946898B2 JP 5952577 A JP5952577 A JP 5952577A JP 5952577 A JP5952577 A JP 5952577A JP S5946898 B2 JPS5946898 B2 JP S5946898B2
Authority
JP
Japan
Prior art keywords
core
quartz glass
glass
cladding
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5952577A
Other languages
Japanese (ja)
Other versions
JPS53144346A (en
Inventor
邦彦 崎久保
健一 増川
文雄 五老
隆之 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5952577A priority Critical patent/JPS5946898B2/en
Publication of JPS53144346A publication Critical patent/JPS53144346A/en
Publication of JPS5946898B2 publication Critical patent/JPS5946898B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は化学蒸着法(CVD法)を利用して光ファイバ
を製造する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in a method for manufacturing optical fibers using chemical vapor deposition (CVD).

従来、光ファイバーを製造するには、予め保護用石英ガ
ラス管にガラス形成用ハロゲン化金属ガスと酸素ガスと
の混合原料ガスを供給しながら石英ガラス管の外側から
加熱して上記混合原料ガスを酸化分解させ、生成した発
生期ガラス微粒子を管内表面に沈積して所望厚のクラッ
ドを形成した後、このクラッド内周面に該クラッドの屈
折率より大きい屈折率を有する棒状のコアを嵌入し、つ
づいてこの三重構造のガラス素材を溶融、紡糸する方法
が採用されている。
Conventionally, to manufacture optical fibers, a raw material gas mixture of metal halide gas for glass formation and oxygen gas is supplied to a protective quartz glass tube in advance, and the mixed raw material gas is oxidized by heating from the outside of the quartz glass tube. After decomposing and depositing the generated nascent glass particles on the inner surface of the tube to form a cladding of a desired thickness, a rod-shaped core having a refractive index greater than the refractive index of the cladding is inserted into the inner peripheral surface of the cladding. The method used is to melt and spin a glass material with a triple lever structure.

しかし、この方法にあつては予め形成したクラッドにコ
アを嵌入するため、紡糸時に該クラッドとコアとの境界
面が不可避的に乱れ、平滑性(平行性)が阻害され、そ
の結果光伝送損失の大きい光ファイバーとなる欠点があ
つた。
However, in this method, since the core is inserted into a pre-formed cladding, the interface between the cladding and the core is unavoidably disturbed during spinning, impeding smoothness (parallelism) and resulting in optical transmission loss. There was a drawback to the large size of the optical fiber.

また、保護用石英ガラス管にクラッドを形成する際、該
管の内表面から徐々に沈積、形成するため、酸化分解に
より生成した発生期ガラス微粒子が有効に利用できず、
原料ガスの効率性、クラッドの形成効率の低下を招く欠
点があつた。本発明は上記欠点を解消するためになされ
たもので、光伝送損失を著しく改善された光ファイバー
を高能率で製造し得る方法を提供しようとするものであ
る。
In addition, when forming a cladding on a protective quartz glass tube, it is gradually deposited and formed from the inner surface of the tube, so the nascent glass particles generated by oxidative decomposition cannot be used effectively.
There was a drawback that the efficiency of raw material gas and the efficiency of forming cladding were reduced. The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide a method for manufacturing optical fibers with significantly improved optical transmission loss with high efficiency.

以下、本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

まず、保護用石英ガラス管1にコア2を該管1内の両端
付近から突設した3本の支持治具3を介して同心円状に
挿置する。つづいて、上記コア2と石英ガラス管1との
間にガラス形成用ハロゲン化金属ガスと酸素ガスとの混
合原料ガスを矢印A方向から供給し、石英ガラス管1の
外側から酸水素炎バーナ等で加熱して該混合原料ガスを
酸化分解せしめ、生成した発生期のガラス微粒子(スズ
)をコア2の外表面及び石英ガラス管1の内表面に徐々
に沈積させてコア2と石英ガラス管1との間に該コアの
屈折率より小さい屈折率のクラッドを形成する。その後
、コア、クラッド及び保護用石英ガラスからなる三重構
造のガラス素材を常法に従つて溶融、紡糸せしめて光フ
アイバ一を造る。本発明に使用するコアの材料としては
、たとえば石英ガラス、SlO2とGeO2,TiO2
,P2O3から選ばれる一種または二種以上の混合物と
からなる多成分系ガラス等を挙げることができる。本発
明に使用するガラス形成用ハロゲン化金属ガスとしては
、酸化分解により生成した発生期のガラス微粒子(クラ
ツド形成材)が上記コアの屈折率より小さくなるような
ものが選定される。具体的にはコアを屈折率向上成分(
GeO2)とSiO2とからなる多成分系ガラスから形
成する場合は、ガラス形成用ハロゲン化金属ガスとして
四塩化珪素が適用される。一方、コアを上記多成分系ガ
ラス或いは石英ガラスから形成する場合には、ガラス形
成用ハロゲン化金属ガスとして四塩化珪素と屈折率低下
成分である三塩化ホウ素、三臭化ホウ素との混合ガスが
適用される。なお、ガラス形成用ハロゲン化金属ガスと
して、上記混合ガス(たとえばSiCl4とBCl3)
を用いる場合は、石英ガラスからなるコアに直接高濃度
のホウ珪酸ガラス層を形成すると、石英ガラスとホウ珪
酸ガラスとの著しい熱膨張差によつてクラツクの発生、
紡糸後の光フアイバ一の強度低下等を招く。したがつて
、上記Sice4及びBCl3と酸素ガスとの混合原料
ガスを、コアと保護用石英ガラス管との間に供給する場
合は、BCl3濃度の低い混合原料ガスを最初に供給し
、徐々にBCl3濃度の高い混合原料ガスを供給する必
要がある。本発明におけるガラス形成用ハロゲン化金属
ガ゛スと酸素ガスとの混合比は各ガスの理論酸化分解比
より若干酸素比を大きくするように設定される。
First, the core 2 is concentrically inserted into the protective quartz glass tube 1 via three supporting jigs 3 protruding from near both ends of the tube 1 . Next, a raw material gas mixture of a metal halide gas for glass formation and oxygen gas is supplied between the core 2 and the quartz glass tube 1 from the direction of arrow A, and an oxyhydrogen flame burner or the like is supplied from the outside of the quartz glass tube 1. to oxidize and decompose the mixed raw material gas, and gradually deposit the generated fine glass particles (tin) on the outer surface of the core 2 and the inner surface of the quartz glass tube 1. A cladding having a refractive index smaller than that of the core is formed between the core and the core. Thereafter, an optical fiber is produced by melting and spinning a triple-structured glass material consisting of a core, a cladding, and a protective quartz glass according to a conventional method. Examples of core materials used in the present invention include quartz glass, SlO2 and GeO2, TiO2
, P2O3 or a mixture of two or more thereof. As the metal halide gas for glass formation used in the present invention, one is selected so that the nascent glass fine particles (cladding material) produced by oxidative decomposition have a refractive index lower than that of the core. Specifically, the core is treated with a refractive index improving component (
When forming a multi-component glass consisting of GeO2) and SiO2, silicon tetrachloride is used as the metal halide gas for forming the glass. On the other hand, when the core is formed from the above-mentioned multi-component glass or quartz glass, a mixed gas of silicon tetrachloride and boron trichloride or boron tribromide, which are refractive index lowering components, is used as the metal halide gas for forming the glass. Applicable. Note that the above mixed gas (for example, SiCl4 and BCl3) is used as the metal halide gas for glass formation.
When using borosilicate glass, if a high concentration borosilicate glass layer is formed directly on the quartz glass core, cracks may occur due to the significant difference in thermal expansion between the quartz glass and borosilicate glass.
This results in a decrease in the strength of the optical fiber after spinning. Therefore, when supplying the above-mentioned Sice4 and the mixed raw material gas of BCl3 and oxygen gas between the core and the protective quartz glass tube, the mixed raw material gas with a low BCl3 concentration is supplied first, and the BCl3 It is necessary to supply a highly concentrated raw material gas mixture. In the present invention, the mixing ratio of the glass-forming metal halide gas and oxygen gas is set so that the oxygen ratio is slightly larger than the theoretical oxidative decomposition ratio of each gas.

しかして、本発明によれば保護用石英ガラス管とこの管
に同心円状に挿置したコアとの間に、ガラス形成用ハロ
ゲン化珪素ガスと酸素ガスとの混合原料ガスを供給し、
その原料ガスを酸化分解せしめることにより、図に示す
如くコア2の外表面と石英ガラス管1の内表面との両方
にガラス層4を徐々に沈積してクラツドを形成できるた
め、保護用石英ガラス管とクラツドとの境界面はもとよ
り、クラツド、コア間の境界面を著しく平滑化(平行化
)できる。その結果、この三重構造のガラス素材を溶融
、紡糸して得た光フアイバ一に、光情報を入射させた場
合、その光情報はコアとクラツドとの境界面での屈折が
一定状態となり、光伝送損失を著しく改善できる。また
、保護用石英ガラス管とコアとの間に混合原料ガスを供
給することにより酸化分解により生成した発生期のガラ
ス微粒子の付着面積が増大し、その微粒子の付着効率が
著しく向上するため、クラツドの形成速度を著しく高め
ることができ、未付着微粒子の放出を抑制でき、ひいて
は生産性の向上及び原料の有効利用を図ることができる
According to the present invention, a mixed raw material gas of silicon halide gas and oxygen gas for glass formation is supplied between the protective quartz glass tube and the core inserted concentrically into the tube,
By oxidizing and decomposing the raw material gas, a glass layer 4 can be gradually deposited on both the outer surface of the core 2 and the inner surface of the quartz glass tube 1 to form a cladding, as shown in the figure. Not only the interface between the tube and the cladding, but also the interface between the cladding and the core can be significantly smoothed (parallelized). As a result, when optical information is incident on an optical fiber obtained by melting and spinning this triple-structured glass material, the optical information is refracted at a constant state at the interface between the core and the cladding, and the light is Transmission loss can be significantly improved. In addition, by supplying a mixed raw material gas between the protective quartz glass tube and the core, the adhesion area of the nascent glass particles generated by oxidative decomposition increases, and the adhesion efficiency of the particles increases significantly. can significantly increase the formation rate, suppress the release of unattached fine particles, and, in turn, improve productivity and make effective use of raw materials.

次に、本発明の実施例を前述した図面を参照して説明す
る。実施例 1 まず内径18H11φの保護用石英ガラス管1に支持治
具3を介して5.0?φの石英ガラス製コア2を同心円
状に挿置した。
Next, embodiments of the present invention will be described with reference to the above-mentioned drawings. Example 1 First, a protective quartz glass tube 1 with an inner diameter of 18H11φ was heated through a support jig 3 with a diameter of 5.0 mm. Quartz glass cores 2 having a diameter of φ were placed concentrically.

つづいて、上記コア2と石英ガラス管1との間に、Si
Cl4,BC′3及び02からなる混合原料ガスを始め
にSiC24とBCl3中のBCl3濃度が1W1%
となるように供給し、順次3W1(Ff),6W1(F
f),10W1%,13W1%に増加して供給しながら
加熱して、各混合原料ガスを酸化分解せしめて半径方向
に対して中央ほどB2O3濃度が高いクラツドを形成し
て三重構造のガラス素材とした。その後、このガラス素
材を溶融、紡糸せしめてコア径50μmφ,クラツド外
径90μmφ、及び保護石英ガラス管の外径100μm
φの光フアイバ一を得た。得られた光フアイバ一のコア
,クラツド間の屈折率の差(Δn)は0.0007〜0
.01であり、かつこの光フアイバ一に光情報を入射さ
せたところ、光情報の光フアイバ一外への散乱が少なく
、光伝送損失が極めて低いことが確認された。
Next, Si is placed between the core 2 and the quartz glass tube 1.
Starting with the mixed raw material gas consisting of Cl4, BC'3 and 02, the BCl3 concentration in SiC24 and BCl3 is 1W1%.
3W1(Ff), 6W1(Ff)
f), 10W1%, 13W1% are heated while being supplied to oxidize and decompose each mixed raw material gas, forming a cladding in which the concentration of B2O3 is higher in the center in the radial direction, forming a triple-structured glass material. did. Thereafter, this glass material was melted and spun to obtain a core diameter of 50 μmφ, a cladding outer diameter of 90 μmφ, and a protective quartz glass tube with an outer diameter of 100 μmφ.
An optical fiber of φ was obtained. The difference in refractive index (Δn) between the core and cladding of the obtained optical fiber is 0.0007 to 0.
.. 01, and when optical information was introduced into this optical fiber, it was confirmed that there was little scattering of the optical information outside the optical fiber and that the optical transmission loss was extremely low.

実施例 2まず、内径20?φの保護用石英ガラス管1
に支持治具3を介してSiO2及びGeO2の多成分系
ガラスからなる7.0HIIφのコア2を同心円状に挿
置した。
Example 2 First, the inner diameter is 20? φ protective quartz glass tube 1
A core 2 of 7.0 HIIφ made of multi-component glass of SiO 2 and GeO 2 was placed concentrically through a support jig 3 .

つづいて上記コア2と石英ガラス管1との間に、SiO
2,BCl3及び02からなる混合原料ガスをSiCl
4とBCl3中のBCIl3濃度が1〜15W1%と順
次増加するように供給しながら加熱して、各混合原料ガ
スを酸化分解せしめて半径方向に対して中央ほどB2O
3濃度が高いホウ珪酸ガラスのクラツドを形成して三重
構造のガラス素材を造つた。その後、このガラス素材を
溶融、紡糸せしめてコア径90μmφ クラツド外径1
40μmφ及び保護用石英ガラス管の外径180μmφ
の光フアイバ一を得た。得られた光フアイバ一のコア,
クラツド間の屈折率の差(Δn)は0.005〜0.0
35であり、かつコア,クラツド間の境界面は極めて平
滑であつた。
Next, SiO2 is placed between the core 2 and the quartz glass tube 1.
2, the mixed raw material gas consisting of BCl3 and 02 is converted into SiCl
4 and BCl3 are heated while being supplied so that the concentration of BCl13 in BCl3 increases from 1 to 15W1%, and each mixed raw material gas is oxidized and decomposed to produce B2O toward the center in the radial direction.
A glass material with a triple structure was created by forming a cladding of borosilicate glass with a high concentration of 3. After that, this glass material is melted and spun to create a core diameter of 90 μmφ and a clad outer diameter of 1.
40μmφ and outer diameter of protective quartz glass tube 180μmφ
Obtained optical fiber. The obtained optical fiber core,
The difference in refractive index between the claddings (Δn) is 0.005 to 0.0
35, and the interface between the core and cladding was extremely smooth.

また、この光フアイバ一に光情報を入射させたところ、
光情報の光フアイバ一外への散乱は少なく、光伝送損失
が極めて低いことが確認された。以上詳述した如く、本
発明によればコア外表面と保護用石英ガラス管内表面と
の両方に同時にガラス層を沈積してクラツドを形成し、
これを溶融、紡糸することにより光伝送損失を著しく改
善した実用性の高い光フアイバ一を得ることができると
共に、生産性の著しい向上及びクラツド形成用の原料ガ
スの有効利用を図ることができる等顕著な効果を有する
ものである。
Also, when optical information is input into this optical fiber,
It was confirmed that there was little scattering of optical information outside the optical fiber, and that optical transmission loss was extremely low. As detailed above, according to the present invention, a glass layer is simultaneously deposited on both the outer surface of the core and the inner surface of the protective quartz glass tube to form a cladding.
By melting and spinning this, a highly practical optical fiber with significantly improved optical transmission loss can be obtained, and it is also possible to significantly improve productivity and effectively utilize raw material gas for cladding formation. It has a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法に使用される三重構造のガラス素材を製
造する過程を示す断面図である。 1・・・・・・保護用石英ガラス管、2・・・・・・コ
ア。
The figure is a sectional view showing the process of manufacturing a triple-structured glass material used in the method of the present invention. 1...Protective quartz glass tube, 2...Core.

Claims (1)

【特許請求の範囲】[Claims] 1 保護用石英ガラス管にコアを同心円状に挿置した後
、上記コアと石英ガラス管との間にガラス形成用ハロゲ
ン化金属ガスと酸素ガスとの混合原料ガスを供給し、該
混合原料ガスを酸化分解せしめ上記石英ガラス管内表面
とコア外表面に付着された該コアの屈折率より小さい屈
折率のクラッドを形成して三重構造のガラス素材とし、
つづいてこのガラス素材を常法に従つて溶融、紡糸せし
めることを特徴とする光ファイバーの製造方法。
1. After inserting the core concentrically into a protective quartz glass tube, a mixed raw material gas of glass-forming metal halide gas and oxygen gas is supplied between the core and the quartz glass tube, and the mixed raw material gas is oxidized and decomposed to form a cladding having a refractive index lower than the refractive index of the core attached to the inner surface of the quartz glass tube and the outer surface of the core to obtain a triple-structured glass material,
A method for producing an optical fiber, which is characterized in that the glass material is then melted and spun according to a conventional method.
JP5952577A 1977-05-23 1977-05-23 Optical fiber manufacturing method Expired JPS5946898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5952577A JPS5946898B2 (en) 1977-05-23 1977-05-23 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5952577A JPS5946898B2 (en) 1977-05-23 1977-05-23 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS53144346A JPS53144346A (en) 1978-12-15
JPS5946898B2 true JPS5946898B2 (en) 1984-11-15

Family

ID=13115761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5952577A Expired JPS5946898B2 (en) 1977-05-23 1977-05-23 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPS5946898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117200U (en) * 1984-12-29 1986-07-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135810A (en) * 1978-04-14 1979-10-22 Nippon Telegraph & Telephone Manufacture of optical fiber parent material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117200U (en) * 1984-12-29 1986-07-24

Also Published As

Publication number Publication date
JPS53144346A (en) 1978-12-15

Similar Documents

Publication Publication Date Title
CA1121160A (en) Method of manufacturing optical fibers
CA1266403A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS5946898B2 (en) Optical fiber manufacturing method
JPH0135779B2 (en)
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JP2898705B2 (en) Manufacturing method of optical fiber preform
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP3174682B2 (en) Method for producing glass preform for optical fiber
AU643451B2 (en) Method for producing porous glass preform for optical fiber
JPH0656448A (en) Production of optical fiber preform
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JP3517250B2 (en) Method for producing glass fiber preform for optical transmission line
JPS6140843A (en) Optical fiber
JPS593944B2 (en) Optical fiber manufacturing method
JPH05124831A (en) Production of optical fiber
JPH06316429A (en) Production of preform for dispersion shift optical fiber
JPH0454625B2 (en)
JPS59137332A (en) Manufacture of base material for optical fiber
JPH06219765A (en) Production of preform for optical fiber
JPH0733460A (en) Optical fiber preform and its production
JPH06122527A (en) Production of optical fiber preform
JPS59111939A (en) Manufacture of optical fiber matrix
JPS60141635A (en) Precursor of parent material for optical fiber