JPH05175229A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH05175229A
JPH05175229A JP34354891A JP34354891A JPH05175229A JP H05175229 A JPH05175229 A JP H05175229A JP 34354891 A JP34354891 A JP 34354891A JP 34354891 A JP34354891 A JP 34354891A JP H05175229 A JPH05175229 A JP H05175229A
Authority
JP
Japan
Prior art keywords
gate electrode
semiconductor substrate
heat treatment
insulating film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34354891A
Other languages
Japanese (ja)
Inventor
Jiro Ida
次郎 井田
Yoko Kajita
陽子 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP34354891A priority Critical patent/JPH05175229A/en
Publication of JPH05175229A publication Critical patent/JPH05175229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain a method for manufacturing an MISFET excellent in driving force while hot carrier resistance is ensured under a low power supply voltage. CONSTITUTION:A gate electrode 4 is formed on a semiconductor substrate 1 via an insulating film 3. After low concentration impurities 5 are introduced in the semiconductor substrate 1, heat treatment is performed in an oxidizing atmosphere, thereby obtaining a gentle impurity profile due to acceleration diffusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体素子特にMI
SFETの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a semiconductor device, especially MI.
The present invention relates to a method for manufacturing an SFET.

【0002】[0002]

【従来の技術】半導体集積回路の集積度が上がるに従い
1チップあたりの消費電力が大きくなる傾向にあるた
め、低消費電力化が求められるようになっている。また
チップ内で用いられるMISFETのゲート長が0.5
μm以下になると、従来の5V電源ではホット・キャリ
アに対する信頼性の確保が難しくなる。
2. Description of the Related Art As the degree of integration of semiconductor integrated circuits increases, the power consumption per chip tends to increase, so that lower power consumption is required. The gate length of the MISFET used in the chip is 0.5
When the thickness is less than μm, it becomes difficult to secure reliability against hot carriers with the conventional 5V power source.

【0003】これら低消費電力化及びホット・キャリア
に対する信頼性の確保の要求によりデザイン・ルール
0.5μm世代以降いよいよ電源電圧が5Vから3.0
〜3.3Vに下げられる。3.0〜3.3Vの低電源電
圧下においては、ホット・キャリアに対する信頼性を確
保しながら、MISFET単体の駆動力を高めることが
トランジスタ設計に要求される。
Due to the demand for low power consumption and ensuring reliability against hot carriers, the power supply voltage of the design rule 0.5 μm or later is finally from 5 V to 3.0 V.
It is lowered to ~ 3.3V. Under a low power supply voltage of 3.0 to 3.3 V, transistor design is required to enhance the driving force of a single MISFET while ensuring reliability against hot carriers.

【0004】図3はデザイン・ルール0.8μm世代ま
で使用されてきた従来のMISFET構造である。ドレ
イン構造としては、酸化膜等からなるサイドウォール1
5を使用したLDD(Lightly Doped D
rain:ライトリィ・ドープド・ドレイン)構造が使
用されてきた。
FIG. 3 shows a conventional MISFET structure which has been used up to the design rule 0.8 μm generation. As the drain structure, a sidewall 1 made of an oxide film or the like is used.
LDD (Lightly Doped D) using 5
A rain: lightly doped drain) structure has been used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、低電源
電圧下での集積回路の速度の要求を満たそうとして、サ
イドウォール長を変えずにゲート長のみを短くしても、
サイドウォール下のN- 層(もしくはP- 層)が長くそ
の部分の寄生抵抗によりトランジスタの駆動力が低下し
てしまうという問題がある。
However, even if only the gate length is shortened without changing the sidewall length in order to satisfy the speed requirement of the integrated circuit under a low power supply voltage,
There is a problem that the N layer (or P layer) under the side wall is long and the parasitic resistance in that portion lowers the driving force of the transistor.

【0006】また、単純にサイドウォール長を短くしN
- 層の寄生抵抗を小さくすると駆動能力は上がるが、低
電源電圧下においてもホット・キャリアによるトランジ
スタ特性の劣化が起るため信頼性の確保が困難になると
いう問題がある。
In addition, the sidewall length is simply shortened to N
- Although the driving ability to reduce the parasitic resistance of the layer increases, there is a problem of securing reliability since the deterioration of the transistor characteristics due to hot carriers occurs at low power supply voltage becomes difficult.

【0007】従って、低電源電圧下において、トランジ
スタの駆動力を上げつつ、しかもホット・キャリアに対
する信頼性を確保するには何らかの工夫が必要となる。
Therefore, it is necessary to devise some means in order to increase the driving power of the transistor and to secure the reliability against hot carriers under a low power supply voltage.

【0008】[0008]

【課題を解決するための手段】この発明は前記課題を解
決するために、LDD構造を有するMISFETの製造
方法において、半導体基板上に絶縁膜を介してゲート電
極を形成する工程と、前記ゲート電極をマスクとして前
記半導体基板に不純物を低濃度に導入する工程と、その
後酸化性雰囲気中で熱処理を施す工程とを順次行うよう
にしたものである。
In order to solve the above problems, the present invention provides a method of manufacturing a MISFET having an LDD structure, which comprises forming a gate electrode on a semiconductor substrate with an insulating film interposed between the gate electrode and the gate electrode. Is used as a mask, and a step of introducing impurities into the semiconductor substrate at a low concentration and a step of performing heat treatment in an oxidizing atmosphere after that are sequentially performed.

【0009】[0009]

【作用】この発明によれば、半導体素子の製造方法にお
いて、以上のような工程を導入したので、酸化増速拡散
により低濃度不純物層、例えばN- 層の濃度プロファイ
ルがなだらかとなる。従ってサイドウォール長を短くし
て十分な駆動力を得ると同時にホット・キャリアに対す
る信頼性を確保することが可能となる。従って、前記問
題点を除去できる。
According to the present invention, since the above-described steps are introduced in the method of manufacturing a semiconductor element, the concentration profile of the low concentration impurity layer, for example, the N layer becomes gentle due to the oxidation enhanced diffusion. Therefore, it becomes possible to shorten the sidewall length to obtain a sufficient driving force, and at the same time, to secure the reliability against hot carriers. Therefore, the above problems can be eliminated.

【0010】[0010]

【実施例】図1はNチャネル型MISFETを例にとっ
た本発明による製造方法を示す工程断面図である。以
下、工程を追って説明する。
1 is a process sectional view showing a manufacturing method according to the present invention, taking an N-channel type MISFET as an example. The steps will be described below.

【0011】(a)まずP型基板1に通常の製造方法に
従いフィールド酸化膜2を約6000Åの厚さで形成し
続いてゲート酸化膜3を約150Åの厚さで形成する。
ゲート酸化膜3上に通常の方法によりポリシリコンから
なるゲート電極4を約3000Åの厚さに形成し、イオ
ンインプランテーションによりリン(P+ )5を30K
eV、2〜5×1013個/cm2 の条件で注入する。
(A) First, the field oxide film 2 is formed on the P-type substrate 1 to a thickness of about 6000 Å according to a general manufacturing method, and then the gate oxide film 3 is formed to a thickness of about 150 Å.
A gate electrode 4 made of polysilicon is formed on the gate oxide film 3 by a conventional method to a thickness of about 3000 Å, and phosphorus (P + ) 5 is deposited at 30 K by ion implantation.
Injection is performed under the conditions of eV and 2 to 5 × 10 13 pieces / cm 2 .

【0012】(b)次に、全面にTEOS(テトラ・エ
チル・オルソ・シリケイト)系等をソースとしたCVD
法によりシリコン酸化膜6を約500Åの厚さに堆積
し、その後900℃、DryO2 の酸化性雰囲気下によ
り60分程度熱処理を行ないN- 層を形成する。
(B) Next, CVD using TEOS (tetra-ethyl-ortho-silicate) system or the like as a source on the entire surface
A silicon oxide film 6 is deposited to a thickness of about 500 Å by the method, and thereafter, heat treatment is performed at 900 ° C. in an oxidizing atmosphere of DryO 2 for about 60 minutes to form an N layer.

【0013】(c)次に、前記シリコン酸化膜6を通し
て、例えばヒ素(As+ )を100KeV、5×1015
個/cm2 の条件でイオン注入して、ソース・ドレイン8
となる高濃度不純物層(N+ 層)を形成する。
(C) Next, for example, arsenic (As + ) is passed through the silicon oxide film 6 at 100 KeV, 5 × 10 15
It is ion-implanted under the conditions of the individual / cm 2, the source and the drain 8
Then, a high-concentration impurity layer (N + layer) is formed.

【0014】その後は省略するが、中間絶縁膜を堆積
し、前記注入不純物の活性化熱処理を行ない、コンタク
トホールを開口して配線層を形成し、最後に保護膜を形
成して半導体素子が完成する。
After that, although omitted, an intermediate insulating film is deposited, heat treatment for activating the implanted impurities is performed, contact holes are opened to form a wiring layer, and finally a protective film is formed to complete a semiconductor element. To do.

【0015】図2は、上記(b)工程において熱処理
を、DryO2 の酸化性雰囲気下と、N2 の不活性ガス
雰囲気下で行なった時、VD =3.3V、VG =1.6
5V、VB =0V、N- イオン・インプラはリン
(P+ )4.0×1013/cm2 、30KeV、サイドウ
ォール絶縁膜は500Åの条件下での基板電流
(Isub )を比較したものである。両者とも、熱処理は
温度900℃、時間60分で行った。なお横軸はゲート
長(Lpoly)を示す。
FIG. 2 shows that when the heat treatment in the step (b) is performed in an oxidizing atmosphere of DryO 2 and an inert gas atmosphere of N 2 , V D = 3.3V and V G = 1. 6
The substrate current (I sub ) was compared under the conditions of 5 V, V B = 0 V, N ion implanter of phosphorus (P + ) 4.0 × 10 13 / cm 2 and 30 KeV, and the sidewall insulating film of 500 Å. It is a thing. In both cases, the heat treatment was performed at a temperature of 900 ° C. for 60 minutes. The horizontal axis represents the gate length (Lpoly).

【0016】一般に基板電流(ホール電流)は、衝突イ
オン化によるホット・キャリア発生の尺度となることが
知られている。図2から明らかなように、DryO2
よる酸化性雰囲気下で熱処理を行なえば、N2 による不
活性ガス雰囲気下で熱処理するよりも基板電流が約1/
2程少なくなることが解る。
It is generally known that the substrate current (hole current) is a measure of hot carrier generation due to impact ionization. As is clear from FIG. 2, when the heat treatment is carried out in the oxidizing atmosphere of DryO 2 , the substrate current is about 1 / about that of the heat treatment in the inert gas atmosphere of N 2.
It turns out that it will be about 2 less.

【0017】酸化性雰囲気下で熱処理を行なうと、ソー
ス・ドレインとなるシリコン面上が酸化される。シリコ
ン面が酸化される状況では、一般に不純物拡散が速くな
り酸化増速拡散が起る。よって酸化性雰囲気下で熱処理
すると、拡散が速くなり不純物の濃度プロファイルがな
だらかとなり電界が緩和される。従って基板電流の発生
が抑制されるのである。
When heat treatment is carried out in an oxidizing atmosphere, the silicon surface to be the source / drain is oxidized. In the situation where the silicon surface is oxidized, generally the diffusion of impurities becomes faster and the oxidation enhanced diffusion occurs. Therefore, when heat treatment is performed in an oxidizing atmosphere, diffusion is accelerated, the concentration profile of impurities becomes gentle, and the electric field is relaxed. Therefore, the generation of the substrate current is suppressed.

【0018】また、この熱処理はソース・ドレインとな
るヒ素(As)を注入した後に行なうと、高濃度なヒ素
が近傍に存在する状況下では、増速拡散が起こらないこ
とが知られており、上記の様に低濃度不純物注入後で、
高濃度にヒ素を注入する前に熱処理を行なうことが効果
的である。
Further, it is known that if this heat treatment is performed after implanting arsenic (As) to be the source / drain, accelerated diffusion does not occur in the situation where high-concentration arsenic exists. After the low-concentration impurity implantation as described above,
It is effective to perform heat treatment before implanting arsenic at a high concentration.

【0019】以上、Nチャネル型MISFETを例にと
って説明したがPチャネルMISFETにおいても同様
に適応可能である。
Although the N-channel type MISFET has been described above as an example, the same can be applied to the P-channel MISFET.

【0020】[0020]

【発明の効果】以上、詳細に説明した通り、この発明に
よれば、熱処理雰囲気を酸化性とすることにより、低濃
度不純物層を短くしても、ホット・キャリア発生の尺度
となる基板電流を大幅に小さくすることができる。
As described above in detail, according to the present invention, by making the heat treatment atmosphere oxidizing, the substrate current, which is a measure of hot carrier generation, can be reduced even if the low concentration impurity layer is shortened. Can be significantly reduced.

【0021】従って、サイドウォール長を短くしながら
ホット・キャリア耐性を十分に確保することが可能とな
り、低電源電圧下においても十分な駆動力を持ち、更に
ホット・キャリア信頼性をも確保したMISFETの実
現が可能となる。
Therefore, it becomes possible to sufficiently secure the hot carrier resistance while shortening the side wall length, have a sufficient driving force even under a low power supply voltage, and further secure the hot carrier reliability. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による製造方法の工程断面図FIG. 1 is a process sectional view of a manufacturing method according to the present invention.

【図2】O2 /N2 熱処理の基板電流の差を示すグラフFIG. 2 is a graph showing the difference in substrate current between O 2 / N 2 heat treatments.

【図3】従来のMISFET構造FIG. 3 Conventional MISFET structure

【符号の説明】[Explanation of symbols]

1,11 P型シリコン基板 2,12 フィールド 3,13 ゲート酸化膜 4,14 ポリシリコン 5 リン 6 シリコン酸化膜 7,16 N- 層 8,17 N+ 層 15 サイドウォール1, 11 P-type silicon substrate 2, 12 field 3, 13 gate oxide film 4, 14 polysilicon 5 phosphorus 6 silicon oxide film 7, 16 N layer 8, 17 N + layer 15 sidewall

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 LDD構造を有するMISFETの製造
方法であって、 半導体基板上に絶縁膜を介してゲート電極を形成する工
程と、 前記ゲート電極をマスクとして前記半導体基板に不純物
を低濃度に導入する工程と、 前記ゲート電極表面及び前記半導体基板表面に薄い絶縁
膜を形成する工程と、 酸化性雰囲気中で熱処理を施す工程と、 その後前記ゲート電極及びゲート電極側壁の前記薄い絶
縁膜をマスクとして、前記半導体基板に不純物を高濃度
に導入する工程とを順次行なうことを特徴とするMIS
FETの製造方法。
1. A method of manufacturing a MISFET having an LDD structure, comprising the steps of forming a gate electrode on a semiconductor substrate via an insulating film, and introducing impurities into the semiconductor substrate at a low concentration using the gate electrode as a mask. And a step of forming a thin insulating film on the surface of the gate electrode and the surface of the semiconductor substrate, a step of performing a heat treatment in an oxidizing atmosphere, and then using the thin insulating film on the gate electrode and the side wall of the gate electrode as a mask. And a step of introducing a high concentration of impurities into the semiconductor substrate, which are sequentially performed.
Method of manufacturing FET.
JP34354891A 1991-12-25 1991-12-25 Manufacture of semiconductor element Pending JPH05175229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34354891A JPH05175229A (en) 1991-12-25 1991-12-25 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34354891A JPH05175229A (en) 1991-12-25 1991-12-25 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH05175229A true JPH05175229A (en) 1993-07-13

Family

ID=18362374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34354891A Pending JPH05175229A (en) 1991-12-25 1991-12-25 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH05175229A (en)

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
KR100223992B1 (en) Complementary mos field effect transistor and method of manufacturing the same
JPH06310719A (en) Soi mos transistor of ge-si and preparation thereof
US7468297B2 (en) Method of manufacturing semiconductor device
JP2001156290A (en) Semiconductor device
JP2509690B2 (en) Semiconductor device
US6451676B2 (en) Method for setting the threshold voltage of a MOS transistor
JP4804666B2 (en) Manufacturing method of semiconductor device
JP3356629B2 (en) Method of manufacturing lateral MOS transistor
KR920005511B1 (en) Semiconductor device and its manufacturing method
JPH06268057A (en) Manufacture of semiconductor device
JPH05206454A (en) Manufacture of mis-type semiconductor device
JP2997123B2 (en) Method for manufacturing semiconductor device
JPH05175229A (en) Manufacture of semiconductor element
JP3200978B2 (en) Method for manufacturing semiconductor device
JPH0575041A (en) Cmos semiconductor device
JPH05267338A (en) Manufacture of semiconductor device
JP3038857B2 (en) Method for manufacturing semiconductor device
JP2001250945A (en) Semiconductor device and its manufacturing method
JPH1131814A (en) Manufacture of semiconductor device
JPH0221648A (en) Semiconductor device and manufacture thereof
JPH05121432A (en) Semiconductor integrated circuit element
JPH1126766A (en) Mos field effect transistor and manufacture thereof
JPH0730114A (en) Manufacture of mos transistor
JPS63217655A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000725