JPH05175152A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05175152A
JPH05175152A JP33739891A JP33739891A JPH05175152A JP H05175152 A JPH05175152 A JP H05175152A JP 33739891 A JP33739891 A JP 33739891A JP 33739891 A JP33739891 A JP 33739891A JP H05175152 A JPH05175152 A JP H05175152A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
resist film
beam current
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33739891A
Other languages
Japanese (ja)
Inventor
Osamu Imai
治 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP33739891A priority Critical patent/JPH05175152A/en
Publication of JPH05175152A publication Critical patent/JPH05175152A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an ion implanting method by which the occurrence of charge-up phenomena on the surface of a semiconductor substrate can be reduced at the time of implanting ions into the substrate in a semiconductor manufacturing process. CONSTITUTION:The title manufacturing method includes a process for forming openings 3 through a resist film 2 in the ion implanting areas of the substrate 1 after coating the substrate 1 with the film 2, process for performing first-stage implantation of impurity ions 4 into the substrate 1 by using the film 2 as a mask, with the beam current used for the implantation being reduced in amount from that of a prescribed beam current used for forming a diffusion layer, process for performing second-stage ion implantation of the impurity ions 4 into the substrate 1 by using the prescribed beam current for forming the diffusion layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体製造プロセスに
おけるイオン注入法に関し,特にイオン注入時の半導体
基板表面のチャージアップ現象の軽減に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implantation method in a semiconductor manufacturing process, and more particularly to reducing a charge-up phenomenon on a semiconductor substrate surface during ion implantation.

【0002】近年,イオン注入時のチャージアップを軽
減させる為,半導体基板のレジスト膜表面上に蓄積され
た電荷,すなわち,正電荷を電気的に中和させることが
要求されている。
In recent years, in order to reduce charge-up at the time of ion implantation, it has been required to electrically neutralize charges accumulated on the resist film surface of a semiconductor substrate, that is, positive charges.

【0003】そのために,負電荷(電子)を作り出し,
強制的に中和させる必要がある。
Therefore, a negative charge (electron) is created,
It is necessary to force neutralization.

【0004】[0004]

【従来の技術】図3はイオン注入装置ビーム経路図で示
した説明図である。図において,11はイオンソース, 12
はビーム引出部, 13はビーム加速部, 14はアナライザマ
グネット, 15はスキャン, 16はアングルコレクタ, 17は
電子発生装置, 18はフィラメント, 19は反射板, 20はフ
ァラデーカップ, 21はビームゲート, 22は基板, 23はデ
スク, 24は回転軸である。
2. Description of the Related Art FIG. 3 is an explanatory view showing a beam path diagram of an ion implantation apparatus. In the figure, 11 is an ion source, 12
Is a beam extraction part, 13 is a beam acceleration part, 14 is an analyzer magnet, 15 is a scan, 16 is an angle collector, 17 is an electron generator, 18 is a filament, 19 is a reflector, 20 is a Faraday cup, 21 is a beam gate, 22 is a substrate, 23 is a desk, and 24 is a rotation axis.

【0005】従来,チャージアップ現象の軽減方法とし
ては,図3のイオン注入装置ビーム経路図に示すよう
に,イオンビームの経路内,半導体基板22の直前に電子
発生装置17を設けて,タングステン(W) やモリブデン(M
o)製のフィラメント18を加熱して電子を発生し,これを
アルミニウム(Al)製等の反射板19で散乱させて, 半導体
基板22上に入射し, 半導体基板22上のレジスト膜等の表
面に帯電している+チャージの電子による強制中和を行
っていた。
Conventionally, as a method of reducing the charge-up phenomenon, as shown in the beam path diagram of the ion implantation apparatus of FIG. 3, an electron generator 17 is provided in the path of the ion beam just before the semiconductor substrate 22, and tungsten ( W) and molybdenum (M
The filament 18 made of o) is heated to generate electrons, which are scattered by the reflector 19 made of aluminum (Al) or the like and are incident on the semiconductor substrate 22 and the surface of the resist film or the like on the semiconductor substrate 22. It was carrying out the forced neutralization by the electron of the + charge which was charged to.

【0006】ところが,電子を発生させる際に,その電
子発生装置17のフィラメント18を構成しているWやMo等
の金属物質,すなわち,半導体基板22に対する汚染物を
も同時にイオン化されてしまうという現象が生ずる。
However, when electrons are generated, a metallic substance such as W or Mo forming the filament 18 of the electron generator 17, that is, a contaminant to the semiconductor substrate 22 is also ionized at the same time. Occurs.

【0007】[0007]

【発明が解決しようとする課題】従って,半導体基板の
表面に数多くの汚染物質が付着し,半導体基板の金属汚
染といった問題が生じていた。
Therefore, many pollutants adhere to the surface of the semiconductor substrate, causing a problem of metal contamination of the semiconductor substrate.

【0008】本発明は, 以上の点を鑑み,半導体基板の
金属汚染をなくすとともに,チャージアップ現象を軽減
することを目的とする。
In view of the above points, it is an object of the present invention to eliminate metal contamination of a semiconductor substrate and reduce the charge-up phenomenon.

【0009】[0009]

【課題を解決するための手段】図1は本発明の原理説明
図である。図において,1は半導体基板,2はレジスト
膜,3は開口部,4は不純物イオン,5はフィールド酸
化膜,6はゲート酸化膜,7はゲート電極,8はサイド
ウォール,9はLDD層,10はソース・ドレイン層であ
る。
FIG. 1 illustrates the principle of the present invention. In the figure, 1 is a semiconductor substrate, 2 is a resist film, 3 is an opening, 4 is an impurity ion, 5 is a field oxide film, 6 is a gate oxide film, 7 is a gate electrode, 8 is a sidewall, 9 is an LDD layer, Reference numeral 10 is a source / drain layer.

【0010】上記の問題点を解決する手段としては,チ
ャージアップ現象の原因であるビーム電流を,すぐに増
やさず,段階的に増加させると良い。そのため,イオン
注入を行う際に,2ステップに分けてビーム電流を増加
させる。
As a means for solving the above problems, it is preferable to increase the beam current, which is the cause of the charge-up phenomenon, in steps rather than immediately. Therefore, when ion implantation is performed, the beam current is increased in two steps.

【0011】第1のステップでビーム電流をレジスト膜
の表面に+チャージが溜まらないよう低めにして,レジ
スト膜の表面を徐々に炭化させ,導電性を増す。次に,
第2のステップでビーム電流を正常にして,必要なイオ
ン量を注入する。
In the first step, the beam current is lowered so that + charge is not accumulated on the surface of the resist film, the surface of the resist film is gradually carbonized, and the conductivity is increased. next,
In the second step, the beam current is made normal and the necessary amount of ions is injected.

【0012】すなわち,本発明の目的は,図1(a)に
示すように,半導体基板1上にレジスト膜2を被覆し,
該半導体基板1のイオン注入領域上に, 該レジスト膜2
の開口部3を形成する工程と,図1(b)に示すよう
に, 該レジスト膜2をマスクとして, 該半導体基板1
内に不純物イオン4を,拡散層形成のためのビーム電流
より少なくして, 第1ステップの注入を行う工程と,次
に, 図1(c)に示すように,該レジスト膜2をマスク
として, 該半導体基板1内に不純物イオン4を拡散層形
成用のため, 第1ステップよりビーム電流を大きくし
て,第2ステップの注入を行う工程とを含むことにより
達成される。
That is, the object of the present invention is to coat a semiconductor substrate 1 with a resist film 2 as shown in FIG.
The resist film 2 is formed on the ion implantation region of the semiconductor substrate 1.
The step of forming the opening 3 of the semiconductor substrate 1 and the semiconductor substrate 1 using the resist film 2 as a mask as shown in FIG.
Impurity ions 4 are made less than the beam current for forming the diffusion layer, and the first step of implanting is performed. Next, as shown in FIG. 1C, the resist film 2 is used as a mask. In order to form the diffusion layer of the impurity ions 4 in the semiconductor substrate 1, the step of increasing the beam current from the first step and performing the implantation of the second step is achieved.

【0013】[0013]

【作用】本発明では,上記のように,イオン注入の1ス
テップでレジスト膜表面を炭化させて導電性を向上さ
せ,2ステップで注入されるイオンにより蓄積されるよ
うとする電荷をアースして,チャージアップを軽減す
る。
According to the present invention, as described above, the surface of the resist film is carbonized in one step of ion implantation to improve the conductivity, and the charges to be accumulated by the ions implanted in two steps are grounded. , Reduce charge-up.

【0014】また,本発明によれば,電子発生装置が不
要となるため,半導体の金属汚染をなくすとともに,チ
ャージアップ現象を軽減させることができる。
Further, according to the present invention, the electron generator is not required, so that the metal contamination of the semiconductor can be eliminated and the charge-up phenomenon can be reduced.

【0015】[0015]

【実施例】図1は本発明の原理説明図兼一実施例の工程
順模式断面図, 図2は本発明と従来例における酸化膜破
壊特性歩留り分布図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic cross-sectional view of the principle of the present invention and steps in one embodiment, and FIG. 2 is a yield distribution diagram of oxide film breakdown characteristics in the present invention and a conventional example.

【0016】本発明の一実施例について, 図1により説
明する。本発明の条件の歩留りについては図2Cに示
す。図1(a)に示すように,MOSトランジスタのL
DD層まで形成したSiウエハからなる半導体基板1上
に,イオン注入時のマスクとなるレジスト膜2をスビン
ナーにより 8,000Åの厚さに塗布する。
An embodiment of the present invention will be described with reference to FIG. The yield under the conditions of the present invention is shown in FIG. 2C. As shown in FIG. 1A, the MOS transistor L
A resist film 2 serving as a mask for ion implantation is applied on a semiconductor substrate 1 made of a Si wafer having a DD layer formed thereon by a Sbinner to a thickness of 8,000Å.

【0017】フォトリソグラフィ法により, レジスト膜
2をパターニングして,半導体基板1のソース・ドレイ
ン形成領域に開口部3を形成する。図1(b)に示すよ
うに,レジスト膜をマスクとして,半導体基板1のソー
ス・ドレイン層10の形成領域に不純物イオン4として,
砒素イオン(As + ) を先ず第1ステップのイオン注入と
して, ビーム電流 300μA,加速電圧70KeV,ドーズ量2x
1015/cm2 で注入し, レジスト膜の表面を炭化する。
The resist film 2 is patterned by photolithography to form openings 3 in the source / drain formation regions of the semiconductor substrate 1. As shown in FIG. 1B, using the resist film as a mask, as impurity ions 4 in the formation region of the source / drain layer 10 of the semiconductor substrate 1,
Arsenic ions (As + ) are used as the first step of ion implantation, the beam current is 300 μA, the acceleration voltage is 70 KeV, and the dose is 2x.
Implant at 10 15 / cm 2 to carbonize the surface of the resist film.

【0018】その後,図1(c)に示すように,As
+ を, ビーム電流3.0 mA,加速電圧 70KeV,ドーズ量2x1
015/cm2で注入し, 窒素(N2)雰囲気中, 1,050 ℃で30秒
間熱処理して, As+ を活性化して, ソース・ドレイン層
10を形成する。
After that, as shown in FIG.
+ , Beam current 3.0 mA, accelerating voltage 70 KeV, dose 2x1
Implantation at 0 15 / cm 2 and heat treatment at 1,050 ℃ for 30 seconds in a nitrogen (N 2 ) atmosphere to activate As + ,
Form 10.

【0019】比較のために, 従来の方法, 即ち, As+
ビーム電流3.0mA, 加速電圧70KeV,ドーズ量4x1015/cm2
で注入し, ソース・ドレイン層を形成した場合(図2
D),及び,従来例と本発明の中間の条件(図2Aおよ
びB)で2ステップのイオン注入を行った場合の酸化膜
破壊の特性歩留りを比較した。
For comparison, a conventional method is used, that is, As + is used with a beam current of 3.0 mA, an acceleration voltage of 70 KeV, and a dose of 4 × 10 15 / cm 2.
When the source / drain layers are formed by implanting (Fig. 2
D), and the characteristic yield of oxide film destruction when two-step ion implantation was performed under the intermediate condition between the conventional example and the present invention (FIGS. 2A and 2B).

【0020】その結果, 特性歩留りを比較すると, テス
トした半導体基板上のMOSトランジスタの酸化膜破壊
の歩留りは,図2に示すように,従来例(図2D)で8
〜25%の歩留りであったものが,本発明(図2C)では
55%〜95%の歩留りと,歩留りが4〜5倍に向上した。
As a result, comparing the characteristic yields, as shown in FIG. 2, the yield of the oxide film destruction of the MOS transistor on the tested semiconductor substrate is 8 in the conventional example (FIG. 2D).
In the present invention (Fig. 2C), the yield was ~ 25%.
The yield was 55% to 95%, and the yield was improved 4 to 5 times.

【0021】また,WやMo等のMOSデバイスに対する
金属汚染の調査でも,従来方法で微量に検出されたWや
Moの金属が,本発明の方法では全く検出されなかっ
た。
Also, in the investigation of metal contamination of MOS devices such as W and Mo, the metals of W and Mo, which were detected in trace amounts by the conventional method, were not detected by the method of the present invention.

【0022】[0022]

【発明の効果】本発明によれば,以上説明したように,
金属汚染をなくし,かつ,チャージアップ現象を軽減す
る効果がある。
According to the present invention, as described above,
It has the effects of eliminating metal contamination and reducing the charge-up phenomenon.

【0023】また,電子発生装置を持たないために,ネ
ガティブチャージアップ現象も起こらず,デバイスの品
質,並びに,歩留り向上に大きく寄与する。
Further, since the electron generator is not provided, the negative charge-up phenomenon does not occur, which greatly contributes to the device quality and the yield improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 本発明と従来例における酸化膜破壊特性歩留
り分布図
FIG. 2 is a yield distribution diagram of oxide film breakdown characteristics in the present invention and a conventional example.

【図3】 イオン注入装置ビーム経路図[Fig. 3] Beam path diagram of the ion implanter

【符号の説明】[Explanation of symbols]

1 半導体基板 2 レジスト膜 3 開口部 4 不純物イオン 5 フィールド酸化膜 6 ゲート酸化膜 7 ゲート電極 8 サイドウォール 9 LDD層 10 ソース・ドレイン層 11 イオンソース 12 ビーム引出部 13 ビーム加速部 14 アナライザマグネット 15 スキャン 16 アングルコレクタ 17 電子発生装置 18 フィラメント 19 反射板 20 ファラデーカップ 21 ビームゲート 22 基板 23 デスク 24 回転軸 1 Semiconductor Substrate 2 Resist Film 3 Opening 4 Impurity Ion 5 Field Oxide 6 Gate Oxide 7 Gate Electrode 8 Sidewall 9 LDD Layer 10 Source / Drain Layer 11 Ion Source 12 Beam Extraction 13 Beam Accelerator 14 Analyzer Magnet 15 Scan 16 Angle collector 17 Electron generator 18 Filament 19 Reflector 20 Faraday cup 21 Beam gate 22 Substrate 23 Desk 24 Rotation axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板(1) 上にレジスト膜(2) を被
覆し, 該半導体基板(1) のイオン注入領域上に, 該レジ
スト膜(2) の開口部(3) を形成する工程と, 該レジスト膜(2) をマスクとして, 該半導体基板(1) 内
に不純物イオン(4) を,拡散層形成のための所定のビー
ム電流より少なくして, 第1ステップの注入を行う工程
と, 次に, 該レジスト膜(2) をマスクとして, 該半導体基板
(1) 内に不純物イオン(4) を拡散層形成のため, 前記所
定のビーム電流により,第2ステップの注入を行う工程
とを含むことを特徴とする半導体装置の製造方法。
1. A process of coating a resist film (2) on a semiconductor substrate (1) and forming an opening (3) of the resist film (2) on an ion implantation region of the semiconductor substrate (1). And a step of performing the first step implantation by using the resist film (2) as a mask to reduce the amount of impurity ions (4) in the semiconductor substrate (1) below a predetermined beam current for forming a diffusion layer. Then, using the resist film (2) as a mask, the semiconductor substrate
(1) A step of implanting the impurity ions (4) in the second step with the predetermined beam current for forming a diffusion layer in the semiconductor device manufacturing method.
JP33739891A 1991-12-20 1991-12-20 Manufacture of semiconductor device Withdrawn JPH05175152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33739891A JPH05175152A (en) 1991-12-20 1991-12-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33739891A JPH05175152A (en) 1991-12-20 1991-12-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05175152A true JPH05175152A (en) 1993-07-13

Family

ID=18308261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33739891A Withdrawn JPH05175152A (en) 1991-12-20 1991-12-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05175152A (en)

Similar Documents

Publication Publication Date Title
JPH05198523A (en) Ion implantation method and ion implantation device
US5286978A (en) Method of removing electric charge accumulated on a semiconductor substrate in ion implantation
JPH05175152A (en) Manufacture of semiconductor device
Kubena et al. Si MOSFET fabrication using focused ion beams
US6982215B1 (en) N type impurity doping using implantation of P2+ ions or As2+ Ions
JP2616423B2 (en) Ion implanter
JP3339516B2 (en) Ion implantation method and ion implantation apparatus
KR950002182B1 (en) Method of removing electric charge
JPS6358824A (en) Manufacture of semiconductor device
JP3410946B2 (en) Ion implantation apparatus and method of manufacturing semiconductor device
JPH11307038A (en) Ion implanter with impurity blocking device
Gao et al. The modification of SIMOX (separated by implantation of oxygen) material to improve the total-dose irradiation hardness
JPS6091630A (en) Impurity difusing process
JPS60195928A (en) Manufacture of semiconductor device
Bala et al. Ion implantation issues in microelectronic device manufacturing
JPH01146240A (en) Ion implanting apparatus
JPH10270375A (en) Ion implantation method and method for forming mos type transistor using it
JPH02291173A (en) Manufacture of mos transistor
JPS62174915A (en) Manufacture of semiconductor device
JPH0758053A (en) Anti-static countermeasure during ion implantation
JPH01108781A (en) Manufacture of semiconductor radiation detector
JPH0896744A (en) Ion implanting device
JPH0559586B2 (en)
JPH0325929A (en) Manufacture of semiconductor device
JPH03156918A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311