JPH05174850A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH05174850A
JPH05174850A JP3338570A JP33857091A JPH05174850A JP H05174850 A JPH05174850 A JP H05174850A JP 3338570 A JP3338570 A JP 3338570A JP 33857091 A JP33857091 A JP 33857091A JP H05174850 A JPH05174850 A JP H05174850A
Authority
JP
Japan
Prior art keywords
fuel
solid electrolyte
electrode
oxidant
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3338570A
Other languages
Japanese (ja)
Inventor
Shunsuke Taniguchi
俊輔 谷口
Noboru Ishida
登 石田
Yukinori Akiyama
幸徳 秋山
Shuzo Murakami
修三 村上
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3338570A priority Critical patent/JPH05174850A/en
Publication of JPH05174850A publication Critical patent/JPH05174850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a solid electrolyte type fuel cell which is low in reaction resistance and high in output density. CONSTITUTION:In a solid electrolyte type fuel cell where a plural number of cells 4 each of which has a fuel electrode 2 and an oxidant electrode 3 while being faced to each other via a solid electrolytic plate 1, and separators 5 are interchangeably laminated so as to be formed into a stack, a great number of fuel gas passages 31 and oxidant gas passages 21 are provided in the laminated direction of the aforesaid stack. And fuel gas seal sections 1a and 5a preventing fuel gas from coming in the oxidant electrodes 3 are provided for the circumferential surfaces of the fuel gas passages 31 of the aforesaid solid electrolytic plates 1 and of the separators 5, and oxidant gas sealing sections 1b and 5b preventing oxidant gas from coming in the fuel electrodes 2, are meanwhile, provided for the circumferential surfaces of the oxidant gas passages 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池に
関し、特にイオン導電性セラミックスを電界質とする固
体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell using an ion conductive ceramic as an electrolyte.

【0002】[0002]

【従来の技術】固体電解質型燃料電池(以下、「SOF
C」と称する)はリン酸型燃料電池,溶融炭酸塩型燃料
電池に続く完全固体化した第三世代の燃料電池として注
目され、各分野で研究されている。特に、イオン導電性
セラミックスを電解質とするSOFCは、電解質損失の
問題を完全に解消することができると共に、作動温度が
高温(約1000℃)で発電効率も従来型電池に比べて
高いという利点がある。
2. Description of the Related Art Solid oxide fuel cells (hereinafter referred to as "SOF
(Hereinafter referred to as "C") has attracted attention as a completely solidified third generation fuel cell following a phosphoric acid fuel cell and a molten carbonate fuel cell, and has been studied in various fields. In particular, the SOFC using ion conductive ceramics as an electrolyte has the advantages that it can completely solve the problem of electrolyte loss, and that it has a high operating temperature (about 1000 ° C) and higher power generation efficiency than conventional batteries. is there.

【0003】上記SOFCとしては、例えば、図6に示
すような、電界質板11を介して燃料極13と酸化剤極
12とが相対向するセル14と、両面に燃料ガス通路1
3a及び酸化剤ガス通路12aを有するセパレータ15
とを積層させた平板型SOFCが用いられている。
The SOFC is, for example, as shown in FIG. 6, a cell 14 in which a fuel electrode 13 and an oxidant electrode 12 face each other with an electrolyte plate 11 in between, and a fuel gas passage 1 on both sides.
3a and separator 15 having oxidant gas passage 12a
A flat plate type SOFC in which and are laminated is used.

【0004】[0004]

【発明が解決しようとする課題】ところが、図6に示す
従来の電池では、一方向にのみ延設される多数の通路1
2a・13aが電極面と平行に設けられているため、通
路12a・13aのガス供給側とガス排出側との間のガ
ス密度に差が生じる等の問題がある。したがって、電池
面内にガスを均一に供給することが困難である。この場
合、ガスの利用率を上げると電池面内にガスが供給され
ない(ガスが行き届かない)部分が増大するので電極反
応の有効面積が減少する。その結果、電池の反応抵抗が
大きくなるという課題を有する。
However, in the conventional battery shown in FIG. 6, a large number of passages 1 extending only in one direction are provided.
Since 2a and 13a are provided in parallel with the electrode surface, there is a problem such as a difference in gas density between the gas supply side and the gas discharge side of the passages 12a and 13a. Therefore, it is difficult to uniformly supply the gas within the cell surface. In this case, when the gas utilization rate is increased, the area where the gas is not supplied (where the gas does not reach) increases in the cell surface, so the effective area of the electrode reaction decreases. As a result, there is a problem that the reaction resistance of the battery increases.

【0005】加えて、セパレータ15の両面に通路12
a・13aが形成されているためセパレータ15の厚み
が大きくなる。その結果、セル14とセル14との間隔
が大きくなるので、電池の出力密度が小さくなるという
課題も有する。本発明は上記課題に鑑み、反応抵抗が小
さく、且つ、出力密度が高い固体電解質型燃料電池を提
供することを目的とする。
In addition, the passages 12 are formed on both sides of the separator 15.
Since the a 13a is formed, the thickness of the separator 15 is increased. As a result, the distance between the cells 14 becomes large, which causes a problem that the power density of the battery becomes small. In view of the above problems, it is an object of the present invention to provide a solid oxide fuel cell having a low reaction resistance and a high output density.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するため、固体電解質板を介して燃料極と酸化剤極とが
相対向するセルと、セパレータとを交互に複数個積層さ
せてスタックを構成する固体電解質型燃料電池におい
て、上記スタックの積層方向には燃料ガス通路及び酸化
剤ガス通路が多数設けられ、且つ、上記固体電解質板及
びセパレータの燃料ガス通路の周面には酸化剤極への燃
料ガスの侵入を防止する燃料ガスシール部が設けられる
一方、酸化剤ガス通路の周面には燃料極への酸化剤ガス
の侵入を防止する酸化剤ガスシール部が設けられること
を特徴とする。
In order to solve the above problems, the present invention is a stack in which a plurality of separators and cells in which a fuel electrode and an oxidizer electrode face each other through a solid electrolyte plate are alternately laminated. In the solid oxide fuel cell constituting the above, a large number of fuel gas passages and oxidant gas passages are provided in the stacking direction of the stack, and an oxidant electrode is provided on the peripheral surfaces of the fuel gas passages of the solid electrolyte plate and the separator. While a fuel gas seal portion is provided to prevent the entry of fuel gas into the fuel cell, an oxidant gas seal portion is provided on the peripheral surface of the oxidant gas passage to prevent entry of the oxidant gas into the fuel electrode. And

【0007】[0007]

【作用】上記構成の如く、スタックの積層方向に燃料ガ
ス通路及び酸化剤ガス通路が多数設けられていれば、こ
れら通路を介して各電極にガスを略均一に供給すること
ができる。その結果、電池面内にガスが略均一に供給さ
れるので、電極反応の有効面積が増大し電池の反応抵抗
が小さくなる。
As described above, if a large number of fuel gas passages and oxidant gas passages are provided in the stacking direction of the stack, gas can be supplied to each electrode substantially uniformly through these passages. As a result, the gas is supplied substantially uniformly within the cell surface, so that the effective area of the electrode reaction increases and the reaction resistance of the cell decreases.

【0008】更に、セパレータに燃料ガス通路及び酸化
剤ガス通路を形成する必要がないのでセパレータの厚さ
を薄くすることができる。その結果、セルとセルとの間
隔を縮めることができるので、電池の出力密度が向上す
る。加えて、各通路にはそれぞれシール部が設けられて
いるので対極へのガスの侵入を防止することができる。
Further, since it is not necessary to form the fuel gas passage and the oxidant gas passage in the separator, the thickness of the separator can be reduced. As a result, the distance between cells can be shortened, and the power density of the battery is improved. In addition, since each passage is provided with a seal portion, it is possible to prevent gas from entering the counter electrode.

【0009】[0009]

【実施例】本発明の一実施例を図1〜図5に基づいて以
下に説明する。図1は本発明の一実施例に係る固体電解
質型燃料電池の概略断面図であり、固体電解質板1を介
して多孔質の酸化剤極2と同じく多孔質の燃料極3とが
配されたセル4と、セパレータ5とが交互に複数個積層
させて成るスタックの積層方向には酸化剤ガス通路21
及び燃料ガス通路31が多数設けられている。図中、1
b・5bは燃料極3への酸化剤ガスの侵入を防止する酸
化剤ガスシール部であり、1a・5aは酸化剤極2への
燃料ガスの侵入を防止する燃料ガスシール部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell according to an embodiment of the present invention, in which a porous oxidizer electrode 2 and a porous fuel electrode 3 are arranged via a solid electrolyte plate 1. An oxidant gas passage 21 is formed in the stacking direction of a stack formed by alternately stacking a plurality of cells 4 and separators 5.
Also, a large number of fuel gas passages 31 are provided. 1 in the figure
Numerals b and 5b are oxidant gas seal portions that prevent the oxidant gas from entering the fuel electrode 3, and numerals 1a and 5a are fuel gas seal portions that prevent the fuel gas from entering the oxidant electrode 2.

【0010】上記固体電解質板1は、超塑性のイオン導
電性セラミックスから成る緻密な3mol %Y2 3 添加
部分安定化ZrO2 板(大きさ100mm×100mm,厚
さ200μm)を用いた。ここで、上記構造の固体電解
質板1を、以下のようにして作製した。先ず、酸化剤極
2の原料としてLa0.9 Sr0.1 MnO3 粉末(平均粒
径2μm)を用意し、テルピネオール溶媒を用いてスラ
リー化した。一方、燃料極3の原料としてNiO粉末
(平均粒径2μm)と8mol %Y2 3 添加部分安定化
ZrO2 粉末(平均粒径1μm)とを用意し、これらの
混合物をテルピネオール溶媒を用いてスラリー化した。
As the solid electrolyte plate 1, a dense 3 mol% Y 2 O 3 -added partially stabilized ZrO 2 plate (size 100 mm × 100 mm, thickness 200 μm) made of superplastic ion conductive ceramics was used. Here, the solid electrolyte plate 1 having the above structure was produced as follows. First, La 0.9 Sr 0.1 MnO 3 powder (average particle size 2 μm) was prepared as a raw material for the oxidizer electrode 2, and was slurried using a terpineol solvent. On the other hand, as raw materials for the fuel electrode 3, NiO powder (average particle size 2 μm) and 8 mol% Y 2 O 3 added partially stabilized ZrO 2 powder (average particle size 1 μm) were prepared, and a mixture of these was used with a terpineol solvent. It was made into a slurry.

【0011】次に、上記固体電解質板1の一方の面に図
2に示すような円形のマスク1c(φA=2mm)を全面
にわたって複数個配した後(円と円との間隔d:d=8
mm)、酸化剤極用のスラリーを厚さ220μmとなるよ
うに塗布した。しかる後、前記固体電解質板1の他方の
面に前記酸化剤極と同様にマスクを配して燃料極用のス
ラリーを厚さ220μmとなるように塗布した。
Next, after a plurality of circular masks 1c (φA = 2 mm) as shown in FIG. 2 are arranged on one surface of the solid electrolyte plate 1 (distance between circles d: d = 8
mm), and a slurry for an oxidizer electrode was applied to a thickness of 220 μm. Then, a mask was placed on the other surface of the solid electrolyte plate 1 in the same manner as the oxidizer electrode, and the slurry for the fuel electrode was applied to a thickness of 220 μm.

【0012】続いて、両面に酸化剤極2と燃料極3とを
塗布した固体電解質板1を超塑性を示す温度(1150
℃)まで昇温した後、炭化ケイ素から成る圧縮用の型を
用いて、荷重が10g/cm2 から100g/cm2 になる
まで10g/cm2 ・sの昇圧速度で100秒間圧縮を行
った。この圧縮によって、図3に示すような貫通穴(φ
C=1mm)を有する凸部1aと凹部1b(凸部の高さ=
凹部の深さφB:φB=400μm)とが全面にわたっ
て多数形成された固体電解質板1を作製した。
Subsequently, the solid electrolyte plate 1 having both surfaces coated with the oxidizer electrode 2 and the fuel electrode 3 has a temperature (1150) at which it exhibits superplasticity.
C.) and then using a compression mold made of silicon carbide, compression was performed for 100 seconds at a pressurization rate of 10 g / cm 2 · s until the load changed from 10 g / cm 2 to 100 g / cm 2 . .. By this compression, the through hole (φ
Convex portion 1a and concave portion 1b having C = 1 mm (height of convex portion =
A large number of concave portions having a depth φB: φB = 400 μm) were formed over the entire surface to prepare a solid electrolyte plate 1.

【0013】一方、上記構造のセパレータ5を以下のよ
うにして作製した。先ず、耐熱合金又は超塑性の電子導
電性セラミックスから成るセパレータ5(大きさ100
mm×100mm,厚さ200μm)を用意し、上記固体電
解質板1の圧縮の際に用いたのと略同様の圧縮用の型を
用いて同様の条件でセパレータ5の圧縮を行った。この
圧縮によって、図4に示すような貫通穴(φE=1mm,
φF<φA)を有する凸部5aと凹部5b(凸部の高さ
=凹部の深さφD:φD=200μm)とが全面にわた
って多数形成されたセパレータ5を作製した。
On the other hand, the separator 5 having the above structure was produced as follows. First, a separator 5 (size 100) made of a heat-resistant alloy or superplastic electronically conductive ceramics is used.
mm × 100 mm, thickness 200 μm), and the separator 5 was compressed under the same conditions by using a compression mold that was substantially the same as that used when the solid electrolyte plate 1 was compressed. By this compression, the through hole (φE = 1mm,
A separator 5 was produced in which a large number of convex portions 5a having φF <φA and concave portions 5b (height of convex portions = depth of concave portions φD: φD = 200 μm) were formed over the entire surface.

【0014】上記の如く作製した図3に示すセル4と、
図4に示すセパレータ5とを交互に積層させてスタック
を構成した後、スタック全体を上下から締め付けて図1
に示すような電池を作製した。この締め付けにより固体
電解質板1の凸部1a及凹部1bとセパレータ5の凸部
5a及凹部5bとがそれぞれ接触するので、この接触面
によって酸化剤極2と燃料極3との間のガスのシールを
行うことができる。加えて、電極2・3とセパレータ5
との接触が向上することになる。
The cell 4 shown in FIG. 3 manufactured as described above,
1 is formed by alternately stacking the separator 5 shown in FIG. 4 to form a stack, and then tightening the entire stack from above and below.
A battery as shown in was prepared. By this tightening, the convex portion 1a and the concave portion 1b of the solid electrolyte plate 1 and the convex portion 5a and the concave portion 5b of the separator 5 come into contact with each other, so that the contact surface seals the gas between the oxidizer electrode 2 and the fuel electrode 3. It can be performed. In addition, electrodes 2 and 3 and separator 5
Contact with will be improved.

【0015】以上の如く構成された固体電解質型燃料電
池におけるガスの流れについて図1を用いて説明する。
先ず、酸化剤ガス供給口から供給された空気は、セル4
の積層方向に形成される酸化剤ガス通路21を、図1に
おいて下から上に流れる間に各酸化剤極2に空気を供給
する。一方、燃料ガス供給口から供給された水素ガス
は、セル4の積層方向に延設される燃料ガス通路31
を、図1において上から下に流れる間に各燃料極3に水
素ガスを供給する。そして、各電極2・3に水素ガス及
び空気が供給されると各セル4で発電が行われる。この
発電の際に発生する水蒸気は固体電解質板1の積層面に
沿って外部に排出される。
The gas flow in the solid oxide fuel cell configured as described above will be described with reference to FIG.
First, the air supplied from the oxidant gas supply port is supplied to the cell 4
Air is supplied to each oxidant electrode 2 while flowing from the bottom to the top in FIG. 1 through the oxidant gas passage 21 formed in the stacking direction of. On the other hand, the hydrogen gas supplied from the fuel gas supply port is supplied to the fuel gas passage 31 extending in the stacking direction of the cells 4.
1, hydrogen gas is supplied to each fuel electrode 3 while flowing from top to bottom in FIG. When hydrogen gas and air are supplied to the electrodes 2 and 3, power is generated in each cell 4. The water vapor generated during this power generation is discharged to the outside along the laminated surface of the solid electrolyte plate 1.

【0016】このようにして作製したスタックを、以下
(A)スタックと称する。 〔比較例〕図6に示すように、一方向にのみ延設される
多数の通路12a・13aが電極面と平行して設けられ
た構造のスタックを用いた。このような構造のスタック
を、以下(X)スタックと称する。 〔実験〕本発明の(A)スタックと比較例の(X)スタ
ックとを用いて、電流密度と平均セル電圧との関係を調
べたので、その結果を図5に示す。
The stack thus manufactured is hereinafter referred to as (A) stack. [Comparative Example] As shown in FIG. 6, a stack having a structure in which a large number of passages 12a and 13a extending only in one direction were provided in parallel with the electrode surface was used. The stack having such a structure is hereinafter referred to as (X) stack. [Experiment] The relationship between the current density and the average cell voltage was investigated using the (A) stack of the present invention and the (X) stack of the comparative example. The results are shown in FIG.

【0017】図5から明らかなように、本発明の(A)
スタックは比較例の(X)スタックに比べ平均セル電圧
が向上していることがわかる。したがって、本発明の
(A)スタックでは、電池面内へガスを略均一に供給で
きることが分かる。また、本発明の(A)スタックは、
比較例の(X)スタックに比べ電池の高さが約5分の1
となり、出力密度が約6倍に向上することも実験により
確認している。これは、本発明の(A)スタックではセ
パレータ5の厚さが薄いため、セル4とセル4との間隔
が縮まることによって出力密度が向上することに起因す
ると思われる。
As is apparent from FIG. 5, (A) of the present invention.
It can be seen that the stack has an improved average cell voltage as compared to the (X) stack of the comparative example. Therefore, it is understood that the stack (A) of the present invention can supply the gas substantially uniformly into the cell surface. Further, the (A) stack of the present invention is
Battery height is about 1/5 compared to the (X) stack of the comparative example
Therefore, it has been confirmed by experiments that the power density is improved about 6 times. It is considered that this is because the separator 5 in the stack (A) of the present invention has a small thickness, and thus the output density is improved by reducing the distance between the cells 4.

【0018】上記実施例によれば、固体電解質板1とし
て超塑性セラミックスを用いているので、比較的低い応
力・温度で成型加工することができ、且つ、緻密な焼結
体を自由自在に変形することができる。したがって、グ
リーンテープの状態で成型して焼結させたセラミックス
よりも寸法精度が高く加工が容易である。 〔その他の事項〕 電極2・3の作製方法は問わないが、例えば、予め
気孔率の大きな電極2・3を用意し、この電極2・3を
固体電解質板1に少し厚めに塗布した後、電池運転時に
スタックを締め付けることによって、所望の気孔率及び
厚さを有する電極2・3を作製することが好ましい。こ
のように電極2・3を作製すれば、電極2・3とセパレ
ータ5との間の接触を良くすることができ、且つ、ガス
透過性を向上させることができる。 固体電解質板1の厚は100μm〜500μmのも
のが好ましく、セパレータ5の厚みは10μm〜5mmの
ものが好ましい。 固体電解質板1の凸部1aの高さ(又は凹部1bの
深さ)φBは、φB=200μm〜500μmのものが
好ましい。但し、セパレータ5の凸部5aの高さ(又は
凹部5bの深さ)φDよりも多少高く(又は深く)しな
ければならない。また、固体電解質板1の凸部1aの貫
通穴の下端開口部(又は凹部1bの貫通穴の上端開口
部)の直径φAは、セパレータ5の凸部5aの貫通穴の
下端開口部(又は凹部5bの貫通穴の上端開口部)の直
径φFよりも多少大きくしなければならない。 固体電解質板1の凸部1aの貫通穴の上端開口部
(又は凹部1bの貫通穴の下端開口部)の直径φCは、
φC=0.5mm〜5mmのものが好ましい。但し、セパレー
タ5の凸部5aの貫通穴の上端開口部(又は凹部5bの
貫通穴の下端開口部)の直径φEよりも多少小さくしな
ければならない。
According to the above-mentioned embodiment, since superplastic ceramics is used as the solid electrolyte plate 1, it is possible to perform molding at a relatively low stress and temperature, and it is possible to freely deform a dense sintered body. can do. Therefore, the dimensional accuracy is higher and the processing is easier than the ceramics molded and sintered in the state of the green tape. [Other Matters] The method for producing the electrodes 2 and 3 is not limited, but, for example, after preparing the electrodes 2 and 3 having a large porosity in advance and applying the electrodes 2 and 3 to the solid electrolyte plate 1 with a slightly thicker thickness, It is preferable to produce the electrodes 2.3 having the desired porosity and thickness by clamping the stack during battery operation. If the electrodes 2 and 3 are produced in this way, the contact between the electrodes 2 and 3 and the separator 5 can be improved, and the gas permeability can be improved. The thickness of the solid electrolyte plate 1 is preferably 100 μm to 500 μm, and the thickness of the separator 5 is preferably 10 μm to 5 mm. The height φB of the convex portion 1a (or the depth of the concave portion 1b) φB of the solid electrolyte plate 1 is preferably φB = 200 μm to 500 μm. However, it must be slightly higher (or deeper) than the height φD (or the depth of the recess 5b) φD of the separator 5. In addition, the diameter φA of the lower end opening of the through hole of the convex portion 1a of the solid electrolyte plate 1 (or the upper end opening of the through hole of the concave portion 1b) is the lower end opening (or concave portion) of the through hole of the convex portion 5a of the separator 5. It must be slightly larger than the diameter φF of the upper end opening of the through hole 5b). The diameter φC of the upper end opening of the through hole of the convex portion 1a of the solid electrolyte plate 1 (or the lower end opening of the through hole of the concave portion 1b) is
φC = 0.5 mm to 5 mm is preferable. However, it must be slightly smaller than the diameter φE of the upper end opening of the through hole of the convex portion 5a of the separator 5 (or the lower end opening of the through hole of the concave portion 5b).

【0019】[0019]

【発明の効果】以上の本発明によれば、電池面内にガス
を略均一に供給することができるので電極反応の有効面
積が増大する。したがって、電池の反応抵抗が小さくな
る。更に、セルとセルとの間隔を縮めることができるの
で、電池の出力密度が向上する。これらのことから、電
池の発電効率を向上させることができるという効果を奏
する。
As described above, according to the present invention, the gas can be supplied substantially uniformly within the surface of the battery, so that the effective area of the electrode reaction is increased. Therefore, the reaction resistance of the battery is reduced. Furthermore, since the distance between the cells can be shortened, the power density of the battery is improved. From these, there is an effect that the power generation efficiency of the battery can be improved.

【0020】加えて、各通路にはそれぞれシール部が設
けられているので対極へのガスの侵入を防止することが
できる。
In addition, since each passage is provided with a seal portion, it is possible to prevent gas from entering the counter electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の(A)スタックの概略断面図である。FIG. 1 is a schematic sectional view of a (A) stack of the present invention.

【図2】本発明の(A)スタックに係るセルの概略断面
図である。
FIG. 2 is a schematic cross-sectional view of a cell according to the (A) stack of the present invention.

【図3】本発明の(A)スタックに係るセルの概略断面
図である。
FIG. 3 is a schematic cross-sectional view of a cell according to the (A) stack of the present invention.

【図4】本発明の(A)スタックに係るセパレータの概
略断面図である。
FIG. 4 is a schematic cross-sectional view of a separator according to the (A) stack of the present invention.

【図5】本発明の(A)スタックと比較例の(X)スタ
ックとにおける電流密度と平均セル電圧との関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between the current density and the average cell voltage in the (A) stack of the present invention and the (X) stack of the comparative example.

【図6】従来の平板型SOFCの分解斜視図である。FIG. 6 is an exploded perspective view of a conventional flat plate SOFC.

【符号の説明】[Explanation of symbols]

1 固体電解質板 2 酸化剤極 3 燃料極 4 セル 5 セパレータ 21 酸化剤ガス通路 31 燃料ガス通路 1b・5b 酸化剤ガスシール部 1a・5a 燃料ガスシール部 1 Solid Electrolyte Plate 2 Oxidant Electrode 3 Fuel Electrode 4 Cell 5 Separator 21 Oxidant Gas Passage 31 Fuel Gas Passage 1b ・ 5b Oxidant Gas Seal Part 1a ・ 5a Fuel Gas Seal Part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 修三 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 齋藤 俊彦 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shuzo Murakami 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質板を介して燃料極と酸化剤
極とが相対向するセルと、セパレータとを交互に複数個
積層させてスタックを構成する固体電解質型燃料電池に
おいて、 上記スタックの積層方向には燃料ガス通路及び酸化剤ガ
ス通路が多数設けられ、且つ、上記固体電解質板及びセ
パレータの燃料ガス通路の周面には酸化剤極への燃料ガ
スの侵入を防止する燃料ガスシール部が設けられる一
方、酸化剤ガス通路の周面には燃料極への酸化剤ガスの
侵入を防止する酸化剤ガスシール部が設けられることを
特徴とする固体電解質型燃料電池。
1. A solid electrolyte fuel cell in which a stack is formed by alternately stacking a plurality of cells and separators in which a fuel electrode and an oxidizer electrode face each other via a solid electrolyte plate, and stacking the stacks. A large number of fuel gas passages and oxidant gas passages are provided in the direction, and a fuel gas seal portion for preventing the fuel gas from entering the oxidant electrode is provided on the peripheral surfaces of the fuel gas passages of the solid electrolyte plate and the separator. On the other hand, the solid oxide fuel cell is characterized in that an oxidant gas seal portion for preventing the oxidant gas from entering the fuel electrode is provided on the peripheral surface of the oxidant gas passage.
JP3338570A 1991-12-20 1991-12-20 Solid electrolyte type fuel cell Pending JPH05174850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3338570A JPH05174850A (en) 1991-12-20 1991-12-20 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3338570A JPH05174850A (en) 1991-12-20 1991-12-20 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH05174850A true JPH05174850A (en) 1993-07-13

Family

ID=18319420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3338570A Pending JPH05174850A (en) 1991-12-20 1991-12-20 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH05174850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100322A (en) * 2001-09-19 2003-04-04 Honda Motor Co Ltd Fuel cell
JP2004342493A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100322A (en) * 2001-09-19 2003-04-04 Honda Motor Co Ltd Fuel cell
JP2004342493A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Fuel cell

Similar Documents

Publication Publication Date Title
JP4447918B2 (en) SOFCPEN
JP2008047545A (en) Solid oxide fuel cell having gas channel
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JP3113347B2 (en) Solid oxide fuel cell
JPH05174850A (en) Solid electrolyte type fuel cell
JPH0794196A (en) Solid electrolyte fuel cell stack
JP2010238437A (en) Solid electrolyte for flat-plate solid oxide fuel cell, and flat-plate solid oxide fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JPH0436962A (en) Fuel cell with solid electrolyte
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JPH09245812A (en) Flat solid electrolyte fuel cell
JPH05205754A (en) Solid electrolyte type fuel cell
JPH0412468A (en) High-temperature fuel cell
JPH0562694A (en) Solid electrolyte type fuel cell
JPS5998472A (en) Molten salt fuel cell
JPH09245817A (en) Solid electrolyte type fuel cell
JPH04249864A (en) Solid electrolyte type fuel cell
JPH03134965A (en) Solid electrolyte type fuel cell
JPH05205753A (en) Solid electrolyte type fuel cell
JPH03147267A (en) Solid electrolyte fuel cell
JP2883688B2 (en) Solid oxide fuel cell