JPS5998472A - Molten salt fuel cell - Google Patents

Molten salt fuel cell

Info

Publication number
JPS5998472A
JPS5998472A JP57207913A JP20791382A JPS5998472A JP S5998472 A JPS5998472 A JP S5998472A JP 57207913 A JP57207913 A JP 57207913A JP 20791382 A JP20791382 A JP 20791382A JP S5998472 A JPS5998472 A JP S5998472A
Authority
JP
Japan
Prior art keywords
gas
electrolyte
interconnector plate
electrode
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57207913A
Other languages
Japanese (ja)
Inventor
Junji Niikura
順二 新倉
Nobuyuki Yanagihara
伸行 柳原
Hisaaki Giyouten
久朗 行天
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57207913A priority Critical patent/JPS5998472A/en
Publication of JPS5998472A publication Critical patent/JPS5998472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To offer such a molten salt fuel cell as being simple in structure, long in service life and low-unit cost of production, by remodeling its solid structure comprising an electrolyte holding body and an interconnector plate. CONSTITUTION:Ribs 15 and 16 of an electrolyte holding body 14 and an interconnector plate 10 form an emply space for an electrode and a gas chamber. An opening part of this space is used for feed and discharge ports of gas, and an air vent is installed in the side of a layer-built cell whereby fuel gas and oxidizer gas are able to flow orthogonally. On the other hand, the interconnector plate 10 comes into contact with an electrode at its surface's projections 12 and 13, then presses these projections to the electrolyte holding body 14 and performs its role as a current collector, while also performs its role as an electrolyte supporter body, a gas separator and an interconnector plate. Moreover, the rib 15 on the electrolyte holding body 14 also had a function as an electrolyte reservoir, thus contributing to improvements in the service life of a cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素、−酸化炭素等を燃料ガスとし、空気等を
酸化剤ガスとして高い動作温度で発電する溶融塩燃料電
池に関するもので、特に炭酸塩を電解質とする溶融炭酸
塩燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a molten salt fuel cell that generates electricity at a high operating temperature using hydrogen, carbon oxide, etc. as a fuel gas and air or the like as an oxidant gas. This invention relates to a molten carbonate fuel cell using as an electrolyte.

従来例の構成とその問題点 一般に、溶融塩燃料電池は動作温度が高く、溶融炭酸塩
燃料電池の場合には650℃前後の動作温度となる。さ
らに、溶融塩燃料電池においては、高温に加えて溶融塩
自体の激しい腐食性があるため、長期間の使用に耐える
材料は限られておシ、セラミック材料、耐熱耐食性合金
等が用いられる。
Structures of conventional examples and their problems In general, molten salt fuel cells have high operating temperatures, and in the case of molten carbonate fuel cells, the operating temperature is around 650°C. Furthermore, in molten salt fuel cells, in addition to high temperatures, the molten salt itself is highly corrosive, so materials that can withstand long-term use are limited, such as ceramic materials, heat-resistant and corrosion-resistant alloys, etc.

これらの限られた材料をいかに有効に使用し、簡単な構
造で高性能の溶融塩燃料電池を可能にするかが重要な技
術課題となっている。
An important technical issue is how to effectively use these limited materials to create a high-performance molten salt fuel cell with a simple structure.

従来、常温型燃料電池であるリン酸型燃料電池において
は、カーボンよシなるインターコネクタ板又は電極にガ
ス室を形成する溝を設け、燃料ガス用の溝と酸化剤ガス
用の溝が直交するように積層し、その積層体側面に通気
口を設置してガスを各単電池に並列供給する方式が採用
されている。
Conventionally, in a phosphoric acid fuel cell, which is a room-temperature fuel cell, a groove forming a gas chamber is provided in an interconnector plate or electrode made of carbon, and the groove for fuel gas and the groove for oxidant gas are perpendicular to each other. A method is adopted in which the cells are stacked like this, and a vent is installed on the side of the stack to supply gas to each cell in parallel.

また電解質保持体としてインターコネクタ板に電解質含
浸部を設ける事が行われている。
Furthermore, an electrolyte-impregnated portion is provided on the interconnector plate as an electrolyte holder.

しかし、これらの方法が現実的であるのは、構成材料と
してカーボンが使える場合であって、溶融塩燃料電池に
おいては次のような問題が生じる。
However, these methods are practical only when carbon can be used as a constituent material, and the following problems arise in molten salt fuel cells.

すなわちカーボンは高温で酸化消耗するため、インター
コネクタ板の材料としては金属材料を使わざるを得なく
なるが、その場合耐熱性合金等ではカーボンと異なり加
圧成形、焼結による加工が困難となる。そこで、溝を設
けるためには切削加工が必要となるが、これはコスト的
に現実的でない上、加工精度の観点からインターコネク
タ板としての金属板にある程度の厚みを必要とし、重量
、材料コストの面で非常に不利とならざるを得ない。
In other words, since carbon is oxidized and consumed at high temperatures, it is necessary to use a metal material as the material for the interconnector plate, but in this case, heat-resistant alloys and the like are difficult to process by pressure forming and sintering, unlike carbon. Therefore, cutting is required to create the grooves, but this is not realistic in terms of cost, and requires a certain thickness of the metal plate used as the interconnector plate from the viewpoint of processing accuracy, resulting in weight and material costs. This has no choice but to be extremely disadvantageous in terms of

電極自体に溝を設ける方法においては、溶融炭酸塩燃料
電池の場合、電極材料として多孔質のニッケル焼結体や
酸化ニッケル焼結体等が用いられるため、機械的強度、
コスト、ガスシールの面で難しい点が多い。
In the method of providing grooves in the electrode itself, in the case of molten carbonate fuel cells, porous nickel sintered bodies, nickel oxide sintered bodies, etc. are used as electrode materials, so mechanical strength,
There are many difficulties in terms of cost and gas sealing.

また、インターコネクタ板に電解質保持部を設置する方
法も、インターコネクタ板にある程度の厚みが要求され
、前記と同じ理由から不利である。
Furthermore, the method of installing the electrolyte holding portion on the interconnector plate also requires the interconnector plate to have a certain degree of thickness, which is disadvantageous for the same reason as mentioned above.

以上述べたように、インターコネクタ板、又は電極に溝
を設ける以外に、溶融塩燃料電池においては、第1図に
示すような構造も考えられている。
As described above, in addition to providing grooves in the interconnector plate or the electrodes, a structure as shown in FIG. 1 has been considered for molten salt fuel cells.

第1図において、1は電解質保持体、2は燃料極。In FIG. 1, 1 is an electrolyte holder, and 2 is a fuel electrode.

3.3′は集電体兼電極支持材、4はインターコネクタ
板、5は空気極を示す。これは、インターコネクタ板4
の一方の面の両端部に帯状のリフ−6,6を、また他方
の面の両端部に前記のリプと直交するようにリプ7.7
を設置して、ガス室及び電極のためのスペースを作り出
すとともに、リプと電解質保持体によってガスシールを
形成し、積層体側面に通気口を設ける事により燃料ガス
及び酸化剤ガスを直交する形で供給できるようにしたも
のである。
3.3' is a current collector/electrode supporting material, 4 is an interconnector plate, and 5 is an air electrode. This is interconnector board 4
band-shaped ridges 6, 6 at both ends of one surface, and rips 7, 7 perpendicular to the aforementioned lips at both ends of the other surface.
In addition to creating a space for the gas chamber and electrodes, a gas seal is formed by the lips and the electrolyte holder, and a vent is provided on the side of the stack to allow the fuel gas and oxidant gas to cross at right angles. It has been made possible to supply it.

しかし、この方法はインターコネクタ版以外に集電用の
波形板を構成要素として必要とし、さらに電解質リザー
バを設置する事が難しいため、電池の性能を長期にわた
り安定に保つ事が困難となっている。
However, this method requires a corrugated plate for current collection as a component in addition to the interconnector plate, and it is also difficult to install an electrolyte reservoir, making it difficult to maintain stable battery performance over a long period of time. .

これらの問題を解決するために、電解質保持体自体を前
記従来例に示したインターコネクタ板と同様の形状、す
なわち直交する2組のリブ状突起物を有する形状に成形
する事が考えられた。この構造によれば、リプ状突起物
が電解質リザーバとして機能するため、電池性能が向上
するとともに、電池構造も簡単にする事ができる。しか
し、電解質保持体の形状が面の両側にわたり立体的構造
をなしているため、その成形、焼結が極めて難しく、製
造の際の歩留シが良くないという欠点があった。
In order to solve these problems, it has been considered to form the electrolyte holder itself into a shape similar to that of the interconnector plate shown in the conventional example, that is, a shape having two sets of orthogonal rib-like protrusions. According to this structure, the lip-like protrusion functions as an electrolyte reservoir, so that battery performance is improved and the battery structure can be simplified. However, since the shape of the electrolyte holder has a three-dimensional structure on both sides of the surface, it is extremely difficult to mold and sinter it, resulting in a disadvantage that the yield rate during production is poor.

発明の目的 本発明は、上記のような従来の問題を解決し、構造が簡
単で、寿命が長く、製造コストの低い溶融塩燃料電池を
提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the conventional problems as described above, and to provide a molten salt fuel cell that has a simple structure, a long life, and a low manufacturing cost.

発明の構成 本発明は、両端に帯状のリプを有する断面凹形の電解質
保持体と、両端に帯状のリプを設けるとともに平面部の
両面に複数の集電用突起を有するインターコネクタ板と
を交互に、かつ両端のリプが直交するように積層し、電
解質保持体とインターコネクタ板の間に形成された空間
部分に電極を配置し、残シの空間部分に相互に直交する
方向で燃料ガスと酸化性ガスを供給できるようにした溶
融塩燃料電池である。
Structure of the Invention The present invention alternates between an electrolyte holder having a concave cross-section and strip-shaped lips at both ends, and an interconnector plate having strip-shaped lips at both ends and a plurality of current collecting protrusions on both sides of the flat part. The electrodes are stacked so that the lips at both ends are perpendicular to each other, electrodes are placed in the space formed between the electrolyte holder and the interconnector plate, and the fuel gas and oxidizer are placed in the remaining space in the direction perpendicular to each other. It is a molten salt fuel cell that can supply gas.

実施例の説明 第2図は本発明による溶融塩燃料電池の側面図。Description of examples FIG. 2 is a side view of a molten salt fuel cell according to the present invention.

第2図は要部の分解斜視図である。FIG. 2 is an exploded perspective view of the main parts.

これらの図において、1oはインターコネクタ板で、両
端に帯状のリプ11,11を有する断面凹形となってお
シ、平面部の両面には集電用の複数の突起12 、 ’
13を有する。14は電解質保持体で、両端部には帯状
のリプ16,15を有する。
In these figures, reference numeral 1o denotes an interconnector plate, which has a concave cross section with strip-like lips 11, 11 at both ends, and has a plurality of current collecting protrusions 12 on both sides of the flat part.
It has 13. Reference numeral 14 denotes an electrolyte holder, which has band-shaped lips 16 and 15 at both ends.

16は燃料極、17は空気極である。16 is a fuel electrode, and 17 is an air electrode.

上記のインターコネクタ板10.燃料極16゜電解質保
持体14及び空気極17を、インターコネクタ板のリプ
11と電解質保持体14のリプ15とが直交するように
積層して電池が構成される。
Interconnector board 10 above. A battery is constructed by stacking a fuel electrode 16°, an electrolyte holder 14, and an air electrode 17 such that the lip 11 of the interconnector plate and the lip 15 of the electrolyte holder 14 are perpendicular to each other.

第2図は第3図の■方向から見た図である。FIG. 2 is a view seen from the direction ■ in FIG. 3.

このようにして電解質保持体14及びインターコネクタ
板10のリプ15,11が電極及びガス室のための空間
を形成する。この空間の開口部はガスの供給、排出口と
なシ、積層電池の側面に通気口を設置する事によシ燃料
ガスと酸化剤ガスを直交して流す事ができる。またイン
ターコネクタ板10はその表面の突起12,13が電極
と接してそれを電解質保持体に押し付け、集電体として
の役割を果たすとともに、電極支持体、ガス隔離板、イ
ンターコネクタ板としての役割を果たしている。さらに
重要な点として電解質保持体14上のリプ15が電解質
リザーバとしての機能をもち、電池寿命の向上に寄与し
ている点がある。
In this way, the electrolyte holder 14 and the lips 15, 11 of the interconnector plate 10 form spaces for the electrodes and gas chambers. The opening of this space serves as a gas supply and exhaust port, and by providing a vent on the side of the stacked battery, fuel gas and oxidant gas can flow orthogonally. In addition, the interconnector plate 10 has protrusions 12 and 13 on its surface that come into contact with the electrode and press it against the electrolyte holder, thus acting as a current collector, as well as serving as an electrode support, a gas separator, and an interconnector plate. is fulfilled. Another important point is that the lip 15 on the electrolyte holder 14 functions as an electrolyte reservoir and contributes to improving battery life.

なお、この実施例では、電解質保持体はマトリクス材料
である粒径1μm以下のアルミン酸リチウム粉末に成形
剤としてポリビニルブチラールのメタノール溶液を加え
て加圧成形した後、充分乾燥させてから徐々に昇温させ
、最高温度120o℃で2時間保つ事によシ焼結した。
In this example, the electrolyte holder was made by adding a methanol solution of polyvinyl butyral as a molding agent to lithium aluminate powder as a matrix material and press-molding it, and then drying it thoroughly and gradually increasing the temperature. The sample was heated and sintered by keeping it at a maximum temperature of 120°C for 2 hours.

この際、成形から焼結完了までの歩留9は90%を越え
、同様の方法で製造した両面にリプを有する電解質保持
体の場合には60%前後にとどまったのに比較し、高い
歩留シを示した。こうして得られたいわば素焼状態の電
解質保持体に溶融炭酸塩を溶融含浸させ、電解質保持体
とした。
In this case, the yield9 from molding to completion of sintering exceeded 90%, which was a high yield compared to only around 60% in the case of an electrolyte holder with lips on both sides manufactured using the same method. Showed the holder. The thus obtained electrolyte holder in a so-called unglazed state was impregnated with molten carbonate to obtain an electrolyte holder.

また、インターコネクタ板は厚さ0.2〜o、smmの
耐熱耐食性合金板を金型を用いて両面にボス状の突起1
2.13がある形状にプレス成形し、さらにこれにリプ
15として厚さ2mm  の同質の合金板を両端部に溶
接した。電極にはニッケル合金からなるガス拡散電極を
燃料極とし、リチウムを含んだ酸化ニッケルからなるガ
ス拡散電極を空気極として電池を組み立てた。
In addition, the interconnector plate is made by molding a heat-resistant and corrosion-resistant alloy plate with a thickness of 0.2 to 0.0 mm with boss-shaped protrusions on both sides.
2.13 was press-formed into a certain shape, and a 2 mm thick homogeneous alloy plate was welded to both ends as lips 15. A battery was assembled using a gas diffusion electrode made of a nickel alloy as a fuel electrode and a gas diffusion electrode made of nickel oxide containing lithium as an air electrode.

第5図は上記の実施例に示した本発明による電池人と第
1図に示した従来の電池Bとについて、単セルの端子電
圧の経時変化を比較したものである。
FIG. 5 compares the change over time in the terminal voltage of a single cell between the battery according to the present invention shown in the above embodiment and the conventional battery B shown in FIG.

燃料ガスは水素ガス、酸化剤ガスとしては空気と炭酸ガ
スの混合気体を用いた。電極はいずれも燃料極はニッケ
ル合金からなるガス拡散電極、空気極はリチウムを含ん
だ酸化ニッケルからなるガス拡散電極、電解質は炭酸リ
チウムと炭酸カリウムの混合塩である。動作温度は65
0℃、放電は120 m/4/an?の定電流放電で、
電解質の補給は行わない。
Hydrogen gas was used as the fuel gas, and a mixed gas of air and carbon dioxide was used as the oxidant gas. The fuel electrode is a gas diffusion electrode made of a nickel alloy, the air electrode is a gas diffusion electrode made of nickel oxide containing lithium, and the electrolyte is a mixed salt of lithium carbonate and potassium carbonate. Operating temperature is 65
0℃, discharge 120 m/4/an? With a constant current discharge of
Do not replenish electrolytes.

図から明らかなように、本発明による電池AI′i、従
来例による電池Bよシも特性が良いのがわかる。
As is clear from the figure, the battery AI'i according to the present invention and the conventional battery B have better characteristics.

これは電解質保持体上のリプが電解質リザーバとして機
能するためである。本発明による電池では、電解質保持
体が単なる平板である従来例の電池の約1.3倍の寿命
が得られている。
This is because the lip on the electrolyte holder functions as an electrolyte reservoir. The battery according to the present invention has a life approximately 1.3 times longer than that of a conventional battery in which the electrolyte holder is a simple flat plate.

製造においては、従来例で不可欠であった集電体がイン
ターコネクタ板上にプレス成形等で形成された集電用突
起物に取って替わられているため、電池構成部品数と必
要材料の減少が可能となっている。部品数の減少と必要
材料の減少によシ、約2o〜30%の低コスト化が可能
となった。また重量的にも従来例と比較して約10%の
軽量化となる。
In manufacturing, the current collector, which was indispensable in conventional examples, has been replaced with current collecting protrusions formed by press molding on the interconnector board, reducing the number of battery component parts and required materials. is possible. By reducing the number of parts and required materials, it has become possible to reduce costs by about 20 to 30%. Also, the weight is reduced by about 10% compared to the conventional example.

以上の実施例では、電池形状が長方形の場合をあげてい
るが、その形状は円形、多角形等どのようなものでも良
い。要するに片面の周辺端部にリプを有する電解質保持
体と、片面周辺端部にリプを有し、平面部分に複数の突
起を有し、この突起が集電体兼電極支持体の働きをする
インターコネクタ板が相互に密着され、適当なガス出入
口金布するガス室兼電極収納スペースを形成する構造を
有すれば良い。
In the above embodiments, the battery shape is rectangular, but the shape may be circular, polygonal, or any other shape. In short, there is an electrolyte holder that has a lip on the peripheral edge of one side, a lip on the peripheral edge of one side, and a plurality of protrusions on the flat part, and these protrusions function as current collectors and electrode supports. It is only necessary to have a structure in which the connector plates are closely attached to each other and form a gas chamber/electrode storage space with a suitable gas inlet/outlet.

さらに、実施例ではガス出入口、及び電解質保持体、イ
ンターコネクタ板の中央付近にはリプが全くないが、積
層圧力に対する強度を向上するために、必要な箇所にリ
プ状の突起物を有しても良い。
Furthermore, although there is no lip at all near the center of the gas inlet/outlet, electrolyte holder, and interconnector plate in the example, lip-like protrusions are provided at necessary locations to improve strength against lamination pressure. Also good.

発明の効果 以上のように、本発明による溶融塩燃料電池においては
、電解質保持体の片方の面にのみリプを有する構造であ
シ、片面が完全に平坦であるために、両面にリプを有す
る場合に比べ、成形及び焼結が容易となっている。その
ため製造時の歩留シも向上し、製造コストの低減が可能
となっている。
Effects of the Invention As described above, the molten salt fuel cell according to the present invention has a structure in which the electrolyte holder has a lip only on one side, and since one side is completely flat, it has a lip on both sides. Molding and sintering are easier than in the conventional case. Therefore, the yield during manufacturing is improved, and manufacturing costs can be reduced.

また電解質保持体上のリプは電解質リザーバとして機能
するため、電池性能は単なる平板形の電解質保持体を用
いた従来のものよシも大きく向上している。
Furthermore, since the lip on the electrolyte holder functions as an electrolyte reservoir, the battery performance is greatly improved compared to conventional batteries using a simple flat plate-shaped electrolyte holder.

さらに°インターコネクタ板は、集電体の機能を有する
上、金属板のプレス加工、及び一部の溶接等で簡単に製
造できるため、従来例と比較して電池重量の軽減化と製
造コストの低下が可能となる。
In addition, the interconnector plate has the function of a current collector and can be easily manufactured by pressing metal plates and some welding, which reduces battery weight and manufacturing costs compared to conventional examples. It is possible to lower the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の溶融塩燃料電池の要部の分解斜視図、第
2図は本発明の実施例による溶融炭酸塩燃料電池の構成
を示す側面図、第3図は要部の分解斜視図、第4図は第
3図■−■線におけるインターコネクタ板の断面図、第
5図は電池性能の比較を示す。 10−−−−インターコネクタ板、11・・・・・・リ
ブ。 12.13°・・°°°突起、14・・・・・・電解質
保持体、15°゛°゛リプ、16−゛−−−−燃料極、
17°°°°°゛空気極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ζN
Fig. 1 is an exploded perspective view of the main parts of a conventional molten salt fuel cell, Fig. 2 is a side view showing the configuration of a molten carbonate fuel cell according to an embodiment of the present invention, and Fig. 3 is an exploded perspective view of the main parts. , FIG. 4 is a cross-sectional view of the interconnector plate taken along the line ■--■ in FIG. 3, and FIG. 5 shows a comparison of battery performance. 10---Interconnector plate, 11... Rib. 12.13°...°°° protrusion, 14... Electrolyte holder, 15°゛° lip, 16-゛---- fuel electrode,
17°°°°°゛Air pole. Name of agent: Patent attorney Toshio Nakao and one other person ζN

Claims (1)

【特許請求の範囲】[Claims] 両端に帯状のリプを設けた断面凹形の電解質保持体と、
両端に帯状のリプを設けるとともに平面部の両面に集電
用の複数の突起を設けた断面凹形のインターコネクタ板
とを、それぞれの両端部にあるリプが直交し、かつリプ
上面と相対する相手方の底面とが密着するように積層し
、生じた空間部分に電極を配置し、残った空間部に相互
に直交する形で燃料ガスと酸化性ガスを供給するように
構成した溶融塩燃料電池。
An electrolyte holder with a concave cross section with band-shaped lips on both ends,
An interconnector plate with a concave cross section, which has band-shaped lips at both ends and a plurality of protrusions for current collection on both sides of the planar part, is connected to the interconnector plate so that the lips at each end are perpendicular to each other and are opposed to the top surface of the lips. A molten salt fuel cell configured so that the bottom surfaces of the other side are in close contact with each other, electrodes are placed in the resulting space, and fuel gas and oxidizing gas are supplied orthogonally to each other into the remaining space. .
JP57207913A 1982-11-27 1982-11-27 Molten salt fuel cell Pending JPS5998472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207913A JPS5998472A (en) 1982-11-27 1982-11-27 Molten salt fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207913A JPS5998472A (en) 1982-11-27 1982-11-27 Molten salt fuel cell

Publications (1)

Publication Number Publication Date
JPS5998472A true JPS5998472A (en) 1984-06-06

Family

ID=16547635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207913A Pending JPS5998472A (en) 1982-11-27 1982-11-27 Molten salt fuel cell

Country Status (1)

Country Link
JP (1) JPS5998472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287573A (en) * 1986-06-04 1987-12-14 Matsushita Electric Ind Co Ltd Bipolar plate for fused-salt fuel cell
KR100329019B1 (en) * 1999-04-13 2002-03-18 윤덕용 Method for Manufacturing Organic Acid by High-Efficiency Fermentation
JP2011530141A (en) * 2008-08-01 2011-12-15 トプサー・フューエル・セル・アクチエゼルスカベット FUEL CELL INTERCONNECTOR AND METHOD FOR PRODUCING FUEL CELL INTERCONNECTOR

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287573A (en) * 1986-06-04 1987-12-14 Matsushita Electric Ind Co Ltd Bipolar plate for fused-salt fuel cell
KR100329019B1 (en) * 1999-04-13 2002-03-18 윤덕용 Method for Manufacturing Organic Acid by High-Efficiency Fermentation
JP2011530141A (en) * 2008-08-01 2011-12-15 トプサー・フューエル・セル・アクチエゼルスカベット FUEL CELL INTERCONNECTOR AND METHOD FOR PRODUCING FUEL CELL INTERCONNECTOR

Similar Documents

Publication Publication Date Title
EP0800709B1 (en) Electrolytic and fuel cell arrangements
US20090035635A1 (en) Combination Structure Between Single Cell and Interconnect of Solid Oxide Fuel Cell
JP3064746B2 (en) Flat solid electrolyte fuel cell
JP2008047545A (en) Solid oxide fuel cell having gas channel
JPS61216257A (en) Separator for fuel cell
JP2004103296A (en) Solid polymer type fuel cell
KR102030981B1 (en) Metal-supported solid oxide fuel cell and manufacturing method
KR101146679B1 (en) Manufacturing method of disc type solid oxide fuel cell
JPS5998472A (en) Molten salt fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JPH039589B2 (en)
JP3113347B2 (en) Solid oxide fuel cell
JP7087616B2 (en) Fuel cell stack
KR100942091B1 (en) Stacking structure of planar solid oxide fuel cell
US7465514B2 (en) Electrochemical energy source and electronic device incorporating such an energy source
JP3357310B2 (en) Fuel cell separator and method of manufacturing the same
RU214734U1 (en) Current collector of solid oxide fuel cell stack
JP2948441B2 (en) Flat solid electrolyte fuel cell
KR101337453B1 (en) Combined parts for fuel cell separator
CN118572266A (en) Battery monomer, liquid metal air battery with battery monomer and electric equipment
JPS6276262A (en) Fused carbonate type fuel cell
JPH0412468A (en) High-temperature fuel cell
JP2004055196A (en) Oxidant gas feeding mechanism for fuel cell
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell
JPH05174850A (en) Solid electrolyte type fuel cell