JP2004103296A - Solid polymer type fuel cell - Google Patents

Solid polymer type fuel cell Download PDF

Info

Publication number
JP2004103296A
JP2004103296A JP2002260299A JP2002260299A JP2004103296A JP 2004103296 A JP2004103296 A JP 2004103296A JP 2002260299 A JP2002260299 A JP 2002260299A JP 2002260299 A JP2002260299 A JP 2002260299A JP 2004103296 A JP2004103296 A JP 2004103296A
Authority
JP
Japan
Prior art keywords
current collector
manifold hole
collector plate
thin portion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002260299A
Other languages
Japanese (ja)
Inventor
Shinsuke Takeguchi
竹口 伸介
Kazuhito Hado
羽藤 一仁
Hiroki Kusakabe
日下部 弘樹
Hideo Obara
小原 英夫
Nobunori Hase
長谷 伸啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002260299A priority Critical patent/JP2004103296A/en
Publication of JP2004103296A publication Critical patent/JP2004103296A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer type fuel cell having excellent reliability by securing sealing capability between a current collection plate, and adjacent conductive separator plate and insulation plate, and by using the current collection plate capable of preventing corrosion of a manifold hole in a long-time operation. <P>SOLUTION: The current collection plate has a thin part around the manifold hole; a ring-like sealing member having a cross-sectionally U-shaped peripheral part holding the thin part from both its front and rear surfaces is mounted in the manifold hole of the current collection plate; and the current collection plate is prevented from contacting an oxidizer gas, a fuel gas or cooling water by the sealing member. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ポータブル電源、電気自動車用電源、家庭用コージェネレーションシステム等に使用する固体高分子電解質を用いた燃料電池に関する。
【0002】
【従来の技術】
固体高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを、電気化学的に反応させることにより、電力と熱とを同時に発生させる。この燃料電池は、水素イオンを選択的に輸送する高分子電解質膜、および高分子電解質膜の両面に形成された一対の電極から構成される。前記電極は、通常、白金系の金属触媒を担持したカーボン粉末を主成分とし、高分子電解質膜上に形成される触媒層および、この触媒層の外面に形成され、通気性と電子導電性とを併せ持つガス拡散層からなる。
【0003】
電極に供給される燃料ガスおよび酸化剤ガスが外にリークしたり、二種類の反応ガスが互いに混合したりしないように、電極の周囲には高分子電解質膜を挟んでガスシール材またはガスケットが配置される。このガスシール材またはガスケットは、電極および高分子電解質膜と一体化してあらかじめ組み立てられ、これをMEA(電解質膜・電極接合体)と呼ぶ。
【0004】
MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するために、導電性のセパレータ板が配置される。セパレータ板のMEAと接触する部分には、電極面に反応ガスを供給し、生成水や余剰ガスを運び去るためのガス流路が形成されている。ガス流路はセパレータ板と別に設けることもできるが、セパレータ板の表面に溝を設けてガス流路とする方式が一般的である。
【0005】
これらのMEAとセパレータ板を交互に重ねることにより、MEAとセパレータ板からなる単電池を10〜200個積層し、得られた積層体を集電板および絶縁板を介して端板で挟み、締結ロッドで両端から固定するのが一般的な積層電池の構造である。
【0006】
上述のように、この積層電池の発電電力を外部へ取り出すために、単電池を積層した積層体両端のセパレータ板の外側に集電板が配置される。通常、集電板は、不必要な接触抵抗による発電電力の損失を低減するために、真鍮またはステンレス鋼板を所定の形状に加工した後、薄く金メッキを施すことにより作製される。ここで、金メッキを必要以上に厚くするとコストがかかるため、必要最小限の厚さとする。
【0007】
集電板には、マニホールド孔と呼ばれる燃料ガス、酸化剤ガスおよび冷却水を供給・排出するための穴が開いている。そして、集電板と隣接する絶縁板やセパレータ板とのシール性を確保するために、このマニホールド孔の周囲にOリング用のシール溝が設けられ、その溝にOリングが填められている。しかし、集電板のマニホールド孔内面は、直接加湿された反応ガスや冷却水と接触している。したがって、長時間運転した場合に、反応ガスや冷却水と接触する集電板のマニホールド孔内面の表面に形成された金メッキ層の局所的に薄い箇所から腐食が進み、ステンレス鋼または真鍮が溶出する。さらに、溶出した金属イオンがMEAに供給され、電池特性が低下してしまうという問題がある。
【0008】
【発明が解決しようとする課題】
本発明は、上記従来の課題を解決するため、集電板と隣接する導電性セパレータ板および絶縁板との間のシール性を確保するとともに、長時間運転時のマニホールド孔の腐食を防止できる集電板を用いることにより、信頼性に優れた固体高分子型燃料電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の固体高分子型燃料電池は、複数の導電性セパレータ板、および前記導電性セパレータ板の間に挿入された電解質膜・電極接合体を具備し、前記電解質膜・電極接合体が高分子電解質膜および前記高分子電解質膜を挟む一対の電極からなるセル積層体、前記セル積層体および発電電力を取り出すための一対の集電板を締結する締結手段、ならびに
前記セル積層体および集電板に設けられた酸化剤ガス、燃料ガスおよび冷却水各々の入口側マニホールド孔および出口側マニホールド孔、および前記導電性セパレータ板に設けられて前記入口側マニホールド孔と出口側マニホールド孔を連絡するガス流路および冷却水流路を含む酸化剤ガス、燃料ガスおよび冷却水の供給手段を含み、
前記集電板が、マニホールド孔の周囲において肉薄部を有し、この肉薄部を表裏両面から抱持する断面コ字状の外周部を有するリング状のシール部材を集電板のマニホールド孔に装着し、前記シール部材によって、集電板が、酸化剤ガス、燃料ガスおよび冷却水との接触を遮断されている。
【0010】
前記肉薄部が、表裏両面におけるマニホールド孔周縁部に凸部を有することが好ましい。
前記肉薄部の表裏両面を抱持する前記シール部材における抱持片の端部が肉厚であり、前記端部の厚さtおよび集電板の主表面と肉薄部との段差hが、0.2≦(t−h)/h≦0.3を満たすことが好ましい。
前記肉薄部の表裏両面を抱持する前記シール部材における抱持片の端部が肉厚であり、前記端部のうち集電板の主表面と肉薄部との段差部分に収まる部分の体積割合が、70〜90%であることが好ましい。
【0011】
前記肉薄部が、集電板よりも力学的強度の高い補強材により構成されていることが好ましい。
前記シール部材が、ニトリルゴム、水素添加ニトリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴムおよびブチルゴムからなる群より選ばれた少なくとも一種の材料で構成されることが好ましい。
前記シール部材の硬度が40〜70であることが好ましい。
【0012】
【発明の実施の形態】
本発明のポイントは、集電板の各マニホールド孔に、リング状のシール部材を装着することにより、集電板と隣接する絶縁板やセパレータ板との間のシール性を確保するとともに、集電板のマニホールド孔部分における腐食による電池性能の劣化を防止する方法を見いだしたことである。
以下、本発明の実施の形態を図面を参照しながら説明する。
【0013】
図3は、高分子電解質型燃料電池の代表的な構成を示す。
この燃料電池は、導電性セパレータ板1とMEA2とを交互に積層したセル積層体、その両端を集電板3および絶縁板4を介して挟む一対の端板5およびこれらを締結する締結ロッド7により構成されている。MEA2は、水素イオンを選択的に輸送する高分子電解質膜、前記電解質膜を挟んだ一対の電極、および前記電極の周囲に配されたガスケットからなる。集電板3は、外部に電力を取り出すための端子9を有している。
【0014】
本発明は、この種の燃料電池の集電板を改良するものであり、その一実施例を図1に示す。
集電板3には、燃料ガスの入口側マニホールド孔10aおよび出口側マニホールド孔10b、酸化剤ガスの入口側マニホールド孔11aおよび出口側マニホールド孔11b、冷却水の入口側マニホールド孔12aおよび出口側マニホールド孔12bが設けられている。また、集電板3の角には、締結ロッドを通すための穴14が設けられている。そして、図2に示すように、燃料ガスの入口側マニホールド孔10a等のマニホールド孔の周囲の厚さが集電板3本体の厚さよりも薄くなり、各マニホールド孔の周囲に肉薄部3aが設けられている。このような肉薄部3aを備えた集電板3における燃料ガスの入口側マニホールド孔10a等のマニホールド孔にそれぞれシール部材8が装着されている。
【0015】
シール部材8を装着した集電板3の第一の好ましい態様として集電板の燃料ガスの入口側マニホールド孔10a付近の概略縦断面図を図2に示す。
本発明にかかるシール部材8は、リング状であり、その外周部の断面がコ字状である。一方、燃料ガス入口側マニホールド孔10aの周囲には、厚さを薄くした肉薄部3aが設けられている。そして、シール部材8は、その断面コ字状の部分で肉薄部3aを表裏両面にわたって覆うようにマニホールド孔10aに装着される。このようにして、シール部材8は、燃料ガスの入口側マニホールド孔10a等のマニホールド孔にそれぞれ装着されている。このように、シール部材8は、各マニホールド孔を完全に覆うようにそれぞれ装着されている。このため、集電板は、燃料ガス、酸化剤ガスおよび冷却水と接触しなくなり、長時間運転時の燃料ガス、酸化剤ガスおよび冷却水との接触によるマニホールド孔の腐食を防止できる。
【0016】
肉薄部3aの表裏両面を抱持する抱持片8aは、その端部8bが肉厚となり、集電板3よりも外側にはみ出している。この集電板3をセル積層体および絶縁板4等と組み合わせて締結すると、シール部材8の端部8bがパッキンとして働き、集電板3と隣接する絶縁板4や導電性セパレータ板1との間のシール性を確保することができる。
【0017】
図2に示すように、集電板3の肉薄部3aの表裏両面を抱持する前記シール部材8の抱持片8aにおける端部8bの厚さtおよび集電板3の主表面と肉薄部3aとの段差hは、0.2≦h/(t−h)≦0.3を満たすことが好ましい。このとき、シール部材8を装着した集電体3は、それと隣接する絶縁板4および導電性セパレータ板1に対して優れたシール性が得られる。
前記シール部材8の端部8bのうち集電板3の主表面と肉薄部3aとの段差部分に収まる部分の体積割合が、70〜90%であることが好ましい。このとき、集電板3は、隣接する絶縁板4および導電性セパレータ板1に対して優れたシール性が得られる。
【0018】
シール部材を装着した集電板の第二の好ましい態様として、集電板の燃料ガスの入口側マニホールド孔付近の概略縦断面図を図5に示す。
図2と同様に、集電板13の燃料ガスの入口側マニホールド孔20a等のマニホールド孔の周囲には、肉薄部13aがそれぞれ形成されている。さらに、その肉薄部13aの表裏両面における各マニホールド孔の周縁部に凸部13bがそれぞれ設けられている。このような集電板13の肉薄部13aに、断面コ字状の外周部を有するリング状のシール部材18が装着されている。このような構成とすることにより、燃料電池スタックの組み立て時に集電板13に装着されたシール部材18が外れることがなく、確実に集電板13に固定される。シール部材18の抱持片18aは、その端部18bがパッキンとして働く。
【0019】
また、図6のような構成としても図5と同様の効果が得られる。集電板23の肉薄部23aの表裏両面における燃料ガスの入口側マニホールド孔30a等のマニホールド孔の周縁部には、丸みを帯びた凸部23bが設けられている。このように、集電板の肉薄部の表裏両面におけるマニホールド孔周縁部に設けられる凸部は、燃料電池スタックの組み立て時に集電板に装着されたシール部材が外れずに、確実に集電板に固定されるような構成で有れば、どのような形状でも構わない。
【0020】
シール部材および補強材を装着した集電板の第三の好ましい態様として集電板の燃料ガスの入口側マニホールド孔付近の概略縦断面図を図7に示す。
集電板33には、図2のように燃料ガスの入口側マニホールド孔40a等のマニホールド孔の周囲にそれぞれ肉薄部3aを設ける代わりに、燃料ガスの入口側マニホールド孔40a等のマニホールド孔の内面における集電板33の厚さ方向の中央部に、溝部33aがそれぞれ設けられている。その溝部33aに、集電板33よりも力学的強度の高い円板状の補強材34が取り付けられている。
【0021】
一方、補強材34の溝部33aより露出した部分の表裏両面を抱持する抱持片38aの端部38bが肉厚であるシール部材38は、リング状であり、外周部の断面はコ字状である。そして、前記シール部材38が、その断面コ字状の部分で、その補強材34の前記溝部33aから露出した部分を表裏両面にわたって覆うように燃料ガスの入口側マニホールド孔40a等のマニホールド孔に装着される。このようにして、シール部材38が、各マニホールド孔を覆うように補強材34を介して集電板33に固定されている。
【0022】
シール部材および補強材を装着した他の第三の好ましい態様として、集電板の燃料ガスの入口側マニホールド孔付近の概略縦断面図を図8に示す。
集電板43における燃料ガスの入口側マニホールド孔50a等のマニホールド孔の内面における集電板43の厚さ方向の中央部には、凸部43aが設けられている。一方、集電板よりも力学的強度の高いリング状の補強材44は、外周部に凹部を有している。そして、各マニホールド孔内面の凸部43aに補強材44の凹部を嵌合させることにより、補強材44が燃料ガスの入口側マニホールド孔50a等のマニホールド孔にそれぞれ取り付けられている。
【0023】
さらに、この補強材44の内周部には、凸部44aが設けられている。一方、補強材44の凸部44aの表裏両面を抱持する抱持片48aの端部48bが肉厚であるシール部材48は、リング状であり、外周部の断面がコ字状である。そして、前記シール部材48は、その断面コ字状の部分で、前記凸部44aを表裏両面にわたって覆うように燃料ガスの入口側マニホールド孔50a等の各マニホールド孔に装着される。このようにして、シール部材48が、各マニホールド孔を覆うように補強材44を介して集電板43に固定されている。
【0024】
図7や図8のように、シール部材を装着する集電板の肉薄部を集電板よりも力学的強度の高い補強材で構成することにより、長時間運転する場合の肉薄部の劣化を防止することができる。これは、特に肉薄部の厚さが薄くなる場合に効果的である。
【0025】
前記シール部材が、ニトリルゴム、水素添加ニトリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴムおよびブチルゴムからなる群より選ばれた少なくとも一種の材料から構成されることが好ましい。その中でも耐熱性、耐酸性、耐水性に優れているという理由によりフッ素ゴムが特に好ましい。
前記シール部材の硬度は、低すぎるとシール性が悪くなり、高すぎるとシール時の反力が大きくなってしまうという理由により、40〜70であることが好ましい。
【0026】
【実施例】
以下、本発明の実施例を図1〜3を参照しながら説明する。
【0027】
《実施例1》
アセチレンブラック系のカーボン粉末に、平均粒径約30Åの白金粒子を重量比4:1の割合で担持させ、電極用の触媒粉末を得た。この触媒粉末5gを水15g中に分散させたものと、エチルアルコール中に、エチルアルコールに対して10重量%のパーフルオロカーボンスルホン酸を分散させたもの40gとを混合し、電極用ペーストを得た。
【0028】
一方、厚さ300μmのカーボンペーパーをポリテトラフルオロエチレン(PTFE)の水性ディスパージョンに浸漬した後、乾燥して撥水性の多孔質電極基材を得た。この多孔質電極基材の片面に電極用ペーストを塗布し、乾燥して電極を得た。次に、電極用ペーストを塗布した面を内側にして、上記で得られた一対の電極で高分子電解質膜を挟み、これを110℃で30分間ホットプレスすることにより、電解質膜・電極接合体2(MEA)を作製した。ここで用いた高分子電解質膜は、パーフルオロカーボンスルホン酸を50μmの厚さに薄膜化したもの(デュポン社製、ナフィオン)を用いた。
【0029】
厚さ3mmの等方性黒鉛材からなり、機械加工によりガス流路が形成された導電性セパレータ板1および上記で得られたMEA2を交互に50セル積層し、セル積層体を作製した。
【0030】
一方、本発明のシール部材を装着した集電板3は、以下のように作製した。
厚さ5mmの真鍮を用いて、図1および図2に示すような所定の形状に機械加工を施した。このとき、集電板両面の燃料ガスの入口側マニホールド孔10aおよび出口側マニホールド孔10b、酸化剤ガスの入口側マニホールド孔11aおよび出口側マニホールド孔11b、ならびに冷却水の入口側マニホールド孔12aおよび出口側マニホールド孔12bの周囲の厚みを1mmずつ薄くし厚さ3mmの肉薄部3aを設けた。その後、集電板3の表面に厚さ1μmの金メッキ処理を行った。そして、図2に示すように集電板における各マニホールド孔に肉薄部3aの表裏両面を抱持する抱持片8aの端部8bが肉厚であるリング状のシール部材8をそれぞれ装着した。
【0031】
ここで用いたシール部材8は、硬度50のフッ素ゴムであり、射出成形により作製した。このとき、シール部材8の端部8bの厚さtが1.2mm、集電体の主表面と肉薄部との段差hが1.0mmであり、(t−h)/h値は、0.2であった。また、シール部材8の端部8bの集電板3の主表面と肉薄部3aとの段差部分に収まる部分の体積割合は、80%となるようにした。
【0032】
上記で得られたシール部材8を装着した集電板3を、上記で得られたセル積層体の両端に配し、さらにその外側に絶縁板4を配した。集電板3に端子9を接続した。集電板3および絶縁板4を介して積層体を、ステンレス鋼製の端板5で挟み、締結ロッド7およびスクリューばね6を用いて10kgf/cmの圧力で積層体を締結し、図3に示すような構造の燃料電池を得た。これを電池Aとする。
【0033】
《比較例1》
実施例1のシール部材を装着した集電板の代わりに、従来のOリングを装着した集電板を用いた。Oリングを装着した集電板は、以下のように作製した。
実施例1と同様の真鍮を用いて、機械加工により所定の集電板を作製した。燃料ガスの入口側マニホールド孔60a等のマニホールド孔周囲の所定の位置にOリング溝53aを設けた。そして、図9のように各マニホールド孔の周囲に設けたOリング溝53aに、フッ素ゴムからなる断面が円形であるOリング58をそれぞれ装着した。
上記で得られたOリング58を装着した集電板53を用いた以外は実施例1と同様の方法により燃料電池を作製した。この電池を電池Bとする。
【0034】
上記で作製した実施例1の電池Aおよび比較例1の電池Bについて以下のような耐久試験を行った。一方の電極に83℃の露点となるように加湿、加温した燃料ガスを供給し、他方の電極に78℃の露点となるように加湿、加温した空気を供給した。そして、85℃の環境下で、燃料利用率80%、酸素利用率30%、電流密度0.3A/cmの条件で耐久試験を行った。その結果を図4に示す。
【0035】
比較例1の電池Bは、試験開始から500時間を経過したころから電池電圧の低下率が大きくなり、2000時間で完全に性能がとれなくなった。これに対し、実施例1の電池Aは、5000時間経過しても安定した性能が得られた。
耐久試験後、比較例1の電池Bを分解し、集電板を観察したところ、燃料ガス、酸化剤ガスおよび冷却水の入口側マニホールド孔および出口側マニホールド孔付近で金メッキ部分がなくなり、真鍮が溶出していることが確かめられた。これは、発電時に加湿水や冷却水の電気分解に伴い、集電板表面に形成された金メッキ層の局所的に薄い箇所から選択的に腐食が進行したためである。さらに、電気分解により溶出した金属イオンが燃料ガス、酸化剤ガスおよび加湿水に取り込まれ、MEAへ供給されることにより、高分子電解質の劣化をもたらした。これに対し実施例1の集電板は6000時間後でも、全く腐食はみられず、本発明のシール部材を装着した集電板の有効性が確認された。
【0036】
《実施例2》
補強材34を取り付けた集電板33を以下のように作製した。
厚さ2.5mmの真鍮を用いて、機械加工により所定の形状の集電板を作製した。図7のように、集電板33における燃料ガスの入口側マニホールド孔40a等のマニホールド孔の内面における集電板33の厚さ方向の中央部に、溝部33aをそれぞれ設けた。そして、その溝部33aに真鍮よりも力学的強度の高い、ステンレス鋼製の補強材34を取り付けた。
【0037】
シール部材38は以下のように作製した。
硬度50のフッ素ゴムを用いて、実施例1と同様の方法により、所定のシール部材38を作製した。このとき、シール部材38における補強材34の表裏両面を抱持する抱持片38aの端部38bの厚さtが1.2mm、集電板33の表面と補強材34との段差hが1.0mmであり、(t−h)/h値は、0.2であった。また、端部38bの集電板33の表面と補強材34との段差部分に収まる部分の体積割合は、80%となるようにした。
上記で得られた補強材34を取り付けた集電板33に上記で得られたシール部材38を装着した。
実施例1の集電板の代わりに、この集電板を用いた以外は実施例1と同様の方法により燃料電池を得た。この電池を電池Cとする。
【0038】
《実施例3》
厚さ2.5mmの真鍮を用いた以外は、実施例1と同様の方法により集電板を作製した。そして、この集電板に実施例2と同様のシール部材を装着した。この集電板を用いた以外は、実施例1と同様の方法により燃料電池を得た。この電池を電池Dとする。
【0039】
実施例2の電池Cおよび実施例3の電池Dについて、実施例1と同様の条件で耐久試験を行った。6000時間後の電池Cおよび電池Dをそれぞれ分解し、集電板を調べた。その結果、実施例3の電池Dの集電板の肉薄部の付け根にクラックが見られた。これは、実施例3の集電板の厚さが、実施例1に比べて薄くなっており、長時間の運転によって、強度の最も低い付け根部分にクラックが生じたものと考えられる。これに対して、実施例2の電池Cでは、クラックは全く見られなかった。このことから、集電板の厚さが薄いために、シール部材を取り付ける肉薄部の厚さが薄くなる場合は、その肉薄部を補強材で構成することが有効であることが示された。
【0040】
【発明の効果】
以上のように、本発明によれば、集電板と隣接する導電性セパレータ板および絶縁板との間のシール性を確保するとともに、長時間運転時のマニホールド孔の腐食を防止できる集電板を用いることにより信頼性に優れた固体高分子型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の集電板の構成を示す正面図である。
【図2】本発明のシール部材を装着した集電板における燃料ガスの入口側マニホールド孔付近を示す概略縦断面図である。
【図3】本発明の集電板を用いた燃料電池の構成を示す正面図である。
【図4】耐久試験における実施例1および比較例1の電池のセル電圧と経過時間の関係を示す図である。
【図5】本発明の肉薄部の表裏両面のマニホールド孔周縁部に凸部を設けた集電板にシール部材を装着した集電板の燃料ガスの入口側マニホールド孔付近の概略縦断面図である。
【図6】本発明の他の肉薄部の表裏両面のマニホールド孔周縁部に凸部を設けた集電板にシール部材を装着した集電板の燃料ガスの入口側マニホールド孔付近の概略縦断面図である。
【図7】本発明の補強材およびシール部材を装着した集電板における燃料ガスの入口側マニホールド孔付近の概略縦断面図である。
【図8】本発明の他の補強材およびシール部材を装着した集電板における燃料ガスの入口側マニホールド孔付近の概略縦断面図である。
【図9】従来のOリングを装着した集電板における燃料ガスの入口側マニホールド孔付近の概略縦断面図である。
【符号の説明】
1 導電性セパレータ板
2 MEA
3、13、23、33、43、53 集電板
3a、13a、23a 肉薄部
4 絶縁板
5 端板
6 スクリューばね
7 締結ロッド
8、18、28、38、48 シール部材
8a、18a、28a、38a、48a 抱持片
8b、18b、28b、38b、48b 端部
9 端子
10a、20a、30a、40a、50a、60a 燃料ガスの入口側マ
ニホールド孔
10b 燃料ガスの出口側マニホールド孔
11a 酸化剤ガスの入口側マニホールド孔
11b 酸化剤ガスの出口側マニホールド孔
12a 冷却水の入口側マニホールド孔
12b 冷却水の出口側マニホールド孔
13b、23b 凸部
14 締結ロッド用穴
33a、53a 溝部
34、44 補強材
43a、44a 凸部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell using a solid polymer electrolyte used for a portable power supply, a power supply for an electric vehicle, a home cogeneration system, and the like.
[0002]
[Prior art]
A fuel cell using a solid polymer electrolyte generates electricity and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidizing gas containing oxygen such as air. This fuel cell includes a polymer electrolyte membrane for selectively transporting hydrogen ions, and a pair of electrodes formed on both sides of the polymer electrolyte membrane. The electrode is usually composed mainly of carbon powder carrying a platinum-based metal catalyst, a catalyst layer formed on the polymer electrolyte membrane, and formed on the outer surface of the catalyst layer, and has air permeability and electronic conductivity. And a gas diffusion layer also having
[0003]
In order to prevent fuel gas and oxidant gas supplied to the electrode from leaking out and mixing of the two types of reaction gases with each other, a gas seal material or gasket is placed around the electrode with a polymer electrolyte membrane interposed. Be placed. This gas seal material or gasket is integrated with an electrode and a polymer electrolyte membrane in advance, and this is called an MEA (electrolyte membrane / electrode assembly).
[0004]
A conductive separator plate is disposed outside the MEA to mechanically secure it and electrically connect adjacent MEAs to each other in series. A gas passage for supplying a reaction gas to the electrode surface and carrying away generated water and surplus gas is formed in a portion of the separator plate that comes into contact with the MEA. Although the gas flow path can be provided separately from the separator plate, a method in which a groove is provided on the surface of the separator plate to form a gas flow path is generally used.
[0005]
By alternately stacking these MEAs and separator plates, 10 to 200 unit cells each composed of MEAs and separator plates are stacked, and the obtained stacked body is sandwiched between end plates via a current collector plate and an insulating plate, and fastened. The structure of a general stacked battery is fixed from both ends with rods.
[0006]
As described above, in order to take out the power generated by the stacked battery to the outside, the current collectors are arranged outside the separator plates at both ends of the stacked body in which the unit cells are stacked. Usually, the current collector plate is manufactured by processing a brass or stainless steel plate into a predetermined shape and then applying a thin gold plating in order to reduce the loss of generated power due to unnecessary contact resistance. Here, if the gold plating is made thicker than necessary, the cost is increased.
[0007]
The current collector plate has a hole called a manifold hole for supplying and discharging fuel gas, oxidizing gas, and cooling water. In order to ensure the sealing property between the current collector plate and the adjacent insulating plate or separator plate, a seal groove for an O-ring is provided around the manifold hole, and the O-ring is filled in the groove. However, the inner surface of the manifold hole of the current collector is in direct contact with the humidified reaction gas or cooling water. Therefore, when operated for a long time, corrosion proceeds from a locally thin portion of the gold plating layer formed on the inner surface of the manifold hole of the current collector in contact with the reaction gas or the cooling water, and stainless steel or brass elutes . Further, there is a problem that the eluted metal ions are supplied to the MEA, and the battery characteristics deteriorate.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. In order to solve the above-mentioned problems, it is possible to secure a sealing property between a current collector plate and an adjacent conductive separator plate and an insulating plate, and to prevent corrosion of a manifold hole during a long operation. It is an object of the present invention to provide a polymer electrolyte fuel cell having excellent reliability by using an electric plate.
[0009]
[Means for Solving the Problems]
The polymer electrolyte fuel cell of the present invention comprises a plurality of conductive separator plates, and an electrolyte membrane / electrode assembly inserted between the conductive separator plates, wherein the electrolyte membrane / electrode assembly is a polymer electrolyte membrane. And a cell stack comprising a pair of electrodes sandwiching the polymer electrolyte membrane, fastening means for fastening the cell stack and a pair of current collector plates for extracting generated power, and provided on the cell stack and the current collector plate The oxidizing gas, the fuel gas and the cooling water, the inlet side manifold hole and the outlet side manifold hole of each of the cooling water, and the gas flow path provided in the conductive separator plate and connecting the inlet side manifold hole and the outlet side manifold hole; Oxidant gas including a cooling water flow path, fuel gas and cooling water supply means,
The current collector plate has a thin portion around the manifold hole, and a ring-shaped seal member having an outer peripheral portion having a U-shaped cross section that holds the thin portion from both front and back surfaces is attached to the manifold hole of the current collector plate. The current collector plate is blocked from contact with the oxidizing gas, the fuel gas, and the cooling water by the seal member.
[0010]
It is preferable that the thin portion has a convex portion at the periphery of the manifold hole on both the front and back surfaces.
The end of the holding piece in the seal member holding both the front and back surfaces of the thin portion is thick, and the thickness t of the end and the step h between the main surface of the current collector plate and the thin portion are 0. It is preferable to satisfy 2 ≦ (t−h) /h≦0.3.
The end of the holding piece in the sealing member that holds the front and back surfaces of the thin portion is thick, and the volume ratio of a portion of the end that fits in the step between the main surface of the current collector and the thin portion Is preferably 70 to 90%.
[0011]
It is preferable that the thin portion is made of a reinforcing material having higher mechanical strength than the current collector plate.
It is preferable that the seal member is made of at least one material selected from the group consisting of nitrile rubber, hydrogenated nitrile rubber, silicone rubber, fluorine rubber, ethylene propylene rubber and butyl rubber.
It is preferable that the hardness of the seal member is 40 to 70.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The point of the present invention is to secure a sealing property between the current collector plate and an adjacent insulating plate or separator plate by attaching a ring-shaped seal member to each manifold hole of the current collector plate, and to collect the current. It has been found that a method for preventing deterioration of battery performance due to corrosion in a manifold hole portion of a plate has been found.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 3 shows a typical configuration of a polymer electrolyte fuel cell.
This fuel cell comprises a cell stack in which conductive separator plates 1 and MEAs 2 are alternately stacked, a pair of end plates 5 having both ends sandwiched by a current collector plate 3 and an insulating plate 4, and a fastening rod 7 for fastening these. It consists of. The MEA 2 includes a polymer electrolyte membrane for selectively transporting hydrogen ions, a pair of electrodes sandwiching the electrolyte membrane, and a gasket disposed around the electrodes. The current collecting plate 3 has a terminal 9 for extracting electric power to the outside.
[0014]
The present invention is to improve a current collector plate of this type of fuel cell, and one embodiment thereof is shown in FIG.
The collector plate 3 has a fuel gas inlet-side manifold hole 10a and an outlet-side manifold hole 10b, an oxidant gas inlet-side manifold hole 11a and an outlet-side manifold hole 11b, a coolant inlet-side manifold hole 12a and a coolant-side manifold. A hole 12b is provided. A hole 14 for passing a fastening rod is provided at a corner of the current collector plate 3. Then, as shown in FIG. 2, the thickness around the manifold hole such as the fuel gas inlet side manifold hole 10a becomes thinner than the thickness of the current collector plate 3 main body, and the thin portion 3a is provided around each manifold hole. Have been. Seal members 8 are respectively mounted in manifold holes such as the fuel gas inlet side manifold hole 10a in the current collector plate 3 having such a thin portion 3a.
[0015]
As a first preferred embodiment of the current collector plate 3 with the seal member 8 mounted thereon, FIG. 2 shows a schematic longitudinal sectional view of the vicinity of the fuel gas inlet side manifold hole 10a of the current collector plate.
The seal member 8 according to the present invention has a ring shape, and its outer peripheral portion has a U-shaped cross section. On the other hand, a thin portion 3a having a reduced thickness is provided around the fuel gas inlet side manifold hole 10a. Then, the seal member 8 is mounted in the manifold hole 10a so as to cover the thin portion 3a on both front and back surfaces at the U-shaped section. In this manner, the seal members 8 are respectively mounted on the manifold holes such as the fuel gas inlet side manifold hole 10a. As described above, the seal members 8 are mounted so as to completely cover the respective manifold holes. Therefore, the current collector plate does not come into contact with the fuel gas, the oxidizing gas and the cooling water, and the corrosion of the manifold hole due to the contact with the fuel gas, the oxidizing gas and the cooling water during a long operation can be prevented.
[0016]
The end 8b of the holding piece 8a for holding both the front and back surfaces of the thin portion 3a is thick and protrudes outside the current collector plate 3. When the current collecting plate 3 is fastened in combination with the cell stack and the insulating plate 4 and the like, the end 8b of the sealing member 8 functions as a packing, so that the current collecting plate 3 and the adjacent insulating plate 4 and conductive separator plate 1 can be connected. The sealing property between them can be ensured.
[0017]
As shown in FIG. 2, the thickness t of the end portion 8b of the holding piece 8a of the sealing member 8 holding both the front and back surfaces of the thin portion 3a of the current collecting plate 3, the main surface of the current collecting plate 3 and the thin portion. It is preferable that the step h with respect to 3a satisfies 0.2 ≦ h / (th−h) ≦ 0.3. At this time, the current collector 3 with the seal member 8 attached thereto has excellent sealing properties with respect to the insulating plate 4 and the conductive separator plate 1 adjacent thereto.
It is preferable that the volume ratio of a portion of the end 8b of the seal member 8 that fits in the step between the main surface of the current collector plate 3 and the thin portion 3a is 70 to 90%. At this time, the current collector plate 3 can obtain excellent sealing properties with respect to the adjacent insulating plate 4 and conductive separator plate 1.
[0018]
As a second preferred embodiment of the current collector plate provided with the seal member, FIG. 5 shows a schematic longitudinal sectional view of the vicinity of the fuel gas inlet side manifold hole of the current collector plate.
As in FIG. 2, thin portions 13a are formed around the manifold holes such as the fuel gas inlet-side manifold holes 20a of the current collector 13 respectively. Further, a convex portion 13b is provided at the peripheral portion of each manifold hole on both the front and back surfaces of the thin portion 13a. A ring-shaped seal member 18 having an outer peripheral portion having a U-shaped cross section is mounted on the thin portion 13a of such a current collector plate 13. With such a configuration, the sealing member 18 attached to the current collector plate 13 does not come off during assembly of the fuel cell stack, and is securely fixed to the current collector plate 13. The end 18b of the holding piece 18a of the seal member 18 functions as a packing.
[0019]
In addition, the same effect as in FIG. 5 can be obtained even with the configuration as in FIG. A rounded convex portion 23b is provided at the periphery of the manifold hole such as the fuel gas inlet side manifold hole 30a on both the front and back surfaces of the thin portion 23a of the current collector plate 23. As described above, the convex portions provided on the peripheral edge portions of the manifold holes on both the front and back surfaces of the thin portion of the current collector plate ensure that the sealing member attached to the current collector plate during the assembly of the fuel cell stack does not come off, and the current collector plate is securely removed. Any shape may be used as long as the configuration is such that it is fixed to.
[0020]
FIG. 7 shows a schematic vertical sectional view of the current collector plate near the fuel gas inlet side manifold hole as a third preferred embodiment of the current collector plate provided with the seal member and the reinforcing member.
As shown in FIG. 2, instead of providing the thin portions 3a around the manifold holes such as the fuel gas inlet side manifold holes 40a as shown in FIG. 2, the current collector plate 33 has inner surfaces of the manifold holes such as the fuel gas inlet side manifold holes 40a. At the center of the current collecting plate 33 in the thickness direction, a groove 33a is provided. A disc-shaped reinforcing member 34 having higher mechanical strength than the current collector 33 is attached to the groove 33a.
[0021]
On the other hand, the sealing member 38 in which the end 38b of the holding piece 38a holding the front and back surfaces of the portion exposed from the groove 33a of the reinforcing member 34 is thick is ring-shaped, and the cross section of the outer periphery is U-shaped. It is. The seal member 38 is attached to a manifold hole such as a fuel gas inlet side manifold hole 40a so as to cover a portion of the reinforcing member 34 exposed from the groove portion 33a on both front and back surfaces at a portion having a U-shaped cross section. Is done. In this manner, the seal member 38 is fixed to the current collecting plate 33 via the reinforcing member 34 so as to cover each manifold hole.
[0022]
FIG. 8 is a schematic vertical cross-sectional view of the vicinity of a fuel gas inlet side manifold hole of a current collector plate as another third preferred embodiment in which a seal member and a reinforcing member are mounted.
A protrusion 43a is provided at the center in the thickness direction of the current collector 43 on the inner surface of the manifold hole such as the fuel gas inlet side manifold hole 50a in the current collector 43. On the other hand, the ring-shaped reinforcing member 44 having higher mechanical strength than the current collector plate has a concave portion on the outer peripheral portion. By fitting the concave portion of the reinforcing member 44 into the convex portion 43a on the inner surface of each manifold hole, the reinforcing member 44 is attached to each of the manifold holes such as the fuel gas inlet side manifold hole 50a.
[0023]
Further, a protrusion 44a is provided on an inner peripheral portion of the reinforcing member 44. On the other hand, the sealing member 48 having a thick end portion 48b of the holding piece 48a for holding both the front and back surfaces of the convex portion 44a of the reinforcing member 44 has a ring shape, and the cross section of the outer peripheral portion is U-shaped. The seal member 48 is attached to each of the manifold holes such as the fuel gas inlet-side manifold hole 50a so as to cover the convex portion 44a on both front and back surfaces at the U-shaped section. In this way, the seal member 48 is fixed to the current collector 43 via the reinforcing member 44 so as to cover each manifold hole.
[0024]
As shown in FIGS. 7 and 8, the thin portion of the current collector plate on which the seal member is mounted is formed of a reinforcing material having a higher mechanical strength than the current collector plate, so that deterioration of the thin portion during long-time operation can be prevented. Can be prevented. This is particularly effective when the thickness of the thin portion is reduced.
[0025]
It is preferable that the seal member is made of at least one material selected from the group consisting of nitrile rubber, hydrogenated nitrile rubber, silicone rubber, fluorine rubber, ethylene propylene rubber and butyl rubber. Among them, fluororubber is particularly preferred because it is excellent in heat resistance, acid resistance and water resistance.
If the hardness of the sealing member is too low, the sealing property is deteriorated, and if it is too high, the reaction force at the time of sealing becomes large, and therefore, it is preferably 40 to 70.
[0026]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0027]
<< Example 1 >>
A platinum particle having an average particle size of about 30 ° was supported on an acetylene black-based carbon powder at a weight ratio of 4: 1 to obtain a catalyst powder for an electrode. An electrode paste was obtained by mixing 5 g of this catalyst powder in 15 g of water and 40 g of 10 wt% of perfluorocarbon sulfonic acid in ethyl alcohol in ethyl alcohol. .
[0028]
On the other hand, carbon paper having a thickness of 300 μm was immersed in an aqueous dispersion of polytetrafluoroethylene (PTFE) and then dried to obtain a water-repellent porous electrode substrate. An electrode paste was applied to one surface of the porous electrode substrate and dried to obtain an electrode. Next, the polymer electrolyte membrane is sandwiched between the pair of electrodes obtained above with the surface on which the electrode paste is applied inward, and this is hot-pressed at 110 ° C. for 30 minutes to obtain an electrolyte membrane-electrode assembly. 2 (MEA) was produced. As the polymer electrolyte membrane used here, perfluorocarbon sulfonic acid thinned to a thickness of 50 μm (Nafion, manufactured by DuPont) was used.
[0029]
The conductive separator plate 1 made of a 3 mm-thick isotropic graphite material and having a gas flow path formed by machining was alternately stacked with 50 cells of the MEA 2 obtained above to prepare a cell stack.
[0030]
On the other hand, the current collecting plate 3 equipped with the seal member of the present invention was manufactured as follows.
Using brass having a thickness of 5 mm, machining was performed in a predetermined shape as shown in FIGS. At this time, fuel gas inlet-side manifold holes 10a and outlet-side manifold holes 10b on both surfaces of the current collector plate, oxidant gas inlet-side manifold holes 11a and outlet-side manifold holes 11b, and coolant inlet-side manifold holes 12a and outlets. The thickness around the side manifold hole 12b was reduced by 1 mm to provide a thin portion 3a having a thickness of 3 mm. Thereafter, the surface of the current collector plate 3 was subjected to a gold plating treatment with a thickness of 1 μm. Then, as shown in FIG. 2, ring-shaped seal members 8 having thick end portions 8b of holding pieces 8a for holding both front and rear surfaces of the thin portion 3a were mounted on each manifold hole of the current collector plate.
[0031]
The seal member 8 used here is a fluorine rubber having a hardness of 50, and was manufactured by injection molding. At this time, the thickness t of the end portion 8b of the sealing member 8 is 1.2 mm, the step h between the main surface of the current collector and the thin portion is 1.0 mm, and the value (t−h) / h is 0. .2. In addition, the volume ratio of the portion of the end 8b of the sealing member 8 that fits in the step between the main surface of the current collector 3 and the thin portion 3a is set to 80%.
[0032]
The current collecting plate 3 to which the sealing member 8 obtained above was attached was disposed at both ends of the cell laminate obtained above, and the insulating plate 4 was further disposed outside the same. The terminal 9 was connected to the current collector 3. The laminate was sandwiched between end plates 5 made of stainless steel via the current collector plate 3 and the insulating plate 4, and the laminate was fastened with a fastening rod 7 and a screw spring 6 at a pressure of 10 kgf / cm 2 . A fuel cell having the structure shown in FIG. This is called battery A.
[0033]
<< Comparative Example 1 >>
Instead of the current collecting plate equipped with the seal member of Example 1, a current collecting plate equipped with a conventional O-ring was used. The current collecting plate to which the O-ring was attached was manufactured as follows.
Using the same brass as in Example 1, a predetermined current collector plate was manufactured by machining. An O-ring groove 53a was provided at a predetermined position around the manifold hole such as the fuel gas inlet side manifold hole 60a. Then, as shown in FIG. 9, O-rings 58 made of fluorine rubber and having a circular cross section were mounted in O-ring grooves 53a provided around the respective manifold holes.
A fuel cell was manufactured in the same manner as in Example 1 except that the current collector 53 provided with the O-ring 58 obtained above was used. This battery is referred to as battery B.
[0034]
The battery A of Example 1 and the battery B of Comparative Example 1 produced above were subjected to the following durability test. Humidified and heated fuel gas was supplied to one electrode at a dew point of 83 ° C., and humidified and heated air was supplied to the other electrode at a dew point of 78 ° C. Then, an endurance test was performed in an environment of 85 ° C. under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 30%, and a current density of 0.3 A / cm 2 . The result is shown in FIG.
[0035]
In the battery B of Comparative Example 1, the reduction rate of the battery voltage became large after 500 hours from the start of the test, and the performance could not be completely obtained in 2000 hours. In contrast, the battery A of Example 1 exhibited stable performance even after lapse of 5000 hours.
After the endurance test, the battery B of Comparative Example 1 was disassembled, and the current collector plate was observed. As a result, there was no gold-plated portion near the inlet-side manifold hole and the outlet-side manifold hole of the fuel gas, oxidizing gas, and cooling water, and brass was removed. Elution was confirmed. This is because the corrosion progressed selectively from a locally thin portion of the gold plating layer formed on the current collector plate due to the electrolysis of the humidification water or the cooling water during power generation. Further, the metal ions eluted by the electrolysis were taken into the fuel gas, the oxidizing gas and the humidified water, and supplied to the MEA, thereby causing deterioration of the polymer electrolyte. On the other hand, the current collector of Example 1 did not show any corrosion even after 6000 hours, confirming the effectiveness of the current collector provided with the seal member of the present invention.
[0036]
<< Example 2 >>
The current collector 33 to which the reinforcing member 34 was attached was manufactured as follows.
A current collector plate having a predetermined shape was produced by machining using brass having a thickness of 2.5 mm. As shown in FIG. 7, a groove 33a is provided at the center of the current collector 33 in the thickness direction on the inner surface of the manifold hole such as the fuel gas inlet side manifold hole 40a in the current collector 33. Then, a stainless steel reinforcing member 34 having higher mechanical strength than brass was attached to the groove 33a.
[0037]
The seal member 38 was manufactured as follows.
A predetermined sealing member 38 was produced in the same manner as in Example 1 using a fluorine rubber having a hardness of 50. At this time, the thickness t of the end portion 38b of the holding member 38a holding the front and back surfaces of the reinforcing member 34 in the seal member 38 is 1.2 mm, and the step h between the surface of the current collector plate 33 and the reinforcing member 34 is 1 0.0 mm, and the (t−h) / h value was 0.2. The volume ratio of the portion of the end 38b that fits into the step between the surface of the current collector 33 and the reinforcing member 34 is set to 80%.
The seal member 38 obtained above was mounted on the current collecting plate 33 to which the reinforcing member 34 obtained above was attached.
A fuel cell was obtained in the same manner as in Example 1, except that this current collector was used instead of the current collector of Example 1. This battery is referred to as battery C.
[0038]
<< Example 3 >>
A current collector was produced in the same manner as in Example 1, except that brass having a thickness of 2.5 mm was used. Then, the same sealing member as in Example 2 was attached to this current collector plate. A fuel cell was obtained in the same manner as in Example 1 except that this current collector was used. This battery is referred to as Battery D.
[0039]
An endurance test was performed on the battery C of Example 2 and the battery D of Example 3 under the same conditions as in Example 1. After 6000 hours, Battery C and Battery D were each disassembled, and the current collector plate was examined. As a result, cracks were found at the base of the thin portion of the current collector plate of the battery D of Example 3. This is considered to be because the thickness of the current collector plate of Example 3 was smaller than that of Example 1, and cracks occurred at the root portion having the lowest strength due to long-time operation. On the other hand, in the battery C of Example 2, no crack was observed. From this, it was shown that when the thickness of the thin portion to which the seal member is attached becomes thin because the thickness of the current collector plate is thin, it is effective to configure the thin portion with a reinforcing material.
[0040]
【The invention's effect】
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a current collector plate that can ensure the sealing performance between a current collector plate and an adjacent conductive separator plate and insulating plate, and can prevent corrosion of a manifold hole during long-time operation By using, a polymer electrolyte fuel cell with excellent reliability can be provided.
[Brief description of the drawings]
FIG. 1 is a front view showing a configuration of a current collector plate of the present invention.
FIG. 2 is a schematic vertical sectional view showing the vicinity of a fuel gas inlet-side manifold hole in a current collector provided with a seal member of the present invention.
FIG. 3 is a front view showing a configuration of a fuel cell using the current collector plate of the present invention.
FIG. 4 is a diagram showing the relationship between the cell voltage and the elapsed time of the batteries of Example 1 and Comparative Example 1 in an endurance test.
FIG. 5 is a schematic vertical cross-sectional view showing the vicinity of a fuel gas inlet-side manifold hole of a current collector plate provided with a seal member on a current collector plate having a convex portion formed on the periphery of a manifold hole on both front and rear surfaces of a thin portion according to the present invention. is there.
FIG. 6 is a schematic vertical cross-sectional view of a fuel gas inlet-side manifold hole near a fuel gas inlet plate in which a sealing member is mounted on a current collector plate provided with protrusions on the front and rear surfaces of the manifold holes on both sides of another thin portion of the present invention; FIG.
FIG. 7 is a schematic longitudinal sectional view of the vicinity of a fuel gas inlet side manifold hole in a current collector plate provided with a reinforcing member and a seal member of the present invention.
FIG. 8 is a schematic longitudinal sectional view of the vicinity of a fuel gas inlet side manifold hole in a current collector plate provided with another reinforcing member and a seal member according to the present invention.
FIG. 9 is a schematic vertical cross-sectional view of the vicinity of a fuel gas inlet side manifold hole in a current collector plate equipped with a conventional O-ring.
[Explanation of symbols]
1 conductive separator plate 2 MEA
3, 13, 23, 33, 43, 53 Current collector plates 3a, 13a, 23a Thin portion 4 Insulating plate 5 End plate 6 Screw spring 7 Fastening rods 8, 18, 28, 38, 48 Seal members 8a, 18a, 28a, 38a, 48a Holding pieces 8b, 18b, 28b, 38b, 48b End 9 Terminals 10a, 20a, 30a, 40a, 50a, 60a Fuel gas inlet side manifold hole 10b Fuel gas outlet side manifold hole 11a Oxidant gas Inlet-side manifold hole 11b Oxidant gas outlet-side manifold hole 12a Cooling water inlet-side manifold hole 12b Cooling water outlet-side manifold hole 13b, 23b Convex portion 14 Fastening rod holes 33a, 53a Grooves 34, 44 Reinforcement 43a, 44a convex

Claims (7)

複数の導電性セパレータ板、および前記導電性セパレータ板の間に挿入された電解質膜・電極接合体を具備し、前記電解質膜・電極接合体が高分子電解質膜および前記高分子電解質膜を挟む一対の電極からなるセル積層体、前記セル積層体および発電電力を取り出すための一対の集電板を締結する締結手段、ならびに
前記セル積層体および集電板に設けられた酸化剤ガス、燃料ガスおよび冷却水各々の入口側マニホールド孔および出口側マニホールド孔、および前記導電性セパレータ板に設けられて前記入口側マニホールド孔と出口側マニホールド孔を連絡するガス流路および冷却水流路を含む酸化剤ガス、燃料ガスおよび冷却水の供給手段を含み、
前記集電板が、マニホールド孔の周囲において肉薄部を有し、この肉薄部を表裏両面から抱持する断面コ字状の外周部を有するリング状のシール部材を集電板のマニホールド孔に装着し、前記シール部材によって、集電板が、酸化剤ガス、燃料ガスおよび冷却水との接触を遮断されている固体高分子型燃料電池。
A plurality of conductive separator plates, and an electrolyte membrane / electrode assembly inserted between the conductive separator plates, wherein the electrolyte membrane / electrode assembly is a polymer electrolyte membrane and a pair of electrodes sandwiching the polymer electrolyte membrane , A fastening means for fastening a pair of current collector plates for taking out the cell stack and the generated power, and oxidizing gas, fuel gas and cooling water provided in the cell stack and the current collector plate Oxidant gas, fuel gas including a gas flow path and a cooling water flow path provided at each of the inlet side manifold hole and the outlet side manifold hole, and provided on the conductive separator plate and connecting the inlet side manifold hole and the outlet side manifold hole, fuel gas And cooling water supply means,
The current collector plate has a thin portion around the manifold hole, and a ring-shaped seal member having an outer peripheral portion having a U-shaped cross section that holds the thin portion from both front and back surfaces is attached to the manifold hole of the current collector plate. A polymer electrolyte fuel cell in which the current collector plate is blocked from contact with the oxidizing gas, the fuel gas, and the cooling water by the seal member.
前記肉薄部が、表裏両面におけるマニホールド孔周縁部に凸部を有する請求項1記載の固体高分子型燃料電池。The polymer electrolyte fuel cell according to claim 1, wherein the thin portion has a convex portion at the periphery of the manifold hole on both front and back surfaces. 前記肉薄部の表裏両面を抱持する前記シール部材における抱持片の端部が肉厚であり、前記端部の厚さtおよび集電板の主表面と肉薄部との段差hが、0.2≦(t−h)/h≦0.3を満たす請求項1または2記載の固体高分子型燃料電池。The end of the holding piece in the sealing member holding both the front and back surfaces of the thin portion is thick, and the thickness t of the end and the step h between the main surface of the current collector plate and the thin portion are 0. 3. The polymer electrolyte fuel cell according to claim 1, wherein 2 ≦ (t−h) /h≦0.3 is satisfied. 前記肉薄部の表裏両面を抱持する前記シール部材における抱持片の端部が肉厚であり、前記端部のうち集電板の主表面と肉薄部との段差部分に収まる部分の体積割合が、70〜90%である請求項1〜3のいずれかに記載の固体高分子型燃料電池。The end of the holding piece in the sealing member holding the front and back surfaces of the thin portion is thick, and the volume ratio of a portion of the end that fits in the step between the main surface of the current collector and the thin portion The polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the content is 70 to 90%. 前記肉薄部が、集電板よりも力学的強度の高い補強材により構成されていることを特徴とする請求項1〜4のいずれかに記載の固体高分子型燃料電池。The polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the thin portion is made of a reinforcing material having higher mechanical strength than the current collector plate. 前記シール部材が、ニトリルゴム、水素添加ニトリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴムおよびブチルゴムからなる群より選ばれた少なくとも一種の材料で構成される請求項1、3または4記載の固体高分子型燃料電池。The solid height according to claim 1, wherein the sealing member is made of at least one material selected from the group consisting of nitrile rubber, hydrogenated nitrile rubber, silicone rubber, fluorine rubber, ethylene propylene rubber and butyl rubber. Molecular fuel cell. 前記シール部材の硬度が40〜70である請求項1、3または4記載の固体高分子型燃料電池。5. The polymer electrolyte fuel cell according to claim 1, wherein the seal member has a hardness of 40 to 70.
JP2002260299A 2002-09-05 2002-09-05 Solid polymer type fuel cell Withdrawn JP2004103296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260299A JP2004103296A (en) 2002-09-05 2002-09-05 Solid polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260299A JP2004103296A (en) 2002-09-05 2002-09-05 Solid polymer type fuel cell

Publications (1)

Publication Number Publication Date
JP2004103296A true JP2004103296A (en) 2004-04-02

Family

ID=32261057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260299A Withdrawn JP2004103296A (en) 2002-09-05 2002-09-05 Solid polymer type fuel cell

Country Status (1)

Country Link
JP (1) JP2004103296A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165077A (en) * 2002-11-15 2004-06-10 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2006019224A (en) * 2004-07-05 2006-01-19 Toyota Motor Corp Fuel cell
JP2006049129A (en) * 2004-08-05 2006-02-16 Honda Motor Co Ltd Fuel cell stack
JP2006147511A (en) * 2004-11-25 2006-06-08 Honda Motor Co Ltd Fuel cell stack
KR100767925B1 (en) 2006-11-15 2007-10-17 지에스칼텍스 주식회사 Fuel cell stack sealing structure
JP2011165570A (en) * 2010-02-12 2011-08-25 Honda Motor Co Ltd Fuel cell
US8137865B2 (en) 2006-09-29 2012-03-20 Toyota Jidosha Kabshiki Kaisha Plate member for fuel cell, manufacturing method of the plate member, and fuel cell
CN105529480A (en) * 2014-10-15 2016-04-27 丰田自动车株式会社 Current collector for fuel cell, and fuel cell stack
US10115976B2 (en) 2013-10-30 2018-10-30 Toyota Jidosha Kabushiki Kaisha Terminal plate for fuel cell, manufacturing method of terminal plate for fuel cell, and fuel cell
CN109038460A (en) * 2018-08-07 2018-12-18 国网安徽省电力有限公司培训中心 Ultrahigh pressure wiring arrester
US10270106B2 (en) 2014-11-14 2019-04-23 Toyota Jidosha Kabushiki Kaisha Terminal plate for fuel cell, and fuel cell
DE102015118797B4 (en) 2014-11-12 2023-02-02 Toyota Jidosha Kabushiki Kaisha Fuel cell end plate, manufacturing method therefor and fuel cell
DE102022119436A1 (en) 2022-08-03 2024-02-08 Schaeffler Technologies AG & Co. KG Electrode module for a redox flow cell and redox flow cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165077A (en) * 2002-11-15 2004-06-10 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2006019224A (en) * 2004-07-05 2006-01-19 Toyota Motor Corp Fuel cell
JP2006049129A (en) * 2004-08-05 2006-02-16 Honda Motor Co Ltd Fuel cell stack
JP4653978B2 (en) * 2004-08-05 2011-03-16 本田技研工業株式会社 Fuel cell stack
JP2006147511A (en) * 2004-11-25 2006-06-08 Honda Motor Co Ltd Fuel cell stack
US8137865B2 (en) 2006-09-29 2012-03-20 Toyota Jidosha Kabshiki Kaisha Plate member for fuel cell, manufacturing method of the plate member, and fuel cell
KR100767925B1 (en) 2006-11-15 2007-10-17 지에스칼텍스 주식회사 Fuel cell stack sealing structure
JP2011165570A (en) * 2010-02-12 2011-08-25 Honda Motor Co Ltd Fuel cell
US10115976B2 (en) 2013-10-30 2018-10-30 Toyota Jidosha Kabushiki Kaisha Terminal plate for fuel cell, manufacturing method of terminal plate for fuel cell, and fuel cell
CN105529480A (en) * 2014-10-15 2016-04-27 丰田自动车株式会社 Current collector for fuel cell, and fuel cell stack
KR101805261B1 (en) * 2014-10-15 2017-12-05 도요타지도샤가부시키가이샤 Current collector for fuel cell, and fuel cell stack
US10135078B2 (en) 2014-10-15 2018-11-20 Toyota Jidosha Kabushiki Kaisha Current collector for fuel cell, and fuel cell stack
CN105529480B (en) * 2014-10-15 2019-01-01 丰田自动车株式会社 Fuel cell collector plate and fuel cell unit
DE102015118797B4 (en) 2014-11-12 2023-02-02 Toyota Jidosha Kabushiki Kaisha Fuel cell end plate, manufacturing method therefor and fuel cell
US10270106B2 (en) 2014-11-14 2019-04-23 Toyota Jidosha Kabushiki Kaisha Terminal plate for fuel cell, and fuel cell
CN109038460A (en) * 2018-08-07 2018-12-18 国网安徽省电力有限公司培训中心 Ultrahigh pressure wiring arrester
CN109038460B (en) * 2018-08-07 2020-02-07 国网安徽省电力有限公司培训中心 Ultrahigh voltage line lightning arrester
DE102022119436A1 (en) 2022-08-03 2024-02-08 Schaeffler Technologies AG & Co. KG Electrode module for a redox flow cell and redox flow cell

Similar Documents

Publication Publication Date Title
US6261711B1 (en) Sealing system for fuel cells
JP4656683B2 (en) Polymer electrolyte fuel cell
US7476459B2 (en) Membrane electrode assembly and fuel cell
US7390586B2 (en) Fuel cell stacks of alternating polarity membrane electrode assemblies
JP4920137B2 (en) Operation method of polymer electrolyte fuel cell
JP2004103296A (en) Solid polymer type fuel cell
KR100599667B1 (en) Separator for fuel cell using the metal coated with TiN, method to prepare thereit, and polymer electrolyte membrane fuel cell comprising the same
CN101828293A (en) Fuel cell
JP4680338B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF CONNECTING THE SAME
JP5022707B2 (en) Solid polymer electrolyte fuel cell
US20130101917A1 (en) Polymer electrolyte fuel cell and method of fabricating the same
JP2000021418A (en) Solid high polymer electrolyte fuel cell
JP4366726B2 (en) Polymer electrolyte fuel cell
US7862954B2 (en) Fuel cell
JP2002343373A (en) Polymer electrolyte fuel cell and manufacturing method of separator plate for the same
JP4848824B2 (en) Polymer electrolyte fuel cell
JP2000021419A (en) Solid high polymer electrolyte fuel cell
JP2002231262A (en) High polymer electrolyte fuel cell
JP2002025565A (en) Electrode for high polymer molecule electrolyte fuel cells and its manufacturing process
JP2002198059A (en) Polymer electrolyte fuel cell and its operation method
JP2004158435A (en) Fuel cell and operation method thereof
KR100520850B1 (en) Separator using the metal screen with gas flow channel and polymer electrolyte membrane fuel cell comprising the same
JP4498844B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2004349015A (en) Polymer electrolyte fuel cell
JP2002343368A (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091216