JPH03134965A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH03134965A
JPH03134965A JP1272154A JP27215489A JPH03134965A JP H03134965 A JPH03134965 A JP H03134965A JP 1272154 A JP1272154 A JP 1272154A JP 27215489 A JP27215489 A JP 27215489A JP H03134965 A JPH03134965 A JP H03134965A
Authority
JP
Japan
Prior art keywords
substrate
dense
electrode
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1272154A
Other languages
Japanese (ja)
Inventor
Kazuo Koseki
小関 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1272154A priority Critical patent/JPH03134965A/en
Publication of JPH03134965A publication Critical patent/JPH03134965A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the warping of a unit cell, prevent the mixed contact of reaction gas, and facilitate manufacture by laminating a substrate laminatingly supporting a unit cell and a substrate supporting an inter-connector in turn. CONSTITUTION:A porous substrate 2 and a dense substrate 3 are formed with NiO and ZrO2. A unit cell 30 constituted of a fuel electrode 5, a solid electrolyte body 6 and an oxidizer electrode 7 is formed on one of main faces of a substrate 31B, and a guide blade 32 feeding H2 gas is provided on the other face of the substrate 31B. An oxidizer gas feed hole 9 and a fuel gas feed hole 10 are provided on the substrate 3, and a fine hole 11 communicate from the hole 10 to the substrate 2 is provided. A gas sealing glass ring groove 12 is provided around the hole 9. A unit cell plate is manufactured as follows: ZrO2 powder is mixed with NiO, it is press-molded into a disk, which is sintered to obtain the substrate 3. The substrate 3 thus obtained is crushed into powder. A dense disk is placed at the center of a disk-shaped die, the crushed powder is filled on the periphery, then it is press-molded and sintered to obtain the substrate 31B. The fuel electrode 5, electrolyte body 6 and oxidizer electrode 7 are welded by plasma-flame spraying.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解質屋燃料電池に係り、特にカスマニ
ホルドの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolyte fuel cell, and particularly to the structure of a gas manifold.

〔従来の技術〕[Conventional technology]

ジルコニア等の酸化物固体電解質を用いる燃料電池は、
その作動温笈が800〜1100℃と高温であるため、
発電効率が高い上に触媒が不要であり、また電解質が固
体であるため取扱いか容易であるなどの特長を有し、第
三世代の燃料電池として期待されている。
Fuel cells using oxide solid electrolytes such as zirconia are
Because its operating temperature is as high as 800-1100℃,
It has high power generation efficiency, does not require a catalyst, and is easy to handle because the electrolyte is solid, so it is expected to be used as a third-generation fuel cell.

しかしなから固体電解質屋燃料電池は、セラミックスが
主要な構成材料であるために、熱的に破損しやすく、ま
たガスの進切なシール方法かないため実現が困難であっ
た。そのため燃料電池として特殊な形状である円筒型の
ものか考え出され、上記2つの問題を解決し、電池の運
転試験に成功しているか、電池単位体積あたりの発電密
度が低く経済的に有利なものが得られる見通しはまだな
い0 発電密度を高めるためには平板型にすることか必要であ
る。平板型の燃料電池には例んは第4図の分解斜視図に
示す構造のものか知られている。
However, solid electrolyte fuel cells have been difficult to realize because their main constituent material is ceramic, which makes them susceptible to thermal damage, and there is no advanced gas sealing method. Therefore, a cylindrical fuel cell with a special shape was devised, and the above two problems were solved, and the battery operation test was successful.The power generation density per unit volume of the battery is low and it is economically advantageous. There is no prospect of obtaining anything yet. 0 In order to increase the power generation density, it is necessary to make it a flat plate type. A known planar fuel cell has a structure shown in an exploded perspective view of FIG. 4, for example.

この型の燃料電池においては単セル112(固体電解質
板112Aと電極112B 、 112Cカシらなる)
とセパレート&111とが交互に積層され、セパレート
板のv体重に直角交差した溝にはそれぞれ異なった反応
ガスが流される。
This type of fuel cell has a single cell 112 (consisting of a solid electrolyte plate 112A, electrodes 112B, and 112C).
and separates &111 are alternately stacked, and different reaction gases are flowed into the grooves perpendicular to the v weight of the separate plates.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

反応ガスは外部カスマニホールド(図示せず)を用いて
燃料電池に個別(こ導入される。この際燃料電池内に反
応カスを分離して充分に供給するためには単セル112
とセパレート&l11とはカスシールを行つことか必要
となる。カスシールを行っために単セルとセパレート&
 111とを一体に焼結することか考えられるかこの方
法では、単セルとセパレート板とか異1を材料で構成さ
れるためわずかな熱膨張率の走や温度分布の不均一性に
よって一体焼結体に割れか発生する。
The reactant gas is individually introduced into the fuel cell using an external waste manifold (not shown).
It is necessary to perform a casseal to separate &l11. Separate from single cell to perform cassealing &
Is it possible to sinter the 111 and 111 together? In this method, since the single cell and the separate plate are made of different materials, it is not possible to sinter them together due to the slight variation in thermal expansion coefficient and uneven temperature distribution. Cracks occur on the body.

単セルとセパレート&とのカスシールの必要性は、反応
カスか立体的に交差して流れることに起因している。ま
た単セルは電池の内部抵抗を低くするために肉薄ζこし
たいが、厚さが薄いと単セル製造時、反りの問題か発生
する。
The necessity of cassealing between the single cell and the separate cassettes is due to the fact that the reaction scum flows sterically intersectingly. In addition, it is desirable to make a single cell thin in order to lower the internal resistance of the battery, but if the thickness is thin, there may be problems with warping during the manufacture of the single cell.

この発明は上述の点に鑑みてなされ、その目的は単セル
の形成方法と反応カスのガス流路に改良を加えることに
より、製造容易で反応カスの混触が少ない固体電解質型
燃料電池を提供することにある。
This invention has been made in view of the above points, and its purpose is to provide a solid oxide fuel cell that is easy to manufacture and has less mixing of reaction scum by improving the method of forming a single cell and the gas flow path for reaction scum. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれは単セル30と、インタコ
ネクタ17と、基板31A 、 3113 、 とを有
し、jliてルは酸化剤極と固体電解質体と燃料極とか
らなり基板の上に積層支持きれるものであり、インタコ
ネクタは緻密な層であり他の基板上に形成されるもので
あり、 基板は中央部の緻智質基敬3,15と周鉱部の多孔質基
板2,14とからなり、 緻贅宜基板は頁迫する反応カス供給孔9,10を有し、 多孔質基板は案内羽32を有し、AiJ記酸化剤極と燃
料惟に反応カスを供給し、 前記単セルを積層支持した基板と、MrJ記インタコネ
クタを形成した基板とは交互に積層されるものであると
することによって達5y、すれる。酸化剤極、燃料極は
多孔質に形成される。固体電解質体は緻密に形成される
。基板の多孔質基板は反応カスである酸化剤ガスと燃料
ガスを拡散させ、酸化剤極と燃料極にそれぞれ反応ガス
を供給する。固体電解質体とインタコネクタは酸化剤カ
スと燃料ガスの混触を防止する。固体電解質体はイオン
導電性物質で酸化剤カスと燃料カスを供給したときに起
電力を発生する。
The above-mentioned object according to the present invention has a single cell 30, an interconnector 17, and substrates 31A, 3113, and the cell is composed of an oxidizer electrode, a solid electrolyte body, and a fuel electrode, and is placed on the substrate. The interconnector is a dense layer formed on another substrate, and the substrate is composed of a dense layer 3, 15 in the center and a porous substrate 2, 14 in the surrounding area. The porous substrate has reaction scum supply holes 9 and 10 that are close together, and the porous substrate has guide wings 32 for supplying the reaction scum to the AiJ oxidizer electrode and the fuel gas. This can be achieved by assuming that the substrates on which the cells are laminated and supported and the substrates on which the MrJ interconnector is formed are alternately laminated. The oxidizer electrode and fuel electrode are formed porous. The solid electrolyte body is formed densely. The porous substrate diffuses the oxidizing gas and fuel gas, which are reaction residues, and supplies the reactive gases to the oxidizing agent electrode and the fuel electrode, respectively. The solid electrolyte body and the interconnector prevent the oxidizer scum from coming into contact with the fuel gas. The solid electrolyte is an ionically conductive material that generates an electromotive force when oxidizer scum and fuel scum are supplied.

〔作用〕[Effect]

単セルは基板上に形成されるので反りを生することなく
肉薄に調製される。
Since the single cell is formed on a substrate, it can be made thin without warping.

基板の緻密)k基板を其進して反応ガス供給孔か設けら
れるので各反応カスは多孔質基叡内を緻密な固体電解質
体とインタコネクタにより相互に分離されて放射状に流
すことができる。
Denseness of Substrate) Since reaction gas supply holes are provided by advancing the substrate, each reaction scum can flow radially within the porous substrate, separated from each other by the dense solid electrolyte body and the interconnector.

緻密質基板は反応ガス供耐孔の部分に2ける反応カスの
混触を防止する。
The dense substrate prevents reaction scum from coming into contact with the reaction gas supply holes.

〔実施例〕〔Example〕

(5) 次にこの発明の実施例を図面に基いて説明する。 (5) Next, embodiments of the present invention will be described based on the drawings.

(実施例1) 面図、第1図tblはA−A矢視断面図である。多孔質
基板2と緻密質基板3はN+0とZrO2とから形成さ
れる。工面の1つには燃料極5、固体を解質体6、酸化
剤極7からなる単セル加が形成されており、多孔質基板
の他方の面にはH2カスが流れる案内羽32が設けられ
ている。また、緻密質基板3には酸化剤ガス供給孔9と
燃料ガス供給孔10か設けられて2す、燃料ガス供給孔
10から多孔質基板2に通じる細溝11が設けられてい
る。ざらにH2ガスが流れる面の酸化剤ガス供給孔9の
周囲にはガスシール用のガラス11ング溝12か設けら
れている。
(Example 1) The plan view and FIG. 1 tbl are a sectional view taken along the line A-A. The porous substrate 2 and the dense substrate 3 are formed from N+0 and ZrO2. A single cell layer consisting of a fuel electrode 5, a solid disintegration body 6, and an oxidizer electrode 7 is formed on one surface of the porous substrate, and a guide blade 32 through which H2 scum flows is provided on the other surface of the porous substrate. It is being Further, the dense substrate 3 is provided with an oxidant gas supply hole 9 and a fuel gas supply hole 10, and a narrow groove 11 that communicates from the fuel gas supply hole 10 to the porous substrate 2 is provided. A glass groove 12 for gas sealing is provided around the oxidant gas supply hole 9 on the surface through which the H2 gas flows.

このような単電池板はつぎのようにし゛C調製される。Such a cell plate is prepared as follows.

すなわちまず0.1μm程夏のNjOとZr0z <7
)粉末を混合し、厚さ2 ’mmの円板にプレス成形後
、1500°Cで焼結して緻密質基板3を得る。つぎに
同(6) 様にして得た基板を粉砕して、10μm程度の粉末を得
る。円板状の金塊の中央部に緻密な円板を置き、周囲に
粉砕した粉末を品め、プレス成形後、1300℃で焼結
し、周囲を多孔賀状にして本発明に必要な基&31Bを
得る。つぎにプラズマ浴射で、燃料極5、固体電解質体
6、酸化剤極7を順次溶射形成する。
That is, first of all, about 0.1 μm of summer NjO and Zr0z <7
) The powders are mixed, press-molded into a disk with a thickness of 2' mm, and then sintered at 1500°C to obtain a dense substrate 3. Next, the substrate obtained in the same manner as in (6) is crushed to obtain a powder of about 10 μm. A dense disc is placed in the center of a disc-shaped gold ingot, and crushed powder is placed around it. After press molding, it is sintered at 1300°C, and the surrounding area is made into a perforated shape to form the group &31B necessary for the present invention. obtain. Next, the fuel electrode 5, solid electrolyte body 6, and oxidizer electrode 7 are sequentially formed by plasma spraying.

第2図はこの発明の実施例に係るインタコネクタを積層
支持した基板(セパレート&)を示し、第2 r’lJ
 (alは平面図、第2図(blはB−B矢視図である
。多孔質基板14と緻密質基板15はランタンマンカ゛
ナイト(LaalnO3)”a−用いてルー#、される
。工面の1つにはランタンクロマイト(LaCr03)
からなるインタコネクタ17か設けられ他の面には空気
を導く案内駒32が設?すられる。
FIG. 2 shows a substrate (separate &) on which interconnectors according to an embodiment of the present invention are stacked and supported, and the second r'lJ
(al is a plan view, FIG. 2 (bl is a BB arrow view. The porous substrate 14 and the dense substrate 15 are made of lanthanum manganite (LaalnO3). One is lanthanum chromite (LaCr03)
An interconnector 17 is provided on the other side, and a guide piece 32 for guiding air is provided on the other side. Being ignored.

緻密質基板15には酸化剤ガス供給孔9と燃料ガス供給
孔10か設けられて2つ、酸化剤ガス供給孔9力八ら多
孔質基板に通じる細溝21が設けられている。燃料カス
供給孔10の周囲にはガスシール用のガラスリング溝2
2か設けられている。
The dense substrate 15 is provided with two oxidant gas supply holes 9 and two fuel gas supply holes 10, and a narrow groove 21 that communicates from the oxidant gas supply holes 9 to the porous substrate. A glass ring groove 2 for gas sealing is provided around the fuel scum supply hole 10.
2 are provided.

このようなセパレート板はつぎのよつにして調製される
。Q、lpm程度のLa M no 3の粉末を厚ざ2
’mmの円板にプレス成形後、1300°Cで焼結して
緻密質基板を得る。つぎに同様にして得た円板を粉砕し
て、10μm8度の粉末を得る。円板状の金型の中央部
に緻密な基板を置き、周囲に粉砕した粉末を結め、プレ
ス成形後、1100℃で焼結し、周囲を多孔賀状にして
不発明に必要な基&31八を得る。
Such a separate plate is prepared as follows. Q. La M no 3 powder of about 1 pm to a thickness of 2
After press-forming into a disc with a diameter of 'mm, the material is sintered at 1300°C to obtain a dense substrate. Next, the disk obtained in the same manner is crushed to obtain a powder of 10 μm and 8 degrees. A dense substrate is placed in the center of a disc-shaped mold, the pulverized powder is tied around the periphery, and after press molding, it is sintered at 1100°C, and the surrounding area is made into a perforated shape to form the base &318 necessary for invention. get.

電池を示す断面図である。ガラス11ング屓が電池の運
転時に溶融状態となり、ガスシールを確実にする。反応
ガスは積、脣された電池の周囲に排出される。
It is a sectional view showing a battery. The glass layer becomes molten during operation of the battery, ensuring a gas seal. The reactant gas is accumulated and discharged around the exposed battery.

(実施例2) LaCr OB製の緻密質基板と、N+0とZrO2か
らなる多孔質基板(いずれも図示せず)をアルミナセL
a CrO3製の緻密IN、基板とLaMn、03製多
孔貴基板(いずれも図示せす)をアルミナセメントで接
着し、インタコネクタを積層支持してセパレート板を調
製することができる。LaCr03に替えて、す203
を使うこともできる。
(Example 2) A dense substrate made of LaCr OB and a porous substrate made of N+0 and ZrO2 (both not shown) were bonded to alumina cell L.
a Separate plates can be prepared by bonding a dense IN and substrate made of CrO3 and a porous noble substrate made of LaMn and 03 (both shown in the figure) with alumina cement, and supporting interconnectors in a laminated manner. Instead of LaCr03, Su203
You can also use

〔発明の効果〕〔Effect of the invention〕

この発明によれば単セルと、インタコネクタと、基板、
とを有し、 単セルは酸化剤像と固体電解質体と燃料極とからなり基
板の上に積層支持されるものであり、インタコネクタは
緻密な層であり他の基板上に形成されるものであり、 基板は中央部の緻密質基板と周縁部の多孔質基板とから
なり、 緻密質基板は貫通する反応カス供給孔を有し、多孔質基
板は案内駒を有し、前記酸化剤極と燃料極に反応ガスを
供給し、 前記単セルを積層支持した基板と、前記インタコネクタ
を形成した基板とは交互にPJNされるので単セルは反
りを発生しないで肉薄に基板上に形成され、また反応ガ
スは緻密質の固体電解質体と(9) インタコネクタにより分離されそれぞれ放射状にθすれ
、この際反応ガス供給孔は緻密質基板によりガスリーク
か防止され、その結果製造芥易で反応ガスの混触の少な
い固体を解質型燃料電池が得られる。
According to this invention, a single cell, an interconnector, a substrate,
A single cell consists of an oxidizer image, a solid electrolyte body, and a fuel electrode and is supported in layers on a substrate, and an interconnector is a dense layer formed on another substrate. The substrate consists of a dense substrate at the center and a porous substrate at the periphery, the dense substrate has a reaction residue supply hole passing through it, the porous substrate has a guide piece, and the oxidant electrode and a reactant gas is supplied to the fuel electrode, and the substrate on which the single cells are laminated and supported and the substrate on which the interconnector is formed are alternately PJNed, so that the single cells can be formed thinly on the substrate without warping. In addition, the reaction gas is separated by the dense solid electrolyte body and the (9) interconnector, and is radially shifted by θ. At this time, the reaction gas supply hole is prevented from leaking by the dense substrate, and as a result, the reaction gas is easily manufactured and A solid decomposition type fuel cell with less contamination can be obtained.

第1図はこの発明の実施例に係る単=x板を示し第1図
(alは平面図、第1図(blはA−A矢視断面図、第
2図はこの発明の実施例に係るセパレート板を示し、第
2図[alは平面図、第2図(b)はB−B矢視断面図
、第3図はこの発明の実施例に係る単#Lしり 、=I==r板とセパレート板の積層状態を示す断面図
、第4図は従来の固体電解質型燃料電池を示す分解斜視
図である。
FIG. 1 shows a single x plate according to an embodiment of the present invention. Such a separate plate is shown in FIG. 2 [al is a plan view, FIG. FIG. 4 is an exploded perspective view showing a conventional solid oxide fuel cell.

2:多孔質基板、3:緻密質基板、9:酸化剤ガス供給
孔、10:燃料ガス供給孔、14:多孔質基板、15:
緻密質基板、17:インタコネクタ、3o二単セル、3
1A、31B:基板、32:案内駒。
2: Porous substrate, 3: Dense substrate, 9: Oxidizing gas supply hole, 10: Fuel gas supply hole, 14: Porous substrate, 15:
Dense substrate, 17: Interconnector, 3o2 single cell, 3
1A, 31B: Board, 32: Guide piece.

Claims (1)

【特許請求の範囲】 1)単セルと、インタコネクタと、基板、とを有し、 単セルは酸化剤極と固体電解質体と燃料極とからなり基
板の上に積層支持されるものであり、インタコネクタは
緻密な層であり他の基板上に形成されるものであり、 基板は中央部の緻密質基板と周縁部の多孔質基板とから
なり、 緻密質基板は貫通する反応ガス供給孔を有し、多孔質基
板は案内羽を有し、前記酸化剤極と燃料極に反応ガスを
供給し、 前記単セルを積層支持した基板と、前記インタコネクタ
を形成した基板とは交互に積層されるものであることを
特徴とする固体電解質型燃料電池。
[Claims] 1) It has a single cell, an interconnector, and a substrate, and the single cell is composed of an oxidizing agent electrode, a solid electrolyte body, and a fuel electrode, and is supported in layers on the substrate. , the interconnector is a dense layer formed on another substrate, and the substrate consists of a dense substrate in the center and a porous substrate in the periphery, and the dense substrate has reaction gas supply holes that pass through it. , the porous substrate has guide vanes and supplies a reactive gas to the oxidizer electrode and the fuel electrode, and the substrate supporting the single cell and the substrate forming the interconnector are alternately stacked. 1. A solid oxide fuel cell characterized in that:
JP1272154A 1989-10-19 1989-10-19 Solid electrolyte type fuel cell Pending JPH03134965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272154A JPH03134965A (en) 1989-10-19 1989-10-19 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272154A JPH03134965A (en) 1989-10-19 1989-10-19 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH03134965A true JPH03134965A (en) 1991-06-07

Family

ID=17509844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272154A Pending JPH03134965A (en) 1989-10-19 1989-10-19 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH03134965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921583A1 (en) * 1997-12-05 1999-06-09 Siemens Aktiengesellschaft Sealing of high temperature fuel cells and high temperature fuel cell stacks
KR100466096B1 (en) * 2002-07-05 2005-01-13 한국과학기술연구원 Disk type separator having one-loop gas passage structure and Molten Carbonate Fuel Cell Stack comprising the said separator
KR20180130125A (en) * 2017-05-29 2018-12-07 주식회사 두산 Water Electrolysis Stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921583A1 (en) * 1997-12-05 1999-06-09 Siemens Aktiengesellschaft Sealing of high temperature fuel cells and high temperature fuel cell stacks
KR100466096B1 (en) * 2002-07-05 2005-01-13 한국과학기술연구원 Disk type separator having one-loop gas passage structure and Molten Carbonate Fuel Cell Stack comprising the said separator
KR20180130125A (en) * 2017-05-29 2018-12-07 주식회사 두산 Water Electrolysis Stack

Similar Documents

Publication Publication Date Title
EP0572018B1 (en) Solid oxide fuel cell
JP4447918B2 (en) SOFCPEN
EP0756347A2 (en) Solid oxide fuel cell
TWI620376B (en) Portable flame electric generation device, metal-supported solid oxide fuel cell and manufacturing methods thereof
JPH09505684A (en) Electrochemical device
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
JPH1092446A (en) Solid electrolyte type fuel cell
US11962041B2 (en) Methods for manufacturing fuel cell interconnects using 3D printing
JPH03129675A (en) Solid electrolyte fuel cell
JP2003100323A (en) Power collector and its manufacturing method, and solid electrolyte type fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JP2004039573A (en) Sealing material for low-temperature operation solid oxide fuel cell
JPH03134965A (en) Solid electrolyte type fuel cell
JPH02276166A (en) Solid electrolyte fuel cell
JP2003007318A (en) Solid electrolyte fuel cell
JPH09180732A (en) Solid electrolyte fuel cell board and method for manufacturing cell using the board
JPH0355764A (en) Solid electrolytic type fuel cell
JPH04149966A (en) Solid electrolyte-type fuel battery
JPH02168568A (en) Fuel battery with solid electrolyte
JPH10106597A (en) Solid electrolyte fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JPH04101360A (en) Manufacture of solid electrolyte-type fuel cell
JPH08195216A (en) Manufacture of solid-electrolyte fuel cell
JPH01128359A (en) Solid electrolyte type fuel cell