JPH09245817A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH09245817A
JPH09245817A JP8056481A JP5648196A JPH09245817A JP H09245817 A JPH09245817 A JP H09245817A JP 8056481 A JP8056481 A JP 8056481A JP 5648196 A JP5648196 A JP 5648196A JP H09245817 A JPH09245817 A JP H09245817A
Authority
JP
Japan
Prior art keywords
powder
fuel electrode
nickel
electrode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8056481A
Other languages
Japanese (ja)
Inventor
Masakatsu Nagata
雅克 永田
Mikiyuki Ono
幹幸 小野
Masataka Mochizuki
正孝 望月
Tsutomu Iwazawa
力 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP8056481A priority Critical patent/JPH09245817A/en
Publication of JPH09245817A publication Critical patent/JPH09245817A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To keep a desiring electric power generating performance for a long duration and prolong the life by making a fuel electrode up of a spray deposit membrane of a surface reforming powder with uneven structure as a whole. SOLUTION: At first, a composite powder 60 is produced by sticking nickel oxide particles 62 to the circumference of a titanium powder 61. Then, the composite powder 60 annealed in an inert gas atmosphere. Consequently, oxidation reaction and reduction reaction are caused in the titanium powder 61 and the nickel oxide particles, respectively, and as a result, metal nickel exists as a main body in the surface layer part 72 and titanium oxide exists as nuclei 71 with irregular shape in the inside and a surface reforming powder 70 with uneven structure as a whole is thus obtained. Film formation for a fuel electrode can be carried out by a method as same as a conventional way using the surface reforming powder 70. Since the behavior of nickel in the surface layer part is restricted by the nuclei 71 with irregular shape of titanium oxide in the case of a fuel electrode with such a structure, the proceeding of mutual sintering of nickel particles is inhibited and as a result deterioration of the fuel electrode is retarded as compared with a conventional one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、酸化物イオン導
電体を用いる固体電解質型燃料電池に関するものであっ
て、特に燃料電極の経時変化(燃料電極におけるニッケ
ルの焼結進行)によって生じる発電性能の劣化を防ぎ、
電池寿命の向上を図る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell using an oxide ion conductor, and more particularly, to a power generation performance which is caused by a change with time of a fuel electrode (progress of sintering of nickel in the fuel electrode). Prevent deterioration,
The present invention relates to a method for improving battery life.

【0002】[0002]

【従来の技術】固体電解質型燃料電池の本体部分は、固
体電解質の膜を挾んでその一方の面に空気極、他の一方
の面には燃料極が積層され、空気極側に空気(酸素)
を、燃料極側に水素を含む燃料ガスを供給する構造にな
っている。そして電解質に酸化物イオン導電体を用いる
ものでは、空気極側で電離した酸素イオンが電解質を移
動して燃料極に到達し、水素と反応して電子を放出す
る。かくして空気極を陽極,燃料極を陰極とする電池が
形成されると同時に、副産物として燃料極で水が生成さ
れる。図3に、円筒方式の固体電解質型燃料電池の一般
的な構造を示す。
2. Description of the Related Art The body of a solid oxide fuel cell has a solid electrolyte membrane sandwiched between an air electrode on one side and a fuel electrode on the other side. )
Is configured to supply a fuel gas containing hydrogen to the fuel electrode side. When an oxide ion conductor is used as the electrolyte, oxygen ions ionized on the air electrode side move through the electrolyte and reach the fuel electrode, reacting with hydrogen and releasing electrons. Thus, at the same time as the formation of a cell having the air electrode as the anode and the fuel electrode as the cathode, water is produced as a by-product at the fuel electrode. FIG. 3 shows a general structure of a cylindrical solid oxide fuel cell.

【0003】なお図示の円筒方式の他に平板方式があ
り、また円筒方式でも空気極の強度を高めて基体管を省
略したものもあるが、後述する本発明は燃料極の改質に
関するものであり、全体構造如何に拘らず、何れの方式
にも適用し得るものである。
In addition to the illustrated cylindrical system, there is a flat plate system, and there is also a cylindrical system in which the strength of the air electrode is increased and the base tube is omitted, but the present invention described later relates to reforming of the fuel electrode. The present invention can be applied to any method regardless of the overall structure.

【0004】ここで各電極の概略を説明すると、先ず空
気極は、約1000℃の高温酸化性雰囲気中で安定なこ
と,電子伝導度が高いこと,多孔質で空気をよく流通さ
せること,空気極の上に形成される固体電解質と熱伝導
率が近く、密着性がよいことなどが求められる。そのた
めランタンマンガネートやランタンカルシウムマンガネ
ートなどの複合酸化物が一般に用いられている。
Explaining the outline of each electrode here, first, the air electrode is stable in a high temperature oxidizing atmosphere at about 1000 ° C., has high electron conductivity, is porous and allows good air circulation, and air. It is required that the solid electrolyte formed on the electrode has close thermal conductivity and good adhesion. Therefore, complex oxides such as lanthanum manganate and lanthanum calcium manganate are generally used.

【0005】固体電解質は、酸素イオンの透過性に優れ
ていること,高温で化学的に安定なこと,電池の稼動・
休止の反復による熱衝撃に強く、且つ、緻密質で空気や
燃料ガスを通さないことなどが求められる。その理由
は、この膜を通して空気と燃料ガスが混じり合うと電気
化学反応の効率低下,燃料の徒費などの不利を招くため
である。この諸条件を満たす材料にジルコニアがある
が、その高温での容積変化による損傷を防ぐためにアル
カリ土類金属(Sr,Mg,Caなど)の酸化物や希土
類元素酸化物を固溶させた安定化ジルコニア,とくにイ
ットリア安定化ジルコニア(YSZ)が多く用いられて
いる。
Solid electrolytes have excellent oxygen ion permeability, are chemically stable at high temperatures, and operate batteries.
It is required to be resistant to thermal shock due to repeated pauses, dense, and impermeable to air and fuel gas. The reason for this is that if air and fuel gas are mixed together through this membrane, the efficiency of the electrochemical reaction will be reduced and the fuel costs will be disadvantageous. Zirconia is a material that meets these requirements, but it is stabilized by dissolving an oxide of an alkaline earth metal (Sr, Mg, Ca, etc.) or a rare earth element oxide in order to prevent damage due to its volume change at high temperatures. Zirconia, especially yttria-stabilized zirconia (YSZ), is often used.

【0006】燃料極は、電子伝導性が高いこと,固体電
解質と熱膨脹率が近く、固体電解質との密着性が良好な
ことが必要である。そのためニッケルに安定化ジルコニ
アを加えて熱膨脹率を調整したサーメット,特にNi−
YSZサーメットが多く用いられている。
The fuel electrode is required to have high electron conductivity, a coefficient of thermal expansion close to that of the solid electrolyte, and good adhesion to the solid electrolyte. Therefore, cermets whose thermal expansion coefficient is adjusted by adding stabilized zirconia to nickel, especially Ni-
YSZ cermet is often used.

【0007】さらに、燃料電池における前述の電気化学
反応は酸素,水素などの反応ガス、固体電解質および電
極が相接する界面(三相界面)で進行するので、三相界
面をできるだけ多くして発電性能を高めるためには燃料
極を多孔質に形成しなければならない。そこで従来は、
Ni−YSZサーメット粉末またはNi,YSZそれぞ
れの粉末の粒度、溶射または焼成条件などの調整によっ
て、燃料極を多孔質に成膜していた。
Further, since the above-mentioned electrochemical reaction in the fuel cell proceeds at the interface (three-phase interface) where the reaction gas such as oxygen and hydrogen, the solid electrolyte and the electrode are in contact with each other, the number of three-phase interfaces is increased to generate power. In order to improve the performance, the fuel electrode must be made porous. So conventionally,
The fuel electrode was formed into a porous film by adjusting the particle size of the Ni-YSZ cermet powder or the powder of each of Ni and YSZ, and the spraying or firing conditions.

【0008】この様な燃料電池における固体電解質とそ
の上に成膜された燃料極の断面形状の一例を図1に模式
的に示す。ニッケル粉末とYSZ粉末の混合粉末溶射に
より燃料極を成膜した場合はこの図1のように、YSZ
からなる固体電解質膜30の上に、ニッケル粒子41と
YSZ粒子42が積み重なった状態で相互に結合し、多
孔質の燃料極(40)を形成している。
An example of the cross-sectional shape of the solid electrolyte and the fuel electrode formed thereon in such a fuel cell is schematically shown in FIG. When a fuel electrode is formed by spraying a mixed powder of nickel powder and YSZ powder, as shown in FIG.
Nickel particles 41 and YSZ particles 42 are stacked on each other on the solid electrolyte membrane 30 made of and are bonded to each other to form a porous fuel electrode (40).

【0009】[0009]

【発明が解決しようとする課題】この様な電池を稼動さ
せると、約1000℃の高温雰囲気中に長期間置かれる
ため、燃料極を構成するニッケル粒子同士の焼結が接触
部から進行して燃料極の多孔度の低下および三相界面の
減少を招く結果、電池の発電性能が経時的に劣化する。
When such a battery is operated, it is placed in a high temperature atmosphere of about 1000 ° C. for a long period of time, so that sintering of nickel particles composing the fuel electrode progresses from the contact portion. As a result of a decrease in the porosity of the fuel electrode and a decrease in the three-phase interface, the power generation performance of the cell deteriorates over time.

【0010】燃料極の溶射成膜にYSZ粉末をニッケル
で被覆した複合粉を用いた場合は、構成粒子の表面が全
てニッケルであるだけに、燃料極の導電性は優れている
半面構成粒子同士の焼結の進行によるデメリットも大き
くなる。燃料極の溶射成膜にNi−YSZサーメット粉
末を用いた場合も、複合粉の場合とほぼ同様である。こ
の様なニッケル粒子同士の焼結の進行は、ニッケルとY
SZとの濡れ性が悪いことも進行促進の一因とされてい
る。
When the composite powder in which YSZ powder is coated with nickel is used for the thermal spray coating of the fuel electrode, the surface of the constituent particles is all nickel, and the half surface constituent particles are excellent in the conductivity of the fuel electrode. The demerit due to the progress of sintering is also large. When Ni-YSZ cermet powder is used for the thermal spray coating of the fuel electrode, it is almost the same as the case of the composite powder. The progress of such sintering of nickel particles between nickel and Y
Poor wettability with SZ is also considered to be a factor in promoting the progress.

【0011】[0011]

【課題を解決するための手段】本発明の骨子は、燃料極
の成膜原料として、以下に述べる内部構造を持つ表面改
質粉を用いることにある。この様な構造の粉末を作る方
法の一例を述べると、先ず図2の左側のように、チタン
粉末61の周りに酸化ニッケル粒子62を付着させた複
合粉60を用意する。次いでこの複合粉に、不活性雰囲
気中でアニール処理を施す。この場合、酸化ニッケル単
味でもよく、またはこれにYSZ,酸化セリウム(セリ
ア)およびサマリウムドープセリアの、何れか少なくと
も1種の粒子を加えて付着させた複合粉でもよい。
The essence of the present invention is to use a surface-modified powder having an internal structure described below as a raw material for film formation of a fuel electrode. An example of a method of producing powder having such a structure will be described. First, as shown on the left side of FIG. 2, a composite powder 60 in which nickel oxide particles 62 are attached around a titanium powder 61 is prepared. Next, this composite powder is annealed in an inert atmosphere. In this case, it may be pure nickel oxide, or may be a composite powder in which at least one kind of particles of YSZ, cerium oxide (ceria) and samarium-doped ceria is added and adhered thereto.

【0012】この処理によって、チタン粉末61では酸
化反応,酸化ニッケル粒子62では還元反応が起こり、
その結果、図2の右側に模式的に示したように表層部7
2は金属ニッケル主体で、その内部は酸化チタンが不規
則な形状の核71として存在する、全体として不均質な
構造の表面改質粉70が得られる。
By this treatment, the titanium powder 61 undergoes an oxidation reaction and the nickel oxide particles 62 undergo a reduction reaction.
As a result, as shown in the right side of FIG.
2 is mainly metallic nickel, and titanium oxide is present in the inside as irregularly shaped nuclei 71, so that a surface-modified powder 70 having a heterogeneous structure as a whole is obtained.

【0013】この表面改質粉70を用いての燃料極の成
膜は、従来の場合と全く同様にして行なうことができ
る。即ちこの表面改質粉単味で、または固体電解質との
熱膨張率整合のためにYSZ粉末を添加して溶射するこ
とにより、所望の燃料極が得られる。この際、YSZ粉
末に替えて,またはこれに加えて酸化セリウム類を添加
してもよく、これらの混合粉の仮焼成に先立って造粒し
たり、混合に替えて表面改質粉を上記の酸化物粉末で被
覆したり、あるいは、混合粉の割合を漸変させて溶射す
ることにより燃料極を傾斜機能化するなど、適宜に既知
の手段を適用することができる。
The film formation of the fuel electrode using the surface-modified powder 70 can be performed in the same manner as in the conventional case. That is, a desired fuel electrode can be obtained by using the surface-modified powder alone or by adding and spraying YSZ powder for matching the thermal expansion coefficient with the solid electrolyte. At this time, cerium oxides may be added in place of or in addition to the YSZ powder, and the mixed powder may be granulated prior to calcination, or the surface-modified powder may be mixed in place of the above-mentioned modified powder. Appropriate known means can be applied, such as coating with an oxide powder or gradually changing the ratio of the mixed powder to perform thermal spraying to make the fuel electrode functionally graded.

【0014】この様にして成膜された燃料極は、図1の
従来例で燃料極40を構成しているニッケル粒子41が
表面改質粉70で置換されたことに帰し、構成粒子の表
面が両者ともニッケルであることに変わりはない。
The fuel electrode formed in this manner is attributed to the fact that the nickel particles 41 constituting the fuel electrode 40 in the conventional example of FIG. But both are nickel.

【0015】にも拘らず、燃料電池を長時間稼働させた
場合に生じる発電能力低下の度合いには、後述のデータ
が示す通り両者間に顕著な有意差が認められる。この理
由については、本発明に係る燃料極の場合は、酸化チタ
ンからなる不規則形状の核によって表層部のニッケルが
挙動を拘束されているためニッケル粒子相互の焼結の進
行が阻害され、その結果として燃料極の劣化が従来のも
のより遅くなるためと考えられる。
In spite of this, there is a significant difference between the two in terms of the degree of reduction in power generation capacity that occurs when the fuel cell is operated for a long time, as will be shown by the data described later. For this reason, in the case of the fuel electrode according to the present invention, since the behavior of the nickel in the surface layer is restricted by the irregularly shaped nuclei made of titanium oxide, the progress of sintering of the nickel particles is inhibited, As a result, it is considered that the deterioration of the fuel electrode becomes slower than the conventional one.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例) 先ずチタン粉末61の周りに酸化ニッケル
粒子62を付着させた複合粉60を作成した。酸化ニッ
ケル粒子の粒径は、チタン粉末の約10分の1である。
次に、この複合粉に温度1000℃のアルゴンガス雰囲
気中で25時間アニール処理を施した。この処理によ
り、表層部72は金属ニッケルでその内部に酸化チタン
が不規則な形状の核71として存在する、全体として不
均質な構造の表面改質粉70が得られた。
(Example) First, a composite powder 60 was prepared in which nickel oxide particles 62 were attached around a titanium powder 61. The particle size of the nickel oxide particles is about 1/10 of the titanium powder.
Next, this composite powder was annealed in an argon gas atmosphere at a temperature of 1000 ° C. for 25 hours. By this treatment, the surface-modified powder 70 having a non-uniform structure as a whole, in which the surface layer portion 72 was metallic nickel, and titanium oxide was present therein as irregular-shaped nuclei 71, was obtained.

【0017】次に、この表面改質粉にYSZ粉末を混合
して固体電解質との熱膨張率を整合させ、これを造粒
後、仮焼成して溶射用の原料粉とした。燃料極の成膜は
従来と同様にして、即ち固体電解質の上に、上記の原料
粉を大気圧溶射して、燃料極を多孔質に成膜した。
Next, YSZ powder was mixed with this surface-modified powder to match the coefficient of thermal expansion with that of the solid electrolyte, and this was granulated and then calcined to obtain raw material powder for thermal spraying. The fuel electrode was formed in the same manner as in the prior art, that is, the above raw material powder was sprayed onto the solid electrolyte at atmospheric pressure to form the fuel electrode in a porous film.

【0018】かくして得られた燃料電池(単セル)に燃
料ガス,空気それぞれの供給,排出機構を接続して稼働
試験を行ない、ニッケル粉末とYSZ粉末の混合溶射に
よる従来方式のものと比較した。その結果、初期値0.
74Vの端子電圧が1000時間連続稼働後、従来方式
の比較試料の場合は電圧低下率が65%であったのに対
して、本発明に係る試料では僅か0.5%の低下に止ま
った。この結果から、従来の製品と同じレベルに低下す
るまでの寿命は、優に数倍を越えるものと推定される。
The fuel cell (single cell) thus obtained was connected to a mechanism for supplying and discharging fuel gas and air, and an operation test was carried out to compare with a conventional system by mixed spraying of nickel powder and YSZ powder. As a result, the initial value 0.
After the terminal voltage of 74 V was continuously operated for 1000 hours, the voltage drop rate was 65% in the conventional comparative sample, whereas it was only 0.5% in the sample according to the present invention. From this result, it is estimated that the lifespan before the product is reduced to the same level as that of the conventional product is several times longer.

【0019】[0019]

【発明の効果】以上に詳述したように、本発明の実施に
より燃料極の経時的劣化が緩慢になる結果、従来に比べ
て所期の発電性能が永続する、長寿命の燃料電池を得る
ことができる。
As described above in detail, as a result of the implementation of the present invention, the deterioration of the fuel electrode over time is slowed down, and as a result, a long-life fuel cell in which the desired power generation performance lasts longer than in the past is obtained. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体電解質型燃料電池における燃料極と固体電
解質の断面を模式的に示す図面である。
FIG. 1 is a drawing schematically showing a cross section of a fuel electrode and a solid electrolyte in a solid oxide fuel cell.

【図2】本発明で燃料極の形成に使用する原料粉とその
製造法の一例を説明する模式図である。
FIG. 2 is a schematic diagram illustrating an example of a raw material powder used for forming a fuel electrode in the present invention and a manufacturing method thereof.

【図3】固体電解質型燃料電池(円筒方式)の一般的な
構造を示す斜視図である。
FIG. 3 is a perspective view showing a general structure of a solid oxide fuel cell (cylindrical method).

【符号の説明】[Explanation of symbols]

1…基体管 2…空気極 3,30…固体電解質 4,40…燃料極 5…インターコネクタ 60…複合粉,61…チタン粉末,62…酸化ニッケル
粉末 70…表面改質粉,71…核(酸化チタン),72…表
層部(ニッケル)
DESCRIPTION OF SYMBOLS 1 ... Substrate tube 2 ... Air electrode 3,30 ... Solid electrolyte 4,40 ... Fuel electrode 5 ... Interconnector 60 ... Composite powder, 61 ... Titanium powder, 62 ... Nickel oxide powder 70 ... Surface modified powder, 71 ... Core ( Titanium oxide), 72 ... Surface layer (nickel)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩澤 力 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Riki Iwasawa 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質の膜を挾んでその一方の面に
空気極,他の一方の面には燃料極が積層され、空気極側
に空気を、燃料極側に水素を含む燃料ガスを供給して発
電するよう構成された固体電解質型燃料電池において、
燃料極が、表層部にはニッケルが存在しその内部には酸
化チタンが不規則形状の核として存在する全体として不
均質な構造の表面改質粉主体の溶射成膜からなることを
特徴とする、固体電解質型燃料電池。
1. A solid electrolyte membrane is sandwiched between an air electrode on one side and a fuel electrode on the other side, and air is placed on the side of the air electrode and fuel gas containing hydrogen is placed on the side of the fuel electrode. In a solid oxide fuel cell configured to supply and generate power,
The fuel electrode is characterized by being a thermal spray coating mainly composed of surface-modified powder having a non-uniform structure in which nickel is present in the surface layer and titanium oxide is present in the interior as irregularly shaped nuclei. , Solid oxide fuel cells.
【請求項2】 固体電解質の膜を挾んでその一方の面に
空気極,他の一方の面には燃料極が積層され、空気極側
に空気を、燃料極側に水素を含む燃料ガスを供給して発
電するよう構成された固体電解質型燃料電池において、
燃料極を溶射成膜する原料粉として、表層部にはニッケ
ルが存在しその内部には酸化チタンが不規則形状の核と
して存在する全体として不均質な構造の表面改質粉を使
用することを特徴とする、固体電解質型燃料電池の製造
方法。
2. A solid electrolyte membrane is sandwiched and an air electrode is laminated on one surface of the solid electrolyte membrane, and a fuel electrode is laminated on the other surface of the solid electrolyte membrane. Air is placed on the air electrode side and fuel gas containing hydrogen is placed on the fuel electrode side. In a solid oxide fuel cell configured to supply and generate power,
As raw material powder for thermal spray coating of the fuel electrode, it is recommended to use surface-modified powder with a generally heterogeneous structure in which nickel is present in the surface layer and titanium oxide is present in the interior as irregularly shaped nuclei. A method for producing a solid oxide fuel cell, which is characterized.
【請求項3】 固体電解質の膜を挾んでその一方の面に
空気極,他の一方の面には燃料極が積層され、空気極側
に空気を、燃料極側に水素を含む燃料ガスを供給して発
電するよう構成された固体電解質型燃料電池において、
燃料極を溶射成膜する原料粉として、表層部にはニッケ
ルが存在しその内部には酸化チタンが不規則形状の核と
して存在する全体として不均質な構造の表面改質粉に、
YSZ粉末および酸化セリウム粉末の少なくとも何れか
を添加した混合粉を用いることを特徴とする、固体電解
質型燃料電池の製造方法。
3. A solid electrolyte membrane is sandwiched and an air electrode is laminated on one surface of the solid electrolyte membrane, and a fuel electrode is laminated on the other surface of the membrane. Air is contained in the air electrode side and fuel gas containing hydrogen is contained in the fuel electrode side. In a solid oxide fuel cell configured to supply and generate power,
As a raw material powder for thermal spray film formation of the fuel electrode, nickel is present in the surface layer and titanium oxide is present inside it as irregularly shaped nuclei.
A method for producing a solid oxide fuel cell, which comprises using a mixed powder to which at least one of YSZ powder and cerium oxide powder is added.
【請求項4】 表面改質粉にYSZ粉末および酸化セリ
ウム粉末の少なくとも何れかを添加した混合粉に造粒処
理または仮焼成処理が施された、請求項3に記載の固体
電解質型燃料電池の製造方法。
4. The solid oxide fuel cell according to claim 3, wherein the mixed powder obtained by adding at least one of YSZ powder and cerium oxide powder to the surface-modified powder is subjected to granulation treatment or calcination treatment. Production method.
【請求項5】 チタン粉末の周りに酸化ニッケル粒子を
付着させた複合粉に不活性雰囲気中でアニール処理を施
し、表層部の酸化ニッケルに還元反応、内部のチタンに
は酸化反応を生起させることを特徴とする、固体電解質
型燃料電池における燃料電極の成膜用表面改質粉の製造
方法。
5. A composite powder in which nickel oxide particles are adhered around titanium powder is annealed in an inert atmosphere to cause a reduction reaction on nickel oxide in the surface layer and an oxidation reaction on titanium inside. A method for producing a surface-modified powder for film formation of a fuel electrode in a solid oxide fuel cell, comprising:
JP8056481A 1996-03-13 1996-03-13 Solid electrolyte type fuel cell Pending JPH09245817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8056481A JPH09245817A (en) 1996-03-13 1996-03-13 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8056481A JPH09245817A (en) 1996-03-13 1996-03-13 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH09245817A true JPH09245817A (en) 1997-09-19

Family

ID=13028298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8056481A Pending JPH09245817A (en) 1996-03-13 1996-03-13 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH09245817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662599A1 (en) 2004-11-19 2006-05-31 Toho Gas Co., Ltd. Fuel electrode material, a fuel electrode, and a solid oxide fuel cell
JP2008010325A (en) * 2006-06-29 2008-01-17 Mitsui Mining & Smelting Co Ltd Solid oxide fuel cell and its manufacturing method
JP2008541336A (en) * 2005-01-31 2008-11-20 テクニカル ユニバーシティ オブ デンマーク Redox stable anode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662599A1 (en) 2004-11-19 2006-05-31 Toho Gas Co., Ltd. Fuel electrode material, a fuel electrode, and a solid oxide fuel cell
JP2006147334A (en) * 2004-11-19 2006-06-08 Toho Gas Co Ltd Fuel electrode material for solid oxide fuel cell, fuel electrode for same, and solid oxide fuel cell
US7608357B2 (en) 2004-11-19 2009-10-27 Toho Gas Co., Ltd. Fuel electrode material, a fuel electrode, and a solid oxide fuel cell
JP2008541336A (en) * 2005-01-31 2008-11-20 テクニカル ユニバーシティ オブ デンマーク Redox stable anode
JP2008010325A (en) * 2006-06-29 2008-01-17 Mitsui Mining & Smelting Co Ltd Solid oxide fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100648144B1 (en) High performance anode-supported solide oxide fuel cell
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
JPH04118861A (en) Solid electrolyte type fuel cell and its manufacture
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
US7527761B2 (en) Preparation of yttria-stabilized zirconia reaction sintered products
US8211587B2 (en) Plasma sprayed ceramic-metal fuel electrode
EP0478185B1 (en) Fuel electrodes for solid oxide fuel cells and production thereof
JP5389378B2 (en) Composite ceramic electrolyte structure, manufacturing method thereof and related article
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JPH10172590A (en) Solid electrolyte type fuel cell
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JP2003045446A (en) Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JPH09245817A (en) Solid electrolyte type fuel cell
JP5550223B2 (en) Ceramic electrolyte processing method and related products
JP4504642B2 (en) Solid oxide fuel cell and method of operating solid oxide fuel cell
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
JP3339998B2 (en) Cylindrical fuel cell
JPH09265999A (en) Solid electrolyte type fuel cell and its manufacture
JPH06136583A (en) Solid electrolyte type electrolytic cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JP2771090B2 (en) Solid oxide fuel cell
KR101359123B1 (en) Unit cell for solid oxide fuel cell and method for manufacturing the same
JP2001015129A (en) Solid electrolyte type fuell cell
KR100760605B1 (en) A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell