KR100760605B1 - A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell - Google Patents

A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell Download PDF

Info

Publication number
KR100760605B1
KR100760605B1 KR1020060007496A KR20060007496A KR100760605B1 KR 100760605 B1 KR100760605 B1 KR 100760605B1 KR 1020060007496 A KR1020060007496 A KR 1020060007496A KR 20060007496 A KR20060007496 A KR 20060007496A KR 100760605 B1 KR100760605 B1 KR 100760605B1
Authority
KR
South Korea
Prior art keywords
fuel cell
solid oxide
metal
metal support
oxide fuel
Prior art date
Application number
KR1020060007496A
Other languages
Korean (ko)
Other versions
KR20070077739A (en
Inventor
문지웅
오유근
박선민
최병현
이미재
황해진
임용호
장주웅
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR1020060007496A priority Critical patent/KR100760605B1/en
Publication of KR20070077739A publication Critical patent/KR20070077739A/en
Application granted granted Critical
Publication of KR100760605B1 publication Critical patent/KR100760605B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/004Cylindrical, tubular or wound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 금속지지형 고체 산화물 연료 전지의 제조 방법에 관한 것으로, 더욱 상세하게는 기 소성된 다공성 YSZ (8 mol% yttria stabilized zirconia) 층에 Ni 수용액의 함침과 열처리를 반복하여 형성되는 연료극을 포함하는 금속지지형 고체산화물 연료전지의 제조방법에 관한 것이다. 이를 위하여 본 발명은, 다공성 금속지지체 표면에 YSZ 분말과 기공형성제가 혼합된 후막 층과, YSZ 후막층을 차례로 형성한 후 환원분위기에서 1350∼1450℃ 범위에서 동시 소성하는 단계, Ni 금속의 질산염 함침시키고 100℃∼150℃ 범위에서 건조한 후 400∼500℃ 범위에서 열처리하는 과정을 반복하고 최종적으로 800℃∼1000 ℃ 범위의 불활성 분위기에서 열처리함으로써 금속지지체 표면에 Ni과 YSZ의 복합체로 구성된 연료극을 형성시키는 단계, 공기극 (LSM, LSCF) 등을 형성시킴으로써 단위 전지를 완성하는 단계로 이루어진 것에 특징이 있다.

Figure 112006005549744-pat00001

고체산화물연료전지, 연료극, 금속지지형, 함침법

The present invention relates to a method for manufacturing a metal-supported solid oxide fuel cell, and more particularly, to a fuel electrode formed by repeatedly impregnating and heat-treating an aqueous Ni solution in a preheated porous YSZ (8 mol% yttria stabilized zirconia) layer. The present invention relates to a method for manufacturing a metal-supported solid oxide fuel cell. To this end, the present invention, the YSZ powder and the pore-forming agent is mixed with a thick film layer formed on the surface of the porous metal support, YSZ thick film layer is formed in sequence, and then co-fired in the reducing atmosphere in the range of 1350 ~ 1450 ℃, nitrate impregnation of Ni metal After drying in the range of 100 ℃ to 150 ℃ and heat treatment at 400 ~ 500 ℃ repeated and finally heat treatment in an inert atmosphere of 800 ℃ to 1000 ℃ range to form a fuel electrode consisting of a composite of Ni and YSZ on the surface of the metal support And a step of completing the unit cell by forming the cathodes (LSM, LSCF) and the like.

Figure 112006005549744-pat00001

Solid oxide fuel cell, fuel electrode, metal support, impregnation method

Description

고체 산화물형 연료 전지용 금속 지지체/연료극/고체 전해질 층상 구조체의 제조 방법{A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell} A method for production of a lamellar structure of metal support / fuel electrode / solid electrolyte for a solid oxide fuel cell}

도 1. 함침법으로 형성된 연료극을 갖는 금속지지형 고체산화물 연료전지의 단면도 1 is a cross-sectional view of a metal-supported solid oxide fuel cell having a fuel electrode formed by impregnation.

도 2. 700℃ H2+3% 수증기 분위기에서의 분극저항비교2. Comparison of polarization resistance in 700 ° C H 2 + 3% water vapor atmosphere

도 3. 700℃ H2+3% 수증기 분위기에서의 분극저항3. Polarization resistance at 700 ° C. H 2 + 3% water vapor atmosphere

본 발명은 고체 산화물형 연료 전지용 금속 지지체/연료극/고체 전해질 층상 구조체의 제조 방법에 관한 것이다. The present invention relates to a method for producing a metal support / fuel electrode / solid electrolyte layered structure for a solid oxide fuel cell.

또한, 본 발명은 고체 산화물형 연료 전지(SOFC)에 관한 것으로서, 보다 구체적으로는 성능이 우수하면서도 기계적 강도와 내열충격성이 우수한 금속 지지형 고체 산화물 연료 전지에 관한 것이다.  In addition, the present invention relates to a solid oxide fuel cell (SOFC), and more particularly to a metal-supported solid oxide fuel cell having excellent performance but excellent mechanical strength and thermal shock resistance.

일반적으로 고체 산화물형 연료 전지는 외부에서 공급된 전자와 공기 중의 산소가 반응하여 산소이온(O2-)이 형성되는 공기극과, 산소이온의 이동통로이며 공기와 연료의 직접 접촉을 막고 전자의 이동을 차단하는 고체 전해질과, 고체 전해질을 통하여 전달되는 산소이온과 연료가 전기화학 반응을 일으키고 이때 발생한 전자를 외부로 보내는 역할을 하는 연료극으로 구성된다. 최근에는 고체 전해질을 수~수십 마이크로미터 두께로 얇게 하여 SOFC의 작동온도를 650℃∼750℃ 까지 낮춘 중저온형 SOFC의 개발을 통하여 단위 전지와 스택(stack)의 가격을 낮추어 상업화하려는 노력이 진행 중이다. 이러한 형태의 SOFC는 고체 전해질 층이 얇기 때문에 단위 전지의 기계적 강도 확보를 위하여 지지체 혹은 기판이 필요하며, 두께 수백 ㎛ 에서 수 ㎜ 의 다공성 Ni-YSZ 서밋(cermet)을 지지체로 사용하는 것이 일반적이다. 그러나 Ni-YSZ 서밋(cermet)을 지지체로 사용하는 단위 전지의 경우 Ni이 산화되는 부피의 팽창에 의하여 단위 전지의 파괴가 일어나기 때문에 근본적으로 강도가 현저히 낮으며 내열충격성도 낮기 때문에 운전시 주의가 필요하다. 반면 상기 Ni-YSZ cermet 지지체를 보완하기 위해 고안된 금속 지지체는 강도와 내열충격성이 매우 뛰어나고 전기전도도도 높으므로 고체 산화물형 연료 전지를 연구 분야에서 각광을 받고 있다. 그러나 금속 지지체의 경우 1350∼1400 ℃의 고온에서 금속의 산화를 억제하기 위해 비활성(불활성) 기체 분위기에서 동시 소성을 진행해야 하므로 이 조건에서는 오히려 NiO의 환원 반응이 일어나면서 Ni가 과대 입성장하여 촉매 특성이 감소하고 Ni와 Ni가 응집됨으로써 전기전도도가 감소되어 결과적으로 금속 지지체의 도입은 고체 산화물형 연료 전지의 성능을 저하시키는 단점이 있다.In general, a solid oxide fuel cell has a cathode in which oxygen supplied from the outside and oxygen in the air reacts to form oxygen ions (O 2- ), and is a moving passage of oxygen ions. It consists of a solid electrolyte to block the oxygen, the oxygen ion and the fuel delivered through the solid electrolyte and the fuel electrode that serves to cause the electrochemical reaction and to send the generated electrons to the outside. Recently, efforts have been made to commercialize by lowering the price of unit cells and stacks through the development of low-temperature SOFCs, which have reduced the solid-state electrolyte to a thickness of several tens to several tens of micrometers and lower the operating temperature of SOFCs from 650 ° C to 750 ° C. . Since this type of SOFC has a thin solid electrolyte layer, a support or a substrate is required to secure mechanical strength of a unit cell, and a porous Ni-YSZ cermet having a thickness of several hundred μm to several mm is generally used as a support. However, in case of unit cell using Ni-YSZ cermet as support, destruction of unit cell occurs due to expansion of volume where Ni is oxidized, so its strength is low and its thermal shock resistance is low. Do. On the other hand, the metal support designed to supplement the Ni-YSZ cermet support has a high strength and thermal shock resistance and high electrical conductivity, so that a solid oxide fuel cell has been in the spotlight in the research field. However, in the case of the metal support, in order to suppress oxidation of the metal at a high temperature of 1350 to 1400 ° C., simultaneous firing should be performed in an inert gas atmosphere. The characteristics are reduced and Ni and Ni are agglomerated to reduce the electrical conductivity. As a result, the introduction of the metal support has a disadvantage of degrading the performance of the solid oxide fuel cell.

따라서, 본 발명은 보다 향상된 강도를 가지며 이온전도도가 높아 성능이 우수한 금속지지형 고체 산화물 연료 전지를 제조하는 방법을 제공하는 것을 기술적 과제로 한다.Accordingly, the present invention is to provide a method for producing a metal-supported solid oxide fuel cell having improved strength and high ion conductivity and excellent performance.

상기한 과제를 해결하기 위한 본 발명자의 연구에서, 금속지지체형 고체산화물연료전지의 제작과정에서 Ni의 과대 입성장을 억제한다면 이온전도도의 저하없이 내열충격성과 강도가 우수한 고체 산화물형 연료 전지를 제작할 수 있음을 확인하고, 이에 기초하여, 금속 지지체/연료극/전해질/공기극으로 구성된 고체 산화물형 연료 전지의 제작과정 중 금속지지체/연료극/전해질부분을 동시 소성하되 연료극에 포함된 Ni는 산화가 용이한 흑연 분말로 전량 대체하여 소성 중 휘발되도록 하여 연료극을 다공성 세라믹 담체로 제작하고 이를 Ni 수용액에 함침시키고 열처리를 반복한 후 최종적으로 금속이 산화되지 않는 온도에서 열처리함으로써 이온전도도를 저하시키지 않으면서 강도가 우수한 고체 산화물형 연료 전지를 제공할 수 있었고, 그 결과 본 발명을 완성하게 된 것이다. In the study of the present inventors to solve the above problems, if the excessive growth of Ni in the manufacturing process of the metal support-type solid oxide fuel cell is suppressed, a solid oxide fuel cell having excellent thermal shock resistance and strength can be produced without deteriorating ion conductivity. It can be confirmed that, based on this, during the manufacturing process of the solid oxide fuel cell composed of a metal support / fuel electrode / electrolyte / air electrode, the metal support / fuel electrode / electrolyte portion is simultaneously fired, but Ni contained in the anode can be easily oxidized. The fuel electrode is made of porous ceramic support by replacing all of the graphite powder with volatilization during firing, impregnating it in a Ni aqueous solution, repeating the heat treatment, and finally heat treating it at a temperature where the metal is not oxidized, thereby reducing the ionic conductivity. It was possible to provide an excellent solid oxide fuel cell, and as a result The invention was completed.

그러므로, 본 발명에 의하면, 금속 지지체를 이용하는 고체 산화물형 연료 전지의 제작에 있어서, 상기 고체 산화물형 연료 전지의 소성 과정 중 Ni 금속염의 수용액을 이용한 함침 방법을 도입함으로써, 강도가 높으면서도 성능이 우수한 금속지지형 고체 산화물 연료 전지가 제공된다. Therefore, according to the present invention, in the production of a solid oxide fuel cell using a metal support, by introducing an impregnation method using an aqueous solution of Ni metal salt during the firing process of the solid oxide fuel cell, the strength is high and the performance is excellent. A metal-supported solid oxide fuel cell is provided.

이하, 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

일반적으로 고체 산화물형 연료 전지는 외부에서 공급된 전자와 공기 중의 산소가 반응하여 산소이온(O2-)이 형성되는 공기극과, 산소이온의 이동통로이며 공기와 연료의 직접 접촉을 막고 전자의 이동을 차단하는 고체 전해질과, 고체 전해질을 통하여 전달되는 산소이온과 연료가 전기화학 반응을 일으키고 이때 발생한 전자를 외부로 보내는 역할을 하는 연료극으로 구성되며, 이 중 고체전해질과 연료극은 세라믹으로 구성되어 있어 항상 취성 파괴의 위험이 있다. 따라서 이를 보완하기 위한 금속 지지체가 연구되고 있다. In general, a solid oxide fuel cell has a cathode in which oxygen supplied from the outside and oxygen in the air reacts to form oxygen ions (O 2- ), and is a moving passage of oxygen ions. It consists of a solid electrolyte that blocks the gas, and oxygen ions and fuel delivered through the solid electrolyte cause an electrochemical reaction, and a fuel electrode that sends electrons generated at this time to the outside. Among them, the solid electrolyte and the fuel electrode are made of ceramic. There is always a risk of brittle fracture. Therefore, a metal support to compensate for this has been studied.

종래 금속 지지체를 사용하는 고체 연료 전해질은 취성 파괴가 비교적 일어나지 않으며 내열충격성이 높으나 금속지지체/연료극/전해질 층상 구조체의 동시 소성은 환원 분위기에서 진행되어야 하기 때문에 함유된 금속 입자의 과대 입성장이 일어나게 되므로 이온전도도 등 고체 산화물형 연료 전지의 성능을 현저히 저하시킨다.Conventional solid fuel electrolytes using a metal support have relatively low brittle fracture and high thermal shock resistance, but since the simultaneous firing of the metal support / fuel electrode / electrolyte layered structure has to proceed in a reducing atmosphere, excessive grain growth of the contained metal particles occurs. The performance of a solid oxide fuel cell such as conductivity is significantly reduced.

따라서, 본 발명에 의하면, 금속 지지체를 이용하는 고체 산화물형 연료 전지의 제작에 있어서, 상기 고체 산화물형 연료 전지의 소성 과정 중 금속 지지체/연료극/고체 전해질 층상 구조체 제작시 Ni 성분은 제외한 채 동시 소성을 한 후 완성된 소성체를 Ni 금속의 질산염(Nitrate) 수용액에 수 회 반복 함침시킨 후 열처리를 반복하여 염과 수분을 제거한 후 Ni 소성 온도에서 열처리함으로써, 강도가 높으면서도 성능이 우수한 금속지지형 고체 산화물 연료 전지가 제공된다. 물론, 본 발명의 고체 산화물형 연료 전지 제작에 사용되는 금속염이 Ni 금속의 질산염(Nitrate)에 국한되는 것은 아니다. Therefore, according to the present invention, in the manufacture of a solid oxide fuel cell using a metal support, during the firing process of the solid oxide fuel cell, simultaneous firing without the Ni component is performed during the fabrication of the metal support / fuel electrode / solid electrolyte layered structure. After that, the finished calcined body was repeatedly impregnated in Ni metal nitrate solution several times, and then heat treatment was repeated to remove salt and water, followed by heat treatment at Ni firing temperature, thereby providing high strength and excellent performance of a metal-supported solid. An oxide fuel cell is provided. Of course, the metal salt used in the solid oxide fuel cell fabrication of the present invention is not limited to nitrate of Ni metal.

본 발명은, 다공성 금속 지지체 표면에 YSZ 분말과 기공 형성제(예컨대, 흑연 분말)가 혼합된 후막층과, YSZ 후막층을 차례로 형성한 후 환원 분위기에서 1350∼1450℃ 범위에서 동시 소성하는 단계, Ni 금속의 질산염 수용액을 함침하고 100℃∼150℃ 범위에서 건조한 후 400∼500℃ 범위에서 열처리 하는 과정을 반복하고 최종적으로 800℃∼1000 ℃ 범위의 불활성 분위기에서 열처리함으로써 금속 지지체 표면에 Ni과 YSZ의 복합체로 구성된 연료극을 형성시키는 단계, 공기극 (LSM, LSCF) 등을 형성시킴으로써 단위 전지를 완성하는 단계로 이루어진 것에 특징이 있다.
또한, 본 발명은 고체 산화물형 연료 전지용 금속 지지체/연료극/고체 전해질 층상 구조체의 제조 방법으로서, (a) 다공성 금속 지지체의 표면에 이트리아 안정화 지르코니아(YSZ)와 흑연 분말이 혼합된 후막층을 차례로 형성시킨 후, 환원 분위기 하에 1350℃ 내지 1450℃에서 동시 소성하는 단계; (b) Ni 금속의 질산염 수용액을 함침시키고 100℃ 내지 150℃에서 건조한 후, 400℃ 내지 500℃에서 열처리하는 과정을 반복하는 단계; 및 (c) 불활성 분위기 하에 800℃ 내지 1000℃에서 열처리하는 단계를 포함하는 것을 특징으로 하는 방법을 특징으로 한다.
According to the present invention, after forming a thick film layer in which YSZ powder and a pore-forming agent (for example, graphite powder) are mixed on a surface of a porous metal support, and an YSZ thick film layer in this order, co-firing in a reducing atmosphere at a range of 1350 to 1450 ° C., Ni and YSZ are impregnated on the surface of the metal support by impregnating an aqueous solution of nitrate of Ni metal, drying at 100 ° C. to 150 ° C., and then heat treating at 400 ° C. to 500 ° C. Forming a fuel electrode consisting of a composite of the, characterized in that consisting of the step of completing the unit cell by forming the cathode (LSM, LSCF) and the like.
The present invention also provides a method for producing a metal support / fuel electrode / solid electrolyte layered structure for a solid oxide fuel cell, comprising: (a) a thick film layer in which yttria stabilized zirconia (YSZ) and graphite powder are mixed on a surface of a porous metal support; After formation, co-firing at 1350 ° C. to 1450 ° C. under a reducing atmosphere; (b) impregnating an aqueous solution of nitrate of Ni metal, drying at 100 ° C. to 150 ° C., and then repeating the heat treatment at 400 ° C. to 500 ° C .; And (c) heat treatment at 800 ° C. to 1000 ° C. under an inert atmosphere.

이상 설명한 바와 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단, 본 발명이 하기 실시예로 국한되는 것은 아니다.Features and other advantages of the present invention as described above will become more apparent from the following examples. However, the present invention is not limited to the following examples.

(실시예 1)(Example 1)

YSZ 분말 80 중량%와 탄소 분말(흑연 분말) 20 중량%를 혼합하여 일축 가압 성형에 의한 디스크형 시편을 제조하였다. 공기중 600℃에서 탄소를 제거한 후, YSZ 슬러리를 코팅하여 수소 분위기 하에 1350℃에서 동시 소성하였다. 상기 소결체를 Ni 금속의 질산염 수용액에 함침시키고 450℃에서 열처리하는 공정을 반복함으로써 YSZ 분말에 대하여 Ni 함량이 약 20 중량%까지 함침시킨 후 1000℃의 불활성 분위기에서 열처리하였다.  80 wt% of YSZ powder and 20 wt% of carbon powder (graphite powder) were mixed to prepare a disk-shaped specimen by uniaxial pressure molding. After removing carbon at 600 ° C. in air, the YSZ slurry was coated and co-fired at 1350 ° C. under hydrogen atmosphere. The sintered body was impregnated in an aqueous solution of nitrate of Ni metal and heat-treated at 450 ° C. to impregnate Ni content to about 20 wt% with respect to YSZ powder, and then heat-treated in an inert atmosphere at 1000 ° C.

비교대상으로서 연료극의 대표적 기본조성인 YSZ 분말 44 중량%와 NiO 분말 36 중량%에 탄소 분말(흑연 분말) 20 중량%를 혼합하여 일축 가압 성형에 의한 디스크형 시편을 제조하여 YSZ를 슬러리 코팅한 후 공기중에서 1350℃ 열처리한 경우와 수소 분위기에서 1350℃ 소성한 경우를 비교하였다. 비교는 교류 임피던스 분석법을 이용하였으며, 반대 전극으로는 비교대상 모두 Pt 페이스트를 YSZ 표면에 형성하였다. 그 결과 연료극 기본조성의 경우 수소 분위기에서 열처리하면 저항이 매우 크다는 사실을 확인되었다. 또한 발명에서 적용한 함침법에 의한 연료극의 경우가 저항이 가장 작다는 것이 확인되었다.  After comparison, 44 wt% of YSZ powder, 36 wt% of NiO powder, and 20 wt% of carbon powder (graphite powder) were mixed to prepare a disk-shaped specimen by uniaxial pressure molding, and slurry coated YSZ. The case of 1350 ° C. heat treatment in air and the case of 1350 ° C. firing in hydrogen atmosphere were compared. For comparison, AC impedance analysis was used. For the opposite electrode, Pt paste was formed on the surface of YSZ. As a result, it was confirmed that the resistance of the anode basic composition is very high when the heat treatment is performed in a hydrogen atmosphere. In addition, it was confirmed that the resistance was the smallest in the case of the anode by the impregnation method applied in the invention.

상술한 바와 같이, 기 소성된 금속 지지체/연료극/전해질 층상 구조체를 Ni 금속의 질산염(Nitrate)에 함침하여 제작한 고체 산화물형 연료 전지는 높은 강도와 우수한 이온전도성을 나타내므로, 대체 에너지로 사용가능한 고체 산화물형 연료 전지로 매우 유용하다. As described above, the solid oxide fuel cell fabricated by impregnating a pre-fired metal support / fuel electrode / electrolyte layered structure with nitrate of Ni metal exhibits high strength and excellent ion conductivity, and thus can be used as an alternative energy. It is very useful as a solid oxide fuel cell.

Claims (1)

고체 산화물형 연료 전지용 금속 지지체/연료극/고체 전해질 층상 구조체의 제조 방법으로서, As a method for producing a metal support / fuel electrode / solid electrolyte layered structure for a solid oxide fuel cell, (a) 다공성 금속 지지체의 표면에 이트리아 안정화 지르코니아(YSZ)와 흑연 분말이 혼합된 후막층을 차례로 형성시킨 후, 환원 분위기 하에 1350℃ 내지 1450℃에서 동시 소성하는 단계; (a) sequentially forming a thick film layer in which yttria stabilized zirconia (YSZ) and graphite powder are mixed on the surface of the porous metal support, and then co-firing at 1350 ° C. to 1450 ° C. under a reducing atmosphere; (b) Ni 금속의 질산염 수용액을 함침시키고 100℃ 내지 150℃에서 건조한 후, 400℃ 내지 500℃에서 열처리하는 과정을 반복하는 단계; 및(b) impregnating an aqueous solution of nitrate of Ni metal, drying at 100 ° C. to 150 ° C., and then repeating the heat treatment at 400 ° C. to 500 ° C .; And (c) 불활성 분위기 하에 800℃ 내지 1000℃에서 열처리하는 단계를 포함하는 것을 특징으로 하는 방법.(c) heat treatment at 800 ° C. to 1000 ° C. under an inert atmosphere.
KR1020060007496A 2006-01-24 2006-01-24 A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell KR100760605B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060007496A KR100760605B1 (en) 2006-01-24 2006-01-24 A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060007496A KR100760605B1 (en) 2006-01-24 2006-01-24 A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell

Publications (2)

Publication Number Publication Date
KR20070077739A KR20070077739A (en) 2007-07-27
KR100760605B1 true KR100760605B1 (en) 2007-10-04

Family

ID=38502252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060007496A KR100760605B1 (en) 2006-01-24 2006-01-24 A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell

Country Status (1)

Country Link
KR (1) KR100760605B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101666214B1 (en) 2009-11-05 2016-10-14 삼성디스플레이 주식회사 Anisotropic conductive film, method of manufacturing the same and display apparatus having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846511B2 (en) * 1999-07-31 2005-01-25 The Regents Of The University Of California Method of making a layered composite electrode/electrolyte
KR20050021027A (en) * 2003-08-25 2005-03-07 한국에너지기술연구원 Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846511B2 (en) * 1999-07-31 2005-01-25 The Regents Of The University Of California Method of making a layered composite electrode/electrolyte
KR20050021027A (en) * 2003-08-25 2005-03-07 한국에너지기술연구원 Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
미국특허 제6846511호(2005.01.25) 1부

Also Published As

Publication number Publication date
KR20070077739A (en) 2007-07-27

Similar Documents

Publication Publication Date Title
JP5208518B2 (en) Method for producing a reversible solid oxide fuel cell
JP5213589B2 (en) Metal-supported solid oxide fuel cell
JP5430009B2 (en) Removal of impurity phase from electrochemical devices
JP5192944B2 (en) Electrodes based on ceria and stainless steel
KR100648144B1 (en) High performance anode-supported solide oxide fuel cell
Liu et al. Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering
US5670270A (en) Electrode structure for solid state electrochemical devices
JP2011514644A (en) All-ceramic solid oxide battery
JP2008538543A (en) Precursor material infiltration and coating methods
JP2009110934A5 (en)
CN111418027B (en) Proton conductor, proton-conducting cell structure, water vapor electrolytic cell, and method for producing hydrogen electrode-solid electrolyte layer composite
KR20130047534A (en) Solid oxide fuel cell and solid oxide electrolysis cell including ni-ysz fuel(hydrogen) electrode, and fabrication method thereof
WO2013060669A1 (en) A modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure
KR20160011472A (en) Anode Supported Solid Oxide Fuel Cell by using low temperature co-firing and manufacturing method thereof
KR100760605B1 (en) A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell
EP2814099A1 (en) Electrochemical cell
JP5550223B2 (en) Ceramic electrolyte processing method and related products
KR20230087170A (en) Sintering method of proton ceramic fuel cell electrolyte and proton ceramic fuel cell manufactured using the same
KR101952806B1 (en) Metal-supported solid oxide fuel cell and manufacturing method thereof
KR101803203B1 (en) The highly conductive anode using the surface treatment for the application of solid oxide fuel cell anode and method for manufacturing same.
JP2016085921A (en) Cell support and solid oxide fuel cell
JPH0689723A (en) Fuel electrde fabrication method for fuel cell with solid electrolyte
KR20190100610A (en) Method for fabricating solid oxide fuel cell
JPH11283642A (en) Solid-electrolyte fuel cell
KR102369060B1 (en) Solid oxide fuel cell comprising anode alkaline-based promoter loaded

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120913

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130916

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150911

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 13