JPH05172424A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH05172424A
JPH05172424A JP30441891A JP30441891A JPH05172424A JP H05172424 A JPH05172424 A JP H05172424A JP 30441891 A JP30441891 A JP 30441891A JP 30441891 A JP30441891 A JP 30441891A JP H05172424 A JPH05172424 A JP H05172424A
Authority
JP
Japan
Prior art keywords
heat
pump device
heat pump
efficiency
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30441891A
Other languages
Japanese (ja)
Other versions
JP2924369B2 (en
Inventor
Hisaaki Gyoten
久朗 行天
Yoshiaki Yamamoto
義明 山本
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30441891A priority Critical patent/JP2924369B2/en
Publication of JPH05172424A publication Critical patent/JPH05172424A/en
Application granted granted Critical
Publication of JP2924369B2 publication Critical patent/JP2924369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance usability of a heat pump device utilizing the Peltier effect by constructing the device so as to improve the efficiency of the heat pump device utilizing a thermally unsteady condition and obtain a greater output therefrom. CONSTITUTION:A heat pump device comprises: a heat absorption side device consisting of a P-type semiconductor 2, a copper plate 3 used as an electrode, a copper block 4 having higher thermal conductivity and larger thermal capacity than those of a thermoelectric semiconductor, and heat-exchange fins 5; and a heat radiation side device having the same construction as that of the heat absorption side device. After power is supplied for a fixed period of time in a state that the end faces of the semiconductors are connected electrically with each other, both the devices are separated spatically from each other by a driving motor 11 to insulate heat before the interior of the devices is put into a thermally steady condition and, thereafter, Peltier heat accumulated in the copper blocks used as a heat reservoir is taken out. According to this construction, the thermal efficiency of a heat pump device which utilizes a thermally unsteady condition can be enhanced by 1.3 times, and the cooling output thereof per cycle can be increased by about 3 times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペルチェ効果を利用し、
電気的に冷房もしくは暖房を行う、空調装置に有用な熱
電デバイスに関する。
The present invention utilizes the Peltier effect,
The present invention relates to a thermoelectric device useful for an air conditioner that electrically cools or heats.

【0002】[0002]

【従来の技術】従来、電気を熱に変換するヒートポンプ
デバイスの基本構成は、図4に示すように電流端子を兼
ねた金属板14a、14bおよび金属板15によって熱
電材料であるN型半導体もしくはP型の半導体16、1
7を挟持し、金属板14a、14bに電圧を印可して半
導体16、17に電流を通ずることによりペルチェ効果
による発熱によって金属板を加熱または冷却するもので
ある。
2. Description of the Related Art Conventionally, as shown in FIG. 4, a basic structure of a heat pump device for converting electricity into heat is an N-type semiconductor or P which is a thermoelectric material by metal plates 14a and 14b also serving as current terminals and a metal plate 15. Type semiconductor 16, 1
7 is sandwiched, a voltage is applied to the metal plates 14a and 14b, and a current is passed through the semiconductors 16 and 17, whereby the metal plates are heated or cooled by the heat generated by the Peltier effect.

【0003】このような従来のヒートポンプデバイスで
は、熱電材料である半導体16、17の性能指数によっ
て決まる熱電効率に限界があるので、さらに高い効率を
有する熱電デバイスとして、特開昭57−198989
号公報や実開昭63−120060号公報に開示されて
いるように蓄熱剤を組み合わせる構成や、図5に示すよ
うに非定常状態を利用した構成のヒートポンプデバイス
が提案されている。
In such a conventional heat pump device, since the thermoelectric efficiency determined by the figure of merit of the semiconductors 16 and 17 as thermoelectric materials is limited, a thermoelectric device having higher efficiency is disclosed in Japanese Patent Laid-Open No. 57-198989.
Japanese Patent Laid-Open No. 63-120060 and Japanese Utility Model Laid-Open No. 63-120060 propose a heat pump device having a configuration in which a heat storage agent is combined and a configuration using an unsteady state as shown in FIG.

【0004】このヒートポンプデバイスは図5に示すよ
うに、まず吸熱側として基台18a上にバルク状の熱電
材料19と、電極と熱交換フィンを兼ねた銅プレート2
0を電気的に接続し、同様に放熱側としては吸熱側と対
向する形で熱電材料21、銅プレート22とを電気的に
接続して構成されている。さらに基台部18bには駆動
モーター23を取り付けることによって、両方の熱電材
料の端面24の接続、切り離しが容易にできるようにな
っている。
As shown in FIG. 5, this heat pump device has a bulky thermoelectric material 19 on a base 18a as a heat absorbing side, and a copper plate 2 which also serves as electrodes and heat exchange fins.
0 is electrically connected, and similarly, the heat dissipation side is electrically connected to the thermoelectric material 21 and the copper plate 22 so as to face the heat absorption side. Further, by attaching the drive motor 23 to the base portion 18b, it is possible to easily connect and disconnect the end faces 24 of both thermoelectric materials.

【0005】この熱電デバイスに、まず端面24が互い
に当接した状態で電流を流すと、それぞれの熱電材料の
銅プレート界面にペルチェ熱が発生する。通電直後の熱
電材料内部が熱的定常状態に達する前に、駆動モーター
23によって吸熱側と放熱側の熱電材料を端面24で切
り離すことによって互いに断熱すると、熱伝導によるペ
ルチェ熱のロスを抑制し高い効率を得ることができるよ
う構成されている。
When a current is first applied to this thermoelectric device in a state where the end faces 24 are in contact with each other, Peltier heat is generated at the copper plate interface of each thermoelectric material. Before the inside of the thermoelectric material immediately after being energized reaches a thermal steady state, the driving motor 23 separates the thermoelectric materials on the heat absorption side and the heat radiation side by the end face 24 to insulate each other from heat, thereby suppressing loss of Peltier heat due to heat conduction. It is configured for efficiency.

【0006】[0006]

【発明が解決しようとする課題】しかし、このようない
わゆる非定常デバイスでは、通電時に熱電材料19、2
1と銅プレート20、22との界面において局所的に温
度が上昇あるいは低下し、熱電材料である半導体19、
21の両端面間の温度差は定常デバイスに比して非常に
大きくなる。その結果、熱電材料である半導体19、2
1間の熱伝導によるペルチェ熱のロスを少なくしたにも
かかわらず、デバイス全体の効率はあまり高くならなか
った。また、通電、切り離しの1サイクルの冷却出力は
熱電材料である半導体の熱容量に依存するのであまり大
きく設定することはできないという問題があった。
However, in such a so-called unsteady device, the thermoelectric materials 19 and 2 are energized when energized.
1, the temperature locally rises or falls at the interface between the copper plate 20 and the copper plate 20, 22 and the semiconductor 19, which is a thermoelectric material,
The temperature difference between the two end faces of 21 is very large compared to a stationary device. As a result, the semiconductors 19 and 2 which are thermoelectric materials
Although the loss of Peltier heat due to heat conduction between 1 was reduced, the efficiency of the entire device did not become very high. Further, there is a problem that the cooling output for one cycle of energization and disconnection depends on the heat capacity of the semiconductor, which is a thermoelectric material, and therefore cannot be set too high.

【0007】本発明はこのような課題を解決するもの
で、熱効率の高い非定常デバイスを提供することを目的
とするものである。
The present invention solves such a problem, and an object of the present invention is to provide a transient device having high thermal efficiency.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るために本発明は、従来の構成の非定常熱電デバイスの
電流流入部と電流流出部の熱電材料に対して、その外側
に熱伝導率の大きい材料を熱リザーバーとして配設する
ことによってデバイス全体の効率を高めるようにしたも
のである。また、熱リザーバーとして、ペルチェ熱発生
部と十分に高い熱接触性を有する潜熱蓄熱材を配設して
全体の熱容量を大きくすることによって、冷却出力を大
きくするようにしたものである。
In order to solve such a problem, the present invention is directed to the thermoelectric material of the current inflow part and the current outflow part of the unsteady thermoelectric device having the conventional structure, and the heat conduction to the outside. The efficiency of the entire device is increased by disposing a material having a high rate as a heat reservoir. Further, as a heat reservoir, a latent heat storage material having a sufficiently high thermal contact property with the Peltier heat generating portion is arranged to increase the overall heat capacity, thereby increasing the cooling output.

【0009】[0009]

【作用】この構成によれば、熱リザーバーの配設によ
り、電流流入部と電流流出部において発生したペルチェ
熱は速やかに熱伝導度の大きい熱リザーバーへ移動する
ので、通電中に熱電材料の両端面間の温度差が必要以上
に大きくなることはない。その結果熱電材料の両端面間
の温度差による熱起電力に逆らって通電するための余分
な電力を抑制でき、全体の効率を高めることができる。
According to this structure, since the Peltier heat generated in the current inflow portion and the current outflow portion is quickly moved to the heat reservoir having large thermal conductivity by disposing the heat reservoir, both ends of the thermoelectric material are energized during energization. The temperature difference between the surfaces does not become larger than necessary. As a result, it is possible to suppress the extra power for energizing against the thermoelectromotive force due to the temperature difference between both end faces of the thermoelectric material, and to improve the overall efficiency.

【0010】また、この熱リザーバーに潜熱蓄熱材を用
いることによって熱リザーバーの熱容量を大きくし、通
電時の電流量を大きくすることができるので冷却出力と
効率をさらに高めることができることとなる。
Further, by using a latent heat storage material for this heat reservoir, the heat capacity of the heat reservoir can be increased and the amount of current during energization can be increased, so that the cooling output and efficiency can be further increased.

【0011】[0011]

【実施例】以下に本発明の一実施例のヒートポンプデバ
イスを図面を参照しながら説明する。図1、図2に本実
施例のヒートポンプデバイスの構成を示す。図に示すよ
うに、まず吸熱側の熱電材料として基台1a上にBi2
Te3−Sb2Te3合金でできたP型半導体(厚さ3m
m)2と、電極として用いた銅プレート(厚さ0.5m
m)3を電気的に接続した。さらに銅プレートには熱リ
ザーバーとして銅ブロック(厚さ6mm)4を設け、そ
の上にに熱交換フィン5を設けた。また、基台1a上に
設けた送風ファン6によって熱交換フィン5に送風し、
熱交換効率を上げた。放熱側も同様に吸熱側と対向する
形でP型半導体7、銅プレート8、銅ブロック9、熱交
換フィン10を構成した。基台1bには駆動モーター1
1を取り付けることによって、吸熱側半導体2と放熱側
半導体7の接続、切り離しが容易にできるように構成し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat pump device according to an embodiment of the present invention will be described below with reference to the drawings. 1 and 2 show the configuration of the heat pump device of this embodiment. As shown in the figure, first, as a thermoelectric material on the heat absorption side, Bi 2 is placed on the base 1a.
P-type semiconductor made of Te 3 -Sb 2 Te 3 alloy (thickness 3 m
m) 2 and a copper plate used as an electrode (thickness 0.5 m
m) 3 was electrically connected. Further, a copper block (thickness: 6 mm) 4 was provided on the copper plate as a heat reservoir, and a heat exchange fin 5 was provided thereon. Further, the blower fan 6 provided on the base 1a blows air to the heat exchange fins 5,
Increased heat exchange efficiency. Similarly, the P-type semiconductor 7, the copper plate 8, the copper block 9, and the heat exchange fin 10 are formed so that the heat radiation side faces the heat absorption side. Drive motor 1 on base 1b
1 is attached so that the heat absorption side semiconductor 2 and the heat radiation side semiconductor 7 can be easily connected and disconnected.

【0012】つぎに、上記のように構成したヒートポン
プデバイスの動作を説明する。まず、図1に示すよう
に、吸熱側半導体2と放熱側半導体7とを接続した状態
で10A/cm2の電流を吸熱側半導体2から放熱側半
導体7の方向に流した。つぎに、図2に示すように通電
後3秒経た時、駆動モーター11によって吸熱側と放熱
側の半導体2、7を端面から切り離すことによって互い
に断熱した。雰囲気温度を20℃とした場合、切り離し
後約15秒経て、それぞれの半導体内部で熱的に平衡状
態に達した後温度測定すると、吸熱側半導体2は16.
0℃、放熱側半導体7は23.5℃となっており、冷却
効率(C.O.P)は約7.5であった。つぎに電流を
30A/cm2とし、約0.4秒間パルス的に流し、電
流パルスと同期して半導体の接続、切り離しを行なう
と、平衡に達した後では吸熱側半導体2が16.5℃、
放熱側半導体7が26.0℃となっていた。この時の効
率を、従来の熱リザーバーとしての銅ブロックを設けな
い構成の非定常熱電デバイスと比べると、約1.3倍に
向上していた。
Next, the operation of the heat pump device configured as described above will be described. First, as shown in FIG. 1, a current of 10 A / cm 2 was passed from the heat absorbing side semiconductor 2 to the heat radiating side semiconductor 7 while the heat absorbing side semiconductor 2 and the heat radiating side semiconductor 7 were connected. Next, as shown in FIG. 2, when 3 seconds have passed after energization, the heat absorbing side and heat radiating side semiconductors 2 and 7 were separated from each other by the drive motor 11 to insulate each other. When the ambient temperature is 20 ° C., the endothermic semiconductor 2 is 16.
The temperature was 0 ° C., the heat radiation side semiconductor 7 was 23.5 ° C., and the cooling efficiency (COP) was about 7.5. Next, when the current was set to 30 A / cm 2 and a pulse was applied for about 0.4 seconds to connect and disconnect the semiconductors in synchronization with the current pulse, the semiconductor 2 on the heat absorption side had a temperature of 16.5 ° C. after reaching equilibrium. ,
The temperature of the heat radiation side semiconductor 7 was 26.0 ° C. The efficiency at this time was improved by about 1.3 times as compared with the conventional non-steady-state thermoelectric device having a configuration in which the copper block as the heat reservoir is not provided.

【0013】切り離した吸熱側および放熱側の銅ブロッ
クは、熱交換フィンよって大気などの被冷却物、あるい
は被加熱物と十分に熱交換した後、再び接続、通電、切
り離しを繰り返した。さらに熱リザーバーとして用いる
銅ブロックの厚みとデバイス全体の効率の関係を、従来
の銅ブロックを設けない構成の非定常熱電デバイスと比
較して調べた。同じ温度差をつけた場合、銅ブロックを
厚くするとともに効率は高くなるが、厚さ6mmを越え
ると効率が低くなった。この結果、用いる熱電半導体の
性能指数、形状、流す電流の電流密度および通電時間に
よって決まる最適な厚みが存在することがわかった。
The separated heat-absorbing-side and heat-dissipating-side copper blocks were sufficiently exchanged with the object to be cooled such as the atmosphere or the object to be heated by the heat exchange fins, and then repeatedly connected, energized, and disconnected. Furthermore, the relationship between the thickness of the copper block used as a heat reservoir and the efficiency of the entire device was examined by comparing it with a conventional unsteady thermoelectric device having no copper block. When the same temperature difference was applied, the efficiency increased as the copper block was thickened, but the efficiency decreased when the thickness exceeded 6 mm. As a result, it was found that there is an optimum thickness determined by the figure of merit, the shape, the current density of the flowing current, and the conduction time of the thermoelectric semiconductor used.

【0014】つぎに図3に示す構成で、熱リザーバーの
容量を大きくしてデバイスの効率と出力を大きくする試
みを行った。吸熱側の銅プレート3に熱的に接触させて
銅発泡体12を配設した。銅発泡体12はその内部に直
径100〜500ミクロンの連続気泡を含み、本実施例
ではその連続気泡部に潜熱蓄熱材として融点が15℃の
パラフィンを充填して用いた。このような銅発泡体を用
いることにより、潜熱蓄熱材と熱電半導体との熱交換を
迅速に行うことが可能となる。また、潜熱蓄熱材に特有
の課題、すなわち過冷却、過昇温の現象を防止すること
ができた。一方の放熱側の銅発泡体13には潜熱蓄熱材
として融点24℃のパラフィンを充填した。これら両方
の銅発泡体の厚みは約5mmであった。このような潜熱
蓄熱材を配した非定常デバイスに流す電流の密度と通電
時間を変化させて実験を行った結果、1サイクル(接
続、通電、切り離し)で得られる冷却出力を従来の非定
常デバイスの約3倍に増大することができた。
Next, in the structure shown in FIG. 3, an attempt was made to increase the capacity of the heat reservoir to increase the efficiency and output of the device. The copper foam 12 was disposed in thermal contact with the copper plate 3 on the heat absorption side. The copper foam 12 contained therein open cells having a diameter of 100 to 500 μm, and in this example, the open cells were used by being filled with paraffin having a melting point of 15 ° C. as a latent heat storage material. By using such a copper foam, it becomes possible to rapidly exchange heat between the latent heat storage material and the thermoelectric semiconductor. Further, it was possible to prevent the problems peculiar to the latent heat storage material, that is, the phenomenon of overcooling and overheating. The copper foam 13 on the heat radiation side was filled with paraffin having a melting point of 24 ° C. as a latent heat storage material. The thickness of both of these copper foams was about 5 mm. As a result of conducting an experiment by changing the density of the current flowing in the unsteady device provided with such a latent heat storage material and the energization time, the cooling output obtained in one cycle (connection, energization, disconnection) Could be increased about 3 times.

【0015】[0015]

【発明の効果】以上の実施例の説明から明らかなように
本発明によれば、非定常熱電デバイスの電流流入部と電
流流出部の熱電材料に対して、その外側に熱伝導率の大
きい材料を熱リザーバーとして配設することによって、
デバイス全体の効率を高めるようにしたものである。ま
た、熱リザーバーとして、ペルチェ熱発生部と十分に高
い熱接触性を有する潜熱蓄熱材を配設して全体の熱容量
を大きくすることによって、熱的非定常状態を用いるヒ
ートポンプデバイスの熱効率を1.3倍に、1サイクル
あたりの冷却出力を約3倍に増大することができる。
As is clear from the above description of the embodiments, according to the present invention, a material having a large thermal conductivity outside the thermoelectric material of the current inflow portion and the current outflow portion of the unsteady thermoelectric device. By arranging as a heat reservoir,
It is designed to improve the efficiency of the entire device. Further, as a heat reservoir, a latent heat storage material having a sufficiently high thermal contact property with the Peltier heat generating portion is provided to increase the overall heat capacity, thereby increasing the thermal efficiency of the heat pump device using a thermal unsteady state. It is possible to increase the cooling output per cycle by about 3 times by about 3 times.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のヒートポンプデバイスの通
電時の構成を示す断面図
FIG. 1 is a cross-sectional view showing a configuration of a heat pump device according to an embodiment of the present invention when energized.

【図2】同ヒートポンプデバイスの切り離し時の構成を
示す断面図
FIG. 2 is a cross-sectional view showing the configuration of the heat pump device when separated.

【図3】同潜熱蓄熱材を用いたヒートポンプデバイスの
構成を示す断面図
FIG. 3 is a cross-sectional view showing the configuration of a heat pump device using the latent heat storage material.

【図4】従来のヒートポンプデバイスの構成を示す断面
FIG. 4 is a sectional view showing the configuration of a conventional heat pump device.

【図5】同熱的非定常状態を用いたヒートポンプデバイ
スの構成を示す断面図
FIG. 5 is a cross-sectional view showing a configuration of a heat pump device using the same thermal unsteady state.

【符号の説明】[Explanation of symbols]

1a,1b 基台 2、7 P型半導体 3、8 銅プレート 4、9 銅ブロック 5、10 熱交換フィン 6 送風ファン 11 駆動モーター 1a, 1b Base 2, 7 P-type semiconductor 3, 8 Copper plate 4, 9 Copper block 5, 10 Heat exchange fin 6 Blower fan 11 Drive motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中桐 康司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nakagiri 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ペルチェ効果を有する熱電材料に電流を
通じ、熱電材料内部が熱的定常状態に達する前に、熱電
材料の電流流入部と電流流出部とを断熱する構成のヒー
トポンプデバイスであって、前記電流流入部または前記
電流流出部のいずれか、または両方の前記熱電材料の外
側に、前記熱電材料より熱伝導率の大きい材料を熱リザ
ーバーとして配設してなるヒートポンプデバイス。
1. A heat pump device having a structure in which an electric current is passed through a thermoelectric material having a Peltier effect to insulate a current inflow portion and a current outflow portion of the thermoelectric material before the inside of the thermoelectric material reaches a thermal steady state, A heat pump device in which a material having a thermal conductivity higher than that of the thermoelectric material is arranged as a heat reservoir outside the thermoelectric material in either or both of the current inflow portion and the current outflow portion.
【請求項2】 電流流入部または電流流出部のいずれ
か、または両方の熱電材料の外側に配設する熱リザーバ
ーとして、潜熱蓄熱材を備えた請求項1記載のヒートポ
ンプデバイス。
2. The heat pump device according to claim 1, further comprising a latent heat storage material as a heat reservoir arranged outside the thermoelectric material of either or both of the current inflow portion and the current outflow portion.
JP30441891A 1991-11-20 1991-11-20 Heat pump device Expired - Fee Related JP2924369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30441891A JP2924369B2 (en) 1991-11-20 1991-11-20 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30441891A JP2924369B2 (en) 1991-11-20 1991-11-20 Heat pump device

Publications (2)

Publication Number Publication Date
JPH05172424A true JPH05172424A (en) 1993-07-09
JP2924369B2 JP2924369B2 (en) 1999-07-26

Family

ID=17932763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30441891A Expired - Fee Related JP2924369B2 (en) 1991-11-20 1991-11-20 Heat pump device

Country Status (1)

Country Link
JP (1) JP2924369B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028364A1 (en) * 1993-05-25 1994-12-08 Industrial Research Limited A peltier device
JPH0882454A (en) * 1994-04-27 1996-03-26 Korea Advanced Inst Of Sci Technol Thermoelectric cooling type potable-water can cooler
EP0922915A2 (en) * 1997-12-10 1999-06-16 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
WO1999030090A1 (en) * 1997-12-10 1999-06-17 International Business Machines Corporation Thermoelectric cooling apparatus with dynamic switching to isolate heat transport mechanisms
US6384312B1 (en) 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US6403876B1 (en) 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US6467275B1 (en) 2000-12-07 2002-10-22 International Business Machines Corporation Cold point design for efficient thermoelectric coolers
US6494048B1 (en) 2002-04-11 2002-12-17 International Business Machines Corporation Assembly of quantum cold point thermoelectric coolers using magnets
US6588217B2 (en) 2000-12-11 2003-07-08 International Business Machines Corporation Thermoelectric spot coolers for RF and microwave communication integrated circuits
US6597544B2 (en) 2000-12-11 2003-07-22 International Business Machines Corporation Thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
US6712258B2 (en) 2001-12-13 2004-03-30 International Business Machines Corporation Integrated quantum cold point coolers

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028364A1 (en) * 1993-05-25 1994-12-08 Industrial Research Limited A peltier device
JPH0882454A (en) * 1994-04-27 1996-03-26 Korea Advanced Inst Of Sci Technol Thermoelectric cooling type potable-water can cooler
EP0922915A2 (en) * 1997-12-10 1999-06-16 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
WO1999030090A1 (en) * 1997-12-10 1999-06-17 International Business Machines Corporation Thermoelectric cooling apparatus with dynamic switching to isolate heat transport mechanisms
EP0922915A3 (en) * 1997-12-10 2000-03-22 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
KR100351650B1 (en) * 1997-12-10 2002-09-05 인터내셔널 비지네스 머신즈 코포레이션 Thermoelectric cooling apparatus with dynamic switching to isolate heat transport mechanisms
US6403876B1 (en) 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US6384312B1 (en) 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US6467275B1 (en) 2000-12-07 2002-10-22 International Business Machines Corporation Cold point design for efficient thermoelectric coolers
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
US6740600B2 (en) 2000-12-07 2004-05-25 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metals tips
US6588217B2 (en) 2000-12-11 2003-07-08 International Business Machines Corporation Thermoelectric spot coolers for RF and microwave communication integrated circuits
US6597544B2 (en) 2000-12-11 2003-07-22 International Business Machines Corporation Thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives
US6712258B2 (en) 2001-12-13 2004-03-30 International Business Machines Corporation Integrated quantum cold point coolers
US6494048B1 (en) 2002-04-11 2002-12-17 International Business Machines Corporation Assembly of quantum cold point thermoelectric coolers using magnets

Also Published As

Publication number Publication date
JP2924369B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP2924369B2 (en) Heat pump device
JPH0539966A (en) Heat pump device
US20070084497A1 (en) Solid state direct heat to cooling converter
JPH05219765A (en) Thermo electric generator
JPS6213097A (en) Cooling layout for heat conduction of electric component member
JP3087813B2 (en) Temperature control device and method
JPS6113348B2 (en)
JP2563524B2 (en) Thermoelectric device
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
JPH06159953A (en) Latent-heat storage device
JPH0430586A (en) Thermoelectric device
JPH08335723A (en) Thermoelectric converter
JPH07221352A (en) Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit
US3804676A (en) Thermoelectric generator with thermal expansion block
JPH08306965A (en) Thermoelectric conversion module for generation
JP2000009361A (en) Thermoelectric conversion system
JP3590325B2 (en) Cooling device for electronic components
JP3175039B2 (en) Thermoelectric conversion module, laminated thermoelectric conversion device, thermoelectric power generation subunit, and power generation system
JPH0882454A (en) Thermoelectric cooling type potable-water can cooler
JPH10125360A (en) Battery unit
JPH05172425A (en) Cold/hot water feed device
JP3177668B2 (en) Discoloration equipment
US2977400A (en) Thermoelements and devices embodying them
JPH07147434A (en) Thermoelectric conversion device and thermoelectric cooling device
KR200404457Y1 (en) A seat using thermoelement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees