JPH0517205A - 酸化物超電導バルク材の製造方法 - Google Patents

酸化物超電導バルク材の製造方法

Info

Publication number
JPH0517205A
JPH0517205A JP3289605A JP28960591A JPH0517205A JP H0517205 A JPH0517205 A JP H0517205A JP 3289605 A JP3289605 A JP 3289605A JP 28960591 A JP28960591 A JP 28960591A JP H0517205 A JPH0517205 A JP H0517205A
Authority
JP
Japan
Prior art keywords
phase
heat treatment
powder
oxide powder
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3289605A
Other languages
English (en)
Other versions
JP2914799B2 (ja
Inventor
Keiichi Kimura
圭一 木村
Katsuyoshi Miyamoto
勝良 宮本
Kiyoshi Sawano
清志 澤野
Misao Hashimoto
操 橋本
Masamoto Tanaka
将元 田中
Mitsuru Morita
充 森田
Kiyonori Takebayashi
聖記 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3289605A priority Critical patent/JP2914799B2/ja
Publication of JPH0517205A publication Critical patent/JPH0517205A/ja
Application granted granted Critical
Publication of JP2914799B2 publication Critical patent/JP2914799B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【目的】 高い臨界電流密度を得ることができる酸化物
超電導バルク材の製造方法を提供する。 【構成】 Ba酸化物粉末とCu酸化物粉末との混合粉
末を溶融し、急冷し、粉砕してBa−Cu複合酸化物粉
末を作製し、前記Ba−Cu複合酸化物粉末にRE2
3 (ここでREはY,Sm,Eu,Gd,Dy,Ho,
Er,Tm,Yb,Luからなる群から選ばれた1種以
上の元素をいう)またはRE2 3 ,RE2 BaCuO
5 混合粉を添加して混練し、成形し、前記成形体を部分
溶融熱処理し、引き続き結晶成長熱処理し、酸素量調整
熱処理する。REBa2 Cu3 7- x 相中にRE2 Ba
CuO5 相が微細かつ均一に分散し、高い臨界電流密度
を得ることができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は高い臨界電流密度およ
び磁場特性を有するRE−Ba−Cu−O系酸化物超電
導バルク材の製造方法に関する。
【0002】酸化物超電導体は種々の形態のバルクに成
形され、超電導ベアリング、超電導磁石、磁気遮蔽など
に用いられる。
【0003】
【従来の技術】超電導の応用にとって、臨界温度が高い
というのは大きな利点となる。特に、液体窒素温度を超
えるRE−Ba−Cu−OやBi系、Tl系酸化物超電
導体の発見は、冷却コストの低下およびヘリウムと比べ
て資源的に豊富な窒素の利用ができるなどの点で超電導
の利用分野を大きく拡大する可能性を与えている。
【0004】しかし、超電導の応用にとっては、臨界温
度よりはむしろ使用温度における臨界電流の大きさが重
要となる。液体窒素での応用を目指すためには、この温
度での臨界電流密度の改善が必須となる。臨界電流密度
は材料固有の特性ではなく、材料の組織を変えることに
よって向上させることが可能となる。たとえば、溶融法
によって結晶配向させることで、超電導電流の妨げとな
る欠陥を除去でき、焼結法などで作製した材料に比べて
高い臨界電流密度が達成される。溶融法として、QMG
法(新日鐵)、MPMG法(ISTEC)あるいはMT
G法(AT&T)などがある。QMG法は、溶融−急
冷、部分溶融−徐冷工程からなっている。MPMG法
は、溶融−急冷−粉砕−成形、部分溶融−徐冷工程から
なっている。また、MTG法は成形−溶融−徐冷工程か
らなっている。
【0005】しかし、臨界電流密度そのものは実用レベ
ルよりもまだ低い(T=77K、He=数Tで104
/cm2 程度まで特性の向上が必要である)。これは、高
い臨界電流密度を得るためには超電導電流の妨げとなる
欠陥の除去だけではなく、磁束の運動を抑えるピン止め
点の導入が必要であるためである。単に溶融法で作製し
た場合、このようなピン止めを自然に導入される点欠陥
や転位などに頼らざるを得ないため高い臨界電流密度が
得られない。この磁束の運動を抑えるために、RE−B
a−Cu−O系では非超電導相であるRE2 BaCuO
5 相(211相)を超電導相であるREBa2 Cu3
7-x 相(123相)内に微細に分散させるようにしてい
る。
【0006】
【発明が解決しようとする課題】前記QMG法およびM
TG法では、溶融前には各成分とも均一に分散している
が、溶融されるとRE酸化物が生成し、この酸化物が粗
大化するとともに偏析を生ずる。RE2 BaCuO5
は、この酸化物を核として生成する。このために、微細
なRE2 BaCuO5 相をREBa2 Cu3 7-x 相中
に均一に分散することが困難である。MTG法では、超
電導相が粗大化する。これは、部分溶融処理時間が長い
ために粗大化したものと考えられる。この結果、RE2
BaCuO5 相による磁束のピン止め効果が十分でな
く、またREBa2 Cu3 7-x 相に割れが発生し、高
磁場において液体窒素温度で実用に耐える臨界電流密度
が得られないという問題があった。
【0007】そこで、この発明はREBa2 Cu3
7-x 相中にRE2 BaCuO5 相が微細かつ均一に分散
し、高い臨界電流密度を得ることができる酸化物超電導
バルク材の製造方法を提供しようとするものである。
【0008】
【課題を解決するための手段】この発明の酸化物超電導
バルク材の製造方法は、Ba酸化物粉末とCu酸化物粉
末の混合粉末を溶融し、急冷し、粉砕してBa−Cu複
合酸化物粉末を作製する。ついで、上記Ba−Cu複合
酸化物粉末にRE2 3 またはRE2 3 ,RE2 Ba
CuO5 混合粉を添加して混練し、成形する。そして、
上記成形体を部分溶融し、引き続き結晶成長熱処理し、
酸素量調整熱処理する。ここで、REはY,Sm,E
u,Gd,Dy,Ho,Er,Tm,Yb,Luからな
る群から選ばれた1種以上の元素をいう。
【0009】図1および図2に従って、この発明を詳細
に説明する。図では1例として原料としてBaCO3
CuO,Y2 3 を用いた場合を示している。
【0010】BaCO3 粉末およびCuO粉末の混合比
は、Ba:Cu=(1.5〜2.5):(2.5〜3.
5)程度が好ましい。混合粉末の溶融加熱温度は110
0℃以上であり、加熱保持時間は3〜30min程度であ
る。BaCO3 粉末とCuO粉末との混合粉末を溶融、
急冷することによって、凝固した塊状のBa−Cu複合
酸化物が得られる。なお、混合粉末の溶融により、Ba
CO3 中のCO3 は消失する。BaとCuとの分離を避
けるために、急冷速度は−10℃/sec以上であること
が望ましい。
【0011】また、Ba−Cu複合酸化物を粉砕して得
た粉末の粒径は0.2mm以下であることが好ましい。
【0012】上記Ba−Cu複合酸化物粉末にY2 3
またはY2 3 ,Y2 BaCuO5 混合粉を添加し、そ
の後成形する。この組成はY:Ba:Cu=1:(1〜
2):(1〜3)であることが望ましい。
【0013】成形体の部分溶融熱処理では、成形体を1
000〜1350℃に加熱し、0.1〜2hr程度保持す
る。成形体の加熱温度が1000℃未満では、部分溶融
はするが量的に少なく臨界電流密度は向上しない。逆
に、成形体の加熱温度が1350℃を超えると、微細な
2 BaCuO5 相が得られない。また、成形体が完全
に溶融して原型をとどめない状態となり、所要の形状の
バルク材が得られない。ついで、1050〜1000℃
まで比較的高い冷却速度(たとえば、−50〜1℃/mi
n)で冷却する。
【0014】結晶成長熱処理は、成形体を上記温度10
50〜1000℃から960〜940℃に至るまで徐冷
する。冷却速度は−200℃/hr以下である。徐冷速度
が、−200℃/hrを超えると、YBa2 Cu3 7-x
相の結晶粒が充分成長しないため、粒界が多くなり臨界
電流密度が低下する。このような熱処理によって、超電
導相の中には細かなY2 BaCuO5 相が含まれている
ため組織が細かく機械的強度も改善される。
【0015】酸素量調整熱処理は、成形体を酸素雰囲気
中または空気中で冷却する。冷却速度は−10〜1℃/
hr程度である。酸素量調整熱処理では、YBa2 Cu3
7- x 中の酸素量O7-x を調整する。
【0016】
【作用】成形体は1000〜1350℃に加熱すると半
溶融状態となり、RE2 3 と液相(BaCu酸化物)
が反応し、RE2 3 を核として針状の細かいRE2
aCuO5 相が成長する。このRE2 BaCuO5 相は
分断されて微細な相となる。半溶融状態では、繊維状R
2 BaCuO5相が液相を吸収するため、成形体の形
はほぼ維持される。
【0017】半溶融状態の成形体を徐冷すると、RE2
BaCuO5 相と液相との包晶反応によりREBa2
3 7-x 相が析出する。この状態からさらに徐冷を行
なうことによって核生成を抑制し、結晶を成長律速にす
ることによって粒界の少ない大きな結晶粒が得られる。
このときできる組織はREBa2 Cu3 7-x 相中に細
かいRE2 BaCuO5 相を含んでおり、このRE2
aCuO5 相の存在は結晶生成過程を含む熱処理中に生
じる応力を分散させることによって粒界および割れが少
なく、方位のそろった数ミリ以上の結晶粒の集合体とな
る。
【0018】1350℃を超える高温でREを含むBa
Cu組成のものを溶融処理することはないので、RE2
3 の凝集や粗大化がないためにRE2 BaCuO5
は微細となる。また、REBa2 Cu3 7-x 相中のR
2 BaCuO5 相の量は、主にRE2 3 ,RE2
aCuO5 相の添加量で調整する。
【0019】RE2 BaCuO5 相が微細であると、超
電導体を貫通する磁束がRE2 BaCuO5 相と鎖交す
る点が増し、ピン止め効果は高くなる。また、割れも少
なくなる。この結果、臨界電流密度は向上する。
【0020】
【実施例】
[実施例1]BaCO3 粉末およびCuO粉末をモル比
で2:3となるように混合した粉末を白金るつぼ内で1
400℃で3分間加熱溶融後、銅ハース上で急冷した
(凝固までの冷却速度は約−10℃/sec)。得られた成
形体を粉砕して100メッシュ以下の粉末にし、これに
2 3およびY2 BaCuO5 混合粉末を加えて、
Y:Ba:Cuの混合比がモル比でそれぞれ1:2:
3,1.2:2:3および1.5:2:3になるように
した混合粉末を金型に充填し、油圧プレスで成形、さら
にCIPして充填密度を上げた直径3cm、厚さ1.5cm
のペレットを成形した。
【0021】上記ペレットを1100℃に加熱し、30
min保持して、成形体を部分溶融させる。この状態か
ら、1000℃まで−200℃/hrで冷却した。100
0℃近傍から超電導体のYBa2 Cu3 7-x 結晶が成
長をはじめる。結晶成長は960〜940℃程度で停止
する。この間の温度域で結晶を大きく成長させるために
結晶核の生成を抑制し、成長律速にするために徐冷(−
1℃/hr)を行った。さらに、この温度が常温まで−1
00℃/hrで冷却した。この後に酸素量調整熱処理を酸
素気流中で温度600℃まで再加熱をし、600℃に8
hr保持後、200℃まで−10℃/hrで冷却した。
【0022】この熱処理によって得られたY系酸化物超
電導体のミクロ組織を図3に示す。図3(a)は1:
2:3、図3(b)は1.2:2:3の混合比のミクロ
組織を示す。いずれのミクロ組織もYBa2 Cu3
7-x 結晶体の中にY2 BaCuO5 結晶が平均2μm以
下に微細に分散し、さらに微細な割れもほとんど見られ
ず、良質な酸化物超電導体バルク材が得られた。
【0023】この結晶は、いずれの組成比のものも超電
導状態になる臨界温度は、図4に示すように92Kを示
した。
【0024】また、77Kにおいて、試料振動型磁力計
を用いて測定した磁化ヒステリシス曲線から臨界電流密
度を換算した結果では、臨界電流密度は磁場強度が1T
においてY:Ba:Cuの混合比が1:2:3のとき
2.3×104 A/cm2 (図5参照)、1.5:2:3
の混合比のときは3.7×104 A/cm2 を示し、極め
て高い臨界電流密度を示した。
【0025】[実施例2]次に、原料粉およびその組成
比を変化させて、実施例1と同様な熱処理を施しREB
2 Cu3 7-x バルク超電導体を作製した。ただしR
Eによって、REBa2 Cu3 7-x の生成開始温度が
変化するため、徐冷開始温度はこれに応じて変化させ
た。徐冷速度は実施例1と同様−1℃/hrである。この
ようにして作製された試料に対し、組織観察と77Kで
の磁化測定を行った。この結果、実施したいずれの場合
においても、生成したREBa2 Cu3 7-x 内のRE
2 BaCuO5 相は平均2μm以下に微細分散している
ことがわかった。また、磁化測定から見積られた臨界電
流密度は77K,1Tの条件で1×104 A/cm2 以上
の高い値を有することが確認された。実施した系の組
成、REBa2 Cu3 7- x を成長させるための徐冷温
度域および77K,1Tでの臨界電流密度を表1に示
す。また、一例として、上記の手法で作製したGdBa
2 Cu3 7-x バルク超電導体の磁化曲線とこれから見
積った臨界電流密度の磁場依存性を図6に示す。以上に
示したような高い臨界電流密度は、溶融法による弱結合
の除去およびREBa2 Cu3 7-x 相内のRE2 Ba
CuO5 相の微細分散により実現したものである。
【0026】
【表1】
【0027】
【発明の効果】この発明によれば、REBa2 Cu3
7-x 相中に微細なRE2 BaCuO5 相が均一に分布し
た超電導バルク材を得ることができる。また、得られた
REBa2 Cu3 7-x 相は、一つの粒径が数ミリと大
きく、粒界および割れも少ない。この結果、微細なRE
2 BaCuO5 相による磁束のピン止め効果が向上し、
高磁場中でも従来法と比較して高い臨界電流密度を得る
ことができる。
【図面の簡単な説明】
【図1】この発明の工程を示すフローチャートである。
【図2】この発明の工程を示す線図である。
【図3】RE系酸化物超電導体の結晶構造を示す写真で
ある。
【図4】この発明のRE系酸化物超電導体の臨界温度を
示すグラフである。
【図5】この発明のRE系酸化物超電導体の磁化ヒステ
リシス曲線である。
【図6】Gd系酸化物超電導体の磁化ヒステリシス曲線
および磁場と臨界電流密度との関係を示すグラフであ
る。
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D 8936−5G H01L 39/12 ZAA C 8728−4M // H01B 12/00 ZAA 8936−5G (72)発明者 橋本 操 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 田中 将元 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 森田 充 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 竹林 聖記 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 Ba酸化物粉末とCu酸化物粉末との混
    合粉末を溶融し、急冷し、粉砕してBa−Cu複合酸化
    物粉末を作製し、前記Ba−Cu複合酸化物粉末にRE
    2 3 (ここでREはY,Sm,Eu,Gd,Dy,H
    o,Er,Tm,Yb,Luからなる群から選ばれた1
    種以上の元素をいう)またはRE2 3 ,RE2 BaC
    uO5混合粉を添加して混練し、成形し、前記成形体を
    部分溶融熱処理し、引き続き結晶成長熱処理し、酸素量
    調整熱処理することを特徴とする酸化物超電導バルク材
    の製造方法。
JP3289605A 1990-11-06 1991-11-06 酸化物超電導バルク材の製造方法 Expired - Lifetime JP2914799B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289605A JP2914799B2 (ja) 1990-11-06 1991-11-06 酸化物超電導バルク材の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-299022 1990-11-06
JP29902290 1990-11-06
JP3289605A JP2914799B2 (ja) 1990-11-06 1991-11-06 酸化物超電導バルク材の製造方法

Publications (2)

Publication Number Publication Date
JPH0517205A true JPH0517205A (ja) 1993-01-26
JP2914799B2 JP2914799B2 (ja) 1999-07-05

Family

ID=26557655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289605A Expired - Lifetime JP2914799B2 (ja) 1990-11-06 1991-11-06 酸化物超電導バルク材の製造方法

Country Status (1)

Country Link
JP (1) JP2914799B2 (ja)

Also Published As

Publication number Publication date
JP2914799B2 (ja) 1999-07-05

Similar Documents

Publication Publication Date Title
JP2839415B2 (ja) 希土類系超電導性組成物の製造方法
WO1990013517A1 (en) Oxide superconductor and method of producing the same
JP4113113B2 (ja) 酸化物超電導体の接合方法及び酸化物超電導体接合体
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
US5430010A (en) Process for preparing oxide superconductor
JP4628041B2 (ja) 酸化物超電導材料及びその製造方法
JP2914799B2 (ja) 酸化物超電導バルク材の製造方法
JP2874278B2 (ja) 酸化物超電導体およびその製造方法
JP3155333B2 (ja) 臨界電流密度の高い酸化物超電導体の製造方法
JP3330962B2 (ja) 酸化物超電導体の製造方法
JP3159764B2 (ja) 希土類系超電導体の製造方法
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
JP3160900B2 (ja) 超伝導材料の製造方法
JP3115696B2 (ja) 磁気浮上力の大きい酸化物超電導体の製造方法
JP4628042B2 (ja) 酸化物超電導材料及びその製造方法
JP3115695B2 (ja) 磁気浮上力の大きい酸化物超電導体の製造方法
JPH0751463B2 (ja) 酸化物超電導体の製造方法
JP2931446B2 (ja) 希土類系酸化物超電導体の製造方法
JPH04240115A (ja) 酸化物超電導バルク材の製造方法
JP2828396B2 (ja) 酸化物超電導体及びその製造方法
JP2006036574A (ja) RE−Ba−Cu−O系酸化物超電導体の作製方法
JP2000247795A (ja) Re123系酸化物超電導バルク体の作製方法
JPH04243917A (ja) 酸化物超電導焼結体の作製方法
JP2001114595A (ja) 高温酸化物超電導材料およびその製造方法
JPH0816014B2 (ja) 酸化物超電導バルク材料の製造方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13