JPH05170402A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH05170402A
JPH05170402A JP3342599A JP34259991A JPH05170402A JP H05170402 A JPH05170402 A JP H05170402A JP 3342599 A JP3342599 A JP 3342599A JP 34259991 A JP34259991 A JP 34259991A JP H05170402 A JPH05170402 A JP H05170402A
Authority
JP
Japan
Prior art keywords
reforming
combustion gas
gas
pipe
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3342599A
Other languages
Japanese (ja)
Inventor
Yoshiharu Miura
芳春 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3342599A priority Critical patent/JPH05170402A/en
Publication of JPH05170402A publication Critical patent/JPH05170402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide a fuel reformer where the influence of channeling of fuel gas flow on it is eliminated and the quantity of heat due to radiant heat transfer is made uniform for all the reforming tubes so that the surface temp. distribution of the reforming tubes may be made uniform. CONSTITUTION:A lot of reforming tubes 3 are divided into some regions at every tubes 3. Partitions 22 are installed in the boundary of the regions all over the height of the upper half part of the reforming tubes 3. The partition 22 is made of a formed part of heat resisting material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素ガスに水蒸気
を混合したガス(以下 原料ガス)を燃焼ガスによって
加熱し、触媒を用いた改質反応により水素を主成分とす
るガス(以下改質ガス)を生成する燃料改質器(以下
改質器)に係り、特に、燃料電池発電プラントに使用す
るのに適した改質器内に設けられた多数の改質管の偏っ
た加熱現象を防止するための手段を具備することによ
り、燃料電池発電プラントの信頼性の向上をなしうる改
質器に関する。
BACKGROUND OF THE INVENTION The present invention is directed to heating a gas (hereinafter referred to as a raw material gas) obtained by mixing a hydrocarbon gas with water vapor by a combustion gas, and a gas containing hydrogen as a main component (hereinafter referred to as a reformed gas) by a reforming reaction using a catalyst. Fuel reformer (below)
Reformer), in particular, by providing a means for preventing uneven heating phenomenon of a large number of reforming tubes provided in the reformer suitable for use in a fuel cell power plant, The present invention relates to a reformer capable of improving the reliability of a fuel cell power plant.

【0002】[0002]

【従来の技術】燃料電池発電プラントは一般に、燃料電
池本体と上記改質器と電力変換装置、制御装置および多
くの熱交換器類によって構成されており、非常に複雑な
システムである。本発明の対象である改質器について、
一般に用いられている改質器の一例を図4ないし図6に
示す。
2. Description of the Related Art A fuel cell power plant is a very complicated system, which is generally composed of a fuel cell main body, the reformer, a power converter, a controller and many heat exchangers. Regarding the reformer which is the object of the present invention,
An example of a commonly used reformer is shown in FIGS.

【0003】内面に適当な厚さの断熱材2を施した収納
容器1内に、円周上に規則的に配置された多数の改質管
3によって構成される改質管群4が立設され、当該収納
容器1の下端にはバーナ空気入口5およびバーナ燃料入
口6を具備する燃料バーナ7(以下 バーナ)が設けら
れている。また、上記収納容器1内の上部には燃焼ガス
空間8と称する広い空間が設けられ、中央部にはバーナ
7にその下端部を接した円筒状のライザー管9が垂設さ
れている。さらに、収納容器1の下端には、容器壁を貫
通して原料ガス入口10、改質ガス出口11および排ガス出
口12が設けられている。また、上記改質管3内には内管
13が設けられ、この二本の管の間には粒状の改質触媒が
充填されて触媒層14を形成している。
A reforming tube group 4 composed of a large number of reforming tubes 3 regularly arranged on the circumference is erected in a storage container 1 having an inner surface coated with a heat insulating material 2 having an appropriate thickness. A fuel burner 7 (hereinafter referred to as a burner) having a burner air inlet 5 and a burner fuel inlet 6 is provided at the lower end of the storage container 1. In addition, a wide space called a combustion gas space 8 is provided in the upper part of the storage container 1, and a cylindrical riser pipe 9 whose lower end is in contact with the burner 7 is vertically provided in the central part. Further, a raw material gas inlet 10, a reformed gas outlet 11 and an exhaust gas outlet 12 are provided at the lower end of the storage container 1 so as to penetrate the container wall. Moreover, an inner pipe is provided in the reforming pipe 3.
13 is provided, and a granular reforming catalyst is filled between the two tubes to form a catalyst layer 14.

【0004】バーナ空気入口5およびバーナ燃料入口6
から供給されたバーナ空気およびバーナ燃料は、バーナ
7で燃焼して1000℃以上の高温の燃焼ガス15とな
り、バーナ7の真上に設置されたライザー管9内を混合
しながら上昇する。そして、温度が均一化された燃焼ガ
ス15は、収納容器1上部の燃焼ガス空間8に導入され
る。さらに、燃焼ガス15は、燃焼ガス空間8で下方に流
れを転じて改質管群4の中に流れ込み、改質管3と改質
管3との間に形成される燃焼ガス通路16を流動する。次
に、改質管3の下半部に設けられた伝熱スリーブ17の隙
間を高速で流れて収納容器1の下端に流出し、排ガス出
口12から器外に排出される。
Burner air inlet 5 and burner fuel inlet 6
The burner air and the burner fuel supplied from the burner burn in the burner 7 to become a combustion gas 15 having a high temperature of 1000 ° C. or higher, and rise in the riser pipe 9 installed right above the burner 7 while mixing. Then, the combustion gas 15 whose temperature is made uniform is introduced into the combustion gas space 8 above the storage container 1. Further, the combustion gas 15 turns downward in the combustion gas space 8 and flows into the reforming pipe group 4, and flows through the combustion gas passage 16 formed between the reforming pipes 3 and 3. To do. Next, it flows at high speed through the gap of the heat transfer sleeve 17 provided in the lower half of the reforming pipe 3, flows out to the lower end of the storage container 1, and is discharged from the exhaust gas outlet 12 to the outside of the device.

【0005】尚、高温の燃焼ガス15は、改質管3の周囲
を流下する際に改質管3の内部を流れる流体と熱交換す
ることによって徐々に温度が降下する。このとき、改質
管3の上半部では燃焼ガス15が非常に高温であるために
輻射が支配的で強制対流が副次的な伝熱形態となる。一
方、下半部では相対的に温度が下がり流速が速められて
いるために強制対流が支配的で輻射が副次的な伝熱形態
となっている。
The temperature of the high temperature combustion gas 15 is gradually lowered by exchanging heat with the fluid flowing inside the reforming pipe 3 when flowing down around the reforming pipe 3. At this time, since the combustion gas 15 is extremely hot in the upper half of the reforming tube 3, radiation is dominant and forced convection is a secondary heat transfer mode. On the other hand, in the lower half, the temperature is relatively low and the flow velocity is accelerated, so forced convection is dominant and radiation is a secondary heat transfer form.

【0006】他方、炭化水素系原料ガスと水蒸気を混合
したガス(以下 原料ガス20)は、収納容器1の下端の
原料ガス入口10より分配管18に流入し、分配枝管19を経
由して改質管3内に導かれる。次に、触媒層14を改質管
3の長さ方向に沿って上向きに流動し、その際、原料ガ
ス20は外部を流れる燃焼ガス15によって熱せられて徐々
に温度が上昇する。そして、触媒の作用によって改質反
応が起こり、上端に達するまでに約750℃の水素を主
成分とする改質ガス21に変化する。
On the other hand, a gas obtained by mixing a hydrocarbon-based raw material gas and water vapor (hereinafter referred to as raw material gas 20) flows into the distribution pipe 18 from the raw material gas inlet 10 at the lower end of the storage container 1 and passes through the distribution branch pipe 19. It is introduced into the reforming pipe 3. Next, the catalyst layer 14 flows upward along the length direction of the reforming pipe 3, and at that time, the raw material gas 20 is heated by the combustion gas 15 flowing outside, and the temperature gradually rises. Then, the reforming reaction occurs due to the action of the catalyst, and changes to the reformed gas 21 containing hydrogen at about 750 ° C. as a main component before reaching the upper end.

【0007】さらに、改質ガス21は、改質管3の上端で
反転し、内管13の内部を下向きに流動する。この際、高
温の改質ガス21は、内管13の壁面を介して比較的低温の
原料ガス20と熱交換し、約550℃に温度降下して改質
ガス出口11より器外に排出され、図示しない種々の機器
を経由して燃料電池本体に導かれる。
Further, the reformed gas 21 is inverted at the upper end of the reforming pipe 3 and flows downward in the inner pipe 13. At this time, the high temperature reformed gas 21 exchanges heat with the relatively low temperature raw material gas 20 through the wall surface of the inner pipe 13, and the temperature drops to about 550 ° C. and is discharged from the reformed gas outlet 11 to the outside of the device. , Is guided to the fuel cell main body via various devices not shown.

【0008】[0008]

【発明が解決しようとする課題】以上のような構成およ
び機能を有する従来の改質器を備えた燃料電池発電プラ
ントにおいて、改質反応を起こさせるためには原料ガス
20を約750℃まで加熱する必要があり、そのため一般
に燃焼ガス15は1000℃〜1500℃の非常に高温
のガスである。
In the fuel cell power plant having the conventional reformer having the above-mentioned structure and function, the raw material gas is used to cause the reforming reaction.
It is necessary to heat 20 up to about 750 ° C, so that combustion gas 15 is generally a very hot gas from 1000 ° C to 1500 ° C.

【0009】このため、改質管3の温度は、上端部にお
いて約1000℃という金属材料にとって極度に苛酷な
条件で運転されている。そして、改質性能を十分に引出
して機能を確保するためには、多数の改質管3を全て均
一に加熱して、その表面温度のばらつきを特に改質管3
の頂部において最少限度にすることが必要不可欠であ
る。仮に平均温度約1000℃に対して局部的な過熱が
発生した状態で連続運転した場合、改質管3の金属寿命
は急激に低下し、極端な場合、短時間で破壊に至る場合
もある。
Therefore, the temperature of the reforming tube 3 is about 1000 ° C. at the upper end, which is extremely harsh for a metallic material. Then, in order to sufficiently bring out the reforming performance and to secure the function, all of the many reforming tubes 3 are uniformly heated, and variations in the surface temperature thereof are particularly affected.
It is essential to have a minimum at the top of the. If the continuous operation is performed under the condition that the average temperature is about 1000 ° C. and the local overheat is generated, the metal life of the reforming pipe 3 is drastically reduced, and in an extreme case, it may be broken in a short time.

【0010】また、逆に局部的な過熱を防ぐために改質
管3の平均温度を下げて運転した場合、原料ガス20の温
度を約750℃に加熱することが不可能になり、改質器
で最も避けたいところの改質性能の低下を免れなくな
る。
On the contrary, when the average temperature of the reforming pipe 3 is lowered to prevent local overheating, it becomes impossible to heat the temperature of the raw material gas 20 to about 750 ° C. Inevitably, the deterioration of the reforming performance, which is the most important point to avoid, is inevitable.

【0011】以上のように、多数の改質管3を配置して
改質管群4を構成した改質器では、改質管3の金属部の
温度分布を均一にすることが肝要であり、特に最近はこ
の種の改質器が大形化して改質管3の本数が増加する傾
向にあるため、この問題は最重要課題となっている。
As described above, in the reformer in which a large number of reforming tubes 3 are arranged to constitute the reforming tube group 4, it is important to make the temperature distribution of the metal portion of the reforming tube 3 uniform. Particularly, recently, since this type of reformer tends to be large-sized and the number of reforming tubes 3 tends to increase, this problem is the most important issue.

【0012】ところで、この改質管3の温度のばらつき
が発生する原因は、主として燃焼ガス15の流れに関係し
ていることが多い。つまり、熱源としての燃焼ガス15の
流れが多数の改質管3の周りで均等でなく、改質管3の
長さ方向に沿った流れと長さ方向に直角な横断流が混在
する場合である。
By the way, the cause of the variation in the temperature of the reforming tube 3 is often mainly related to the flow of the combustion gas 15. That is, in the case where the flow of the combustion gas 15 as a heat source is not uniform around a large number of reforming tubes 3 and a flow along the length direction of the reforming tubes 3 and a transverse flow perpendicular to the length direction coexist. is there.

【0013】図4ないし図6には、例として改質管群4
内において燃焼ガス15の偏流が発生した場合を模式的に
示してある。図に見られるように、燃焼ガス通路16に流
入した燃焼ガスが改質管3の長さ方向に沿ってまっすぐ
に流下する領域もあれば、ある改質管3の周りを通過し
て温度の下がった燃焼ガスが隣設する改質管3に流れ込
んでいる横断流の領域も存在している。
4 to 6, as an example, a reforming tube group 4
The case where a drift of the combustion gas 15 occurs inside is schematically shown. As shown in the figure, there is a region where the combustion gas flowing into the combustion gas passage 16 flows straight down along the lengthwise direction of the reforming pipe 3, and there is a region where the combustion gas passes around a certain reforming pipe 3 and changes in temperature. There is also a cross flow region where the lowered combustion gas flows into the adjacent reforming pipe 3.

【0014】前述したように、改質管3の上半部におけ
る伝熱形態は、強制対流による伝熱量は比較的小さく、
輻射によるものが支配的である。輻射伝熱はガス温度の
4乗に比例するため、ある改質管3の熱伝達量はその周
囲に存在する燃焼ガス15の温度によって決まってしま
う。しかして、改質管群4内で燃焼ガス15に偏流が発生
し、個々の改質管3の周りの温度が不均一になると、お
のずと改質管3の温度も不均一になってしまう。
As described above, in the heat transfer form in the upper half of the reforming tube 3, the amount of heat transfer by forced convection is relatively small,
Radiation is dominant. Since the radiant heat transfer is proportional to the fourth power of the gas temperature, the heat transfer amount of a certain reforming tube 3 is determined by the temperature of the combustion gas 15 existing around it. Then, if the combustion gas 15 has a nonuniform flow in the reforming tube group 4 and the temperature around the individual reforming tubes 3 becomes nonuniform, the temperature of the reforming tubes 3 also becomes nonuniform.

【0015】以上のように、改質管3の局部過熱の原因
は、燃焼ガス15の流れの偏流とそれに起因するガス温度
の不均一、それに伴う輻射伝熱のばらつきによるもので
あり、改質管3の配置等の形状変更で容易に解決できる
課題ではない。
As described above, the cause of the local overheating of the reforming tube 3 is due to the nonuniform flow of the flow of the combustion gas 15, the nonuniformity of the gas temperature caused by it, and the variation of the radiant heat transfer accompanying it. It is not a problem that can be easily solved by changing the shape of the arrangement of the pipe 3 or the like.

【0016】尚、燃焼ガス15の圧力損失は、伝熱スリー
ブ17において最も大きく、当該部分によって流れが拘束
されるために伝熱スリーブ17に流入する燃焼ガス15の量
は、改質管3全数についてほぼ一定となる。
The pressure loss of the combustion gas 15 is the largest in the heat transfer sleeve 17, and the amount of the combustion gas 15 flowing into the heat transfer sleeve 17 because the flow is restricted by the portion is the total number of the reforming tubes 3. Is almost constant.

【0017】本発明は上記の問題を解決するためになさ
れたものであり、その目的とするところは、燃焼ガスの
流れの偏流の影響を除き、かつ輻射伝熱による熱量を全
ての改質管で均等化し、もって改質管の表面温度分布を
均一化するようにした燃料改質器を提供することにあ
る。
The present invention has been made to solve the above problems, and an object of the present invention is to eliminate the influence of drift of the flow of combustion gas and to reduce the amount of heat by radiant heat transfer to all reforming tubes. The object is to provide a fuel reformer in which the surface temperature distribution of the reforming tube is made uniform by the above.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に本発明は収納容器の内部に多数の改質管で構成される
改質管群を有し、燃焼ガスを燃焼バーナにより得て、さ
らに燃焼ガス空間を経て該改質管の外側の燃焼ガス通路
に送り、改質管内を流れる原料ガスを加熱する燃料改質
器において、改質管の上半部に沿う燃焼ガス通路内に燃
焼ガスが半径方向および円周方向に流れるのを防止する
隔壁を設けたことを特徴とするものである。
In order to achieve the above object, the present invention has a reforming tube group composed of a large number of reforming tubes inside a storage container, and obtains combustion gas by a combustion burner. Further, in the fuel reformer that heats the raw material gas flowing in the reforming pipe by sending it to the combustion gas passage outside the reforming pipe through the combustion gas space, combustion in the combustion gas passage along the upper half of the reforming pipe. A partition wall is provided to prevent gas from flowing in the radial direction and the circumferential direction.

【0019】[0019]

【作用】上記の手段によって改質管群内の燃焼ガスの偏
流が除かれ、したがって、燃焼ガスの温度分布が全ての
改質管の周りについて一定になり、よって改質管の表面
温度分布が均一化される。
By the above means, the drift of the combustion gas in the reforming tube group is eliminated, and therefore the temperature distribution of the combustion gas becomes constant around all the reforming tubes, so that the surface temperature distribution of the reforming tubes becomes Be homogenized.

【0020】[0020]

【実施例】以下、本発明の実施例を図1ないし図3を参
照して説明する。図1は本発明を適用した改質器の縦断
面図を示し、図2はその横断面図を示している。また図
3は本発明の改質管3周りの詳細を示している。各図に
おいて、図4,5,6と同一符号で示す部分はその構成
が同様であるから説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a vertical sectional view of a reformer to which the present invention is applied, and FIG. 2 shows a lateral sectional view thereof. FIG. 3 shows details around the reforming tube 3 of the present invention. In each of the drawings, the parts denoted by the same reference numerals as those in FIGS.

【0021】燃焼ガス空間8の下部の改質管群4におい
て、多数の改質管3を何本かの改質管3毎にいくつかの
領域に区分し、その領域の境界には隔壁22が設置されて
いる。隔壁22の高さは改質管3の上半部の全高さにわた
り、改質管3の下半部の伝熱スリーブ17の周りに設けら
れている断熱材にその下端部が保持されている。また、
隔壁22の材料は耐熱材料、例えば、酸化アルミニウム
(Al2 3 )を主成分とするセラミック系断熱材の成
形品で作られている。次に、本発明の実施例の作用につ
いて、ガスの流れに沿って説明する。尚、従来と同様の
作用を有する部分はその説明を省略する。
In the reforming pipe group 4 below the combustion gas space 8, a large number of reforming pipes 3 are divided into several regions for some reforming pipes 3, and partition walls 22 are provided at the boundaries of the regions. Is installed. The height of the partition wall 22 extends over the entire height of the upper half portion of the reforming tube 3, and the lower end portion is held by the heat insulating material provided around the heat transfer sleeve 17 in the lower half portion of the reforming tube 3. .. Also,
The material of the partition wall 22 is made of a heat-resistant material, for example, a molded product of a ceramic heat insulating material whose main component is aluminum oxide (Al 2 O 3 ). Next, the operation of the embodiment of the present invention will be described along the flow of gas. The description of the parts having the same functions as the conventional ones will be omitted.

【0022】バーナ用燃料およびバーナ用空気は、バー
ナ7で燃焼して1000℃以上の高温の燃焼ガス15とな
り、ライザー管9を経由して燃焼ガス空間8に流れ込
む。そこで燃焼ガス15は反転して改質管群4の中に流入
し、改質管3と改質管3の上半部の隙間で形成される燃
焼ガス通路16を輻射伝熱によって改質管3に熱を供給し
てその温度を下げながら流下する。
The burner fuel and the burner air are burned in the burner 7 to become a combustion gas 15 having a high temperature of 1000 ° C. or higher, and flows into the combustion gas space 8 via the riser pipe 9. Therefore, the combustion gas 15 is inverted and flows into the reforming tube group 4, and the combustion gas passage 16 formed in the gap between the reforming tube 3 and the upper half of the reforming tube 3 is radiated to the reforming tube by radiative heat transfer. Heat is supplied to 3 and the temperature is lowered to flow down.

【0023】この際、改質管3の上半部は隔壁22によっ
て区画されていて領域毎に独立しているため、ひとつの
領域に流入した燃焼ガス15は、隔壁22の下端までほぼ垂
直に改質管3に沿って流れ、改質管3を横切る流れ等の
偏流は発生しない。次に、燃焼ガス15は、改質管3の下
半部の伝熱スリーブ17と改質管3の隙間に流れ込んでそ
の流速を速め、さらに温度を下げながら流下する。
At this time, since the upper half portion of the reforming pipe 3 is partitioned by the partition wall 22 and is independent for each region, the combustion gas 15 flowing into one region is almost vertical to the lower end of the partition wall 22. The drift along the reforming pipe 3 and the flow across the reforming pipe 3 does not occur. Next, the combustion gas 15 flows into the gap between the heat transfer sleeve 17 in the lower half of the reforming pipe 3 and the reforming pipe 3 to increase its flow velocity, and further flows down while lowering the temperature.

【0024】この時、隔壁22で区画されたおのおのの領
域に流れ込む燃焼ガス15の量は、その領域に含まれる改
質管3の本数の割合に対応している。この理由は、従来
技術の項で説明したように、燃焼ガス空間8および燃焼
ガス通路16における燃焼ガス15の圧力損失が改質管3下
半部の伝熱スリーブ17を通過する際の圧力損失に比べて
非常に小さいことに起因している。つまり、流体力学上
の特性として、圧力損失の最も大きい伝熱スリーブ17部
を流れる燃焼ガス15の流量は、全ての改質管3でほぼ均
等になることによる。
At this time, the amount of the combustion gas 15 flowing into each region partitioned by the partition wall 22 corresponds to the ratio of the number of the reforming tubes 3 included in that region. This is because the pressure loss of the combustion gas 15 in the combustion gas space 8 and the combustion gas passage 16 passes through the heat transfer sleeve 17 in the lower half of the reforming pipe 3 as described in the section of the prior art. It is due to being very small compared to. That is, as a fluid dynamic characteristic, the flow rate of the combustion gas 15 flowing through the heat transfer sleeve 17 having the largest pressure loss is substantially equal in all the reforming tubes 3.

【0025】したがって、改質管3の周りを流れる燃焼
ガス15の流量および高さ方向の温度分布は、全ての改質
管3でほぼ均等になり、よって改質管3の温度分布の不
均一や局部過熱が発生する懸念がなくなる。
Therefore, the flow rate of the combustion gas 15 flowing around the reforming tubes 3 and the temperature distribution in the height direction are substantially equal in all the reforming tubes 3, and therefore the temperature distribution in the reforming tubes 3 is not uniform. There is no need to worry about local overheating.

【0026】尚、本発明は、実施例に示す配列の改質管
群4を有する改質器の他に、様々の配列の改質管群4を
持つ改質器に、適切な領域分割を施すことによって適用
できることは言うまでもない。
According to the present invention, in addition to the reformer having the reforming tube group 4 having the arrangement shown in the embodiment, appropriate region division can be made to the reformer having the reforming tube group 4 having various arrangements. It goes without saying that it can be applied by applying.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
改質管の上半部に隔壁を備えているから、燃焼ガスの偏
流や横断流が発生する懸念が解消され、したがって改質
管の温度分布が均一化されるとともに、局部過熱を防止
できるという優れた効果を奏する。
As described above, according to the present invention,
Since the partition wall is provided in the upper half of the reforming tube, there is no concern that uneven flow or cross flow of the combustion gas will occur. Therefore, the temperature distribution in the reforming tube can be made uniform and local overheating can be prevented. It has an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料改質器の一実施例を示す縦断
面図。
FIG. 1 is a vertical sectional view showing an embodiment of a fuel reformer according to the present invention.

【図2】本発明による燃料改質器の横断面図。FIG. 2 is a cross-sectional view of a fuel reformer according to the present invention.

【図3】本発明の改質管周りの詳細図。FIG. 3 is a detailed view around the reforming tube of the present invention.

【図4】従来の燃料改質器の一例を示す縦断面図。FIG. 4 is a vertical sectional view showing an example of a conventional fuel reformer.

【図5】従来の燃料改質器の一例を示す横断面図。FIG. 5 is a cross-sectional view showing an example of a conventional fuel reformer.

【図6】従来の改質管周りの詳細図。FIG. 6 is a detailed view around a conventional reforming tube.

【符号の説明】[Explanation of symbols]

1…収納容器 3…改質管 4…改質管群 7…燃焼バーナ 8…燃焼ガス空間 16…燃焼ガス通路 22…隔壁 1 ... Storage container 3 ... Reforming tube 4 ... Reforming tube group 7 ... Combustion burner 8 ... Combustion gas space 16 ... Combustion gas passage 22 ... Partition

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 収納容器の内部に多数の改質管で構成さ
れる改質管群を有し、燃焼ガスを燃焼バーナにより得
て、さらに燃焼ガス空間を経て該改質管の外側の燃焼ガ
ス通路に送り、前記改質管内を流れる原料ガスを加熱す
る燃料改質器において、前記改質管の上半部に沿う燃焼
ガス通路内に燃焼ガスが半径方向および円周方向に流れ
るのを防止する隔壁を設けたことを特徴とする燃料改質
器。
1. A reforming tube group composed of a large number of reforming tubes is provided inside a storage container, combustion gas is obtained by a combustion burner, and combustion is performed outside the reforming tube through a combustion gas space. In the fuel reformer that sends the gas to the gas passage and heats the raw material gas flowing in the reforming pipe, the combustion gas is prevented from flowing in the combustion gas passage along the upper half of the reforming pipe in the radial direction and the circumferential direction. A fuel reformer having a partition wall for preventing the fuel reformer.
JP3342599A 1991-12-25 1991-12-25 Fuel reformer Pending JPH05170402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342599A JPH05170402A (en) 1991-12-25 1991-12-25 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342599A JPH05170402A (en) 1991-12-25 1991-12-25 Fuel reformer

Publications (1)

Publication Number Publication Date
JPH05170402A true JPH05170402A (en) 1993-07-09

Family

ID=18355017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342599A Pending JPH05170402A (en) 1991-12-25 1991-12-25 Fuel reformer

Country Status (1)

Country Link
JP (1) JPH05170402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190032203A (en) * 2017-09-19 2019-03-27 한국가스공사 A fuel reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190032203A (en) * 2017-09-19 2019-03-27 한국가스공사 A fuel reformer

Similar Documents

Publication Publication Date Title
RU2137539C1 (en) Device for performing chemical reactions which require delivery of heat for at least start
US5464006A (en) Water heater
US5032365A (en) Reaction apparatus
JPS61242630A (en) Catalytic reaction apparatus
US4740357A (en) Radiation shield for reformer apparatus
KR100934716B1 (en) Reactor and Reaction Method
JP2000026101A (en) Apparatus for reforming fuel
JPH05170402A (en) Fuel reformer
JPH08217401A (en) Fuel reformer
JP3842352B2 (en) Fuel reformer
US2541548A (en) Pebble heating chamber for pebble heaters
JPH0679664B2 (en) Fuel reformer
JP3306430B2 (en) Reformer
JPH08231203A (en) Fuel reformer
KR101857885B1 (en) Fired heater
KR20200029091A (en) Heater for a hydrocarbon stream
KR20200001917A (en) Reforming reaction apparatus with high-frequency induction heating for hydrogen production
JPH05147901A (en) Fuel reformer
JP2567048B2 (en) Fuel reformer
JPH06196192A (en) Solid electrolyte type fuel cell
JPS59102804A (en) Device for modifying fuel
JPH01290502A (en) Fluidized bed type reforming furnace
JPH06211501A (en) Reformer
JP2508252B2 (en) Reactor
JPS60210504A (en) Reforming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120703

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120703

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150703

Year of fee payment: 6