JPH06211501A - Reformer - Google Patents

Reformer

Info

Publication number
JPH06211501A
JPH06211501A JP3133029A JP13302991A JPH06211501A JP H06211501 A JPH06211501 A JP H06211501A JP 3133029 A JP3133029 A JP 3133029A JP 13302991 A JP13302991 A JP 13302991A JP H06211501 A JPH06211501 A JP H06211501A
Authority
JP
Japan
Prior art keywords
reforming
pipe
tube
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3133029A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ishikawa
宏之 石川
Osao Okamura
長生 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3133029A priority Critical patent/JPH06211501A/en
Publication of JPH06211501A publication Critical patent/JPH06211501A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a reformer capable of being miniaturized and improving the heat efficiency. CONSTITUTION:A concentric double inner tube 40 contg. a catalyst bed is provided in the space in a reforming tube 3, a catalyst-packed bed 4 is formed in the spaces of the inner tube and reforming tube, a cylindrical partition is furnished in the internal space of the inner tube, and a returning path 10 is formed for the generated gas so as to pass the inside and outside of the partition. A high-temp. gas passes through a heat-transfer packed bed 7, and the waste gas is discharged from a discharge passage 5. A raw gas passes through the catalyst-packed bed between the innertube 35 of the reforming tube and the inner tube 40 and then passes through the catalyst-packed bed between the the outer tube 34 of the reforming tube and the catalyst-bed inner tube, hence the raw gas is reformed, and the reformed gas passes through the returning path and then is discharged outside the reformer vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素燃料と水蒸気
を改質管に入れ、外側から加熱することによより、水素
に富む水素ガスを生成する改質装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reformer for producing a hydrogen-rich hydrogen gas by putting a hydrocarbon fuel and steam into a reforming pipe and heating the reforming pipe from the outside.

【0002】[0002]

【従来の技術】従来この種の改質装置の一例として、改
質容器内に、小口径の改質管を多数配設したものが公知
(特公平1ー24533号公報)であるが、この方式で
は、各改質管毎の流量分配不均一、製作上の不均一など
が影響して多数改質管の管壁温度を測定すると、比較的
大きな不均一が見られる。
2. Description of the Related Art Heretofore, as one example of this type of reforming apparatus, it is known that a large number of reforming tubes each having a small diameter are provided in a reforming vessel (Japanese Patent Publication No. 24533/1990). In the method, relatively large nonuniformity is observed when measuring the wall temperature of a large number of reforming tubes due to nonuniform flow distribution among the respective reforming tubes and nonuniformity in manufacturing.

【0003】この温度不均一は、改質装置の運転負荷を
大きくすれば、さらに大きくなる。そして、最高温度
は、改質管壁の金属材料の許容温度で制限されるため、
加熱燃焼ガス量が制限されて、多数の改質管の温度不均
一幅が大きれば、大きい程、温度が低い改質管の改質反
応性能が悪くなる。つまり、水素ガスに改質反応する量
が低下するので、全体の反応による転化率が悪くなる。
This temperature nonuniformity is further increased by increasing the operating load of the reformer. And since the maximum temperature is limited by the allowable temperature of the metal material of the reforming pipe wall,
If the amount of heated combustion gas is limited and the temperature nonuniformity width of a large number of reforming tubes is large, the reforming reaction performance of the reforming tubes having a low temperature becomes worse as the temperature is increased. In other words, the amount of reforming reaction to hydrogen gas decreases, and the conversion rate due to the overall reaction deteriorates.

【0004】従来、このような問題点を解決するため、
前述の従来例の多数の小口径改質管の代りに、管径を大
きくし、かつその本数を少なくした同心二重構成の改質
管を使用したものが公知(特開平1ー320201号公
報)であり、これは図3のように構成されている。改質
器本体1は、断熱材からなる改質器容器2と、この改質
器容器2内に収納固定され、下端側を閉じるように底面
を有する同心二重管構成(断面が変形U字形円筒構成)
の改質管3と、この改質管3の内部に配設され、内側改
質室31と外側改質室32に仕切る仕切り円筒22と、
各改質室31,32内にそれぞれ充填される改質触媒2
5,26と、改質管3の内側空間に形成されている燃焼
室21の上部側に配設されているバーナ20と、改質器
容器2内にに形成されバーナ20で燃焼された燃焼ガス
通路23と、改質器容器2の一部に配設され、燃焼排ガ
スを外部に排出する排出管24から構成されている。
Conventionally, in order to solve such a problem,
Instead of the large number of small-diameter reforming tubes of the above-mentioned conventional example, it is known to use a reforming tube having a concentric double structure with a large diameter and a small number thereof (Japanese Patent Laid-Open No. 320201/1989). ), Which is configured as in FIG. The reformer main body 1 is a reformer container 2 made of a heat insulating material, and a concentric double-tube configuration (a modified U-shaped cross section) that is housed and fixed in the reformer container 2 and has a bottom surface to close the lower end side. (Cylindrical structure)
Of the reforming pipe 3, a partition cylinder 22 disposed inside the reforming pipe 3 and partitioning the reforming pipe 3 into an inner reforming chamber 31 and an outer reforming chamber 32,
Reforming catalyst 2 filled in the respective reforming chambers 31 and 32
5, 26, a burner 20 disposed on the upper side of a combustion chamber 21 formed in the inner space of the reforming pipe 3, and a combustion formed in the reformer vessel 2 and burned by the burner 20. It is composed of a gas passage 23 and an exhaust pipe 24 which is disposed in a part of the reformer container 2 and discharges combustion exhaust gas to the outside.

【0005】このような構成のものにおいて、バーナ2
0にて燃焼を行うと、燃焼ガスは、燃焼室21、燃焼ガ
ス通路23内を矢印のように流れ、改質管3内の改質触
媒25,26が順次加熱され、排出管24から改質器容
器2の外部に排出される。そして、改質原料ガスとして
の天然メタンガスを改質管3の内側改質室31の上側か
ら流入させると、天然ガスは加熱された改質触媒25か
ら改質触媒26へと流れ、改質触媒25,26の作用に
より水蒸気改質されて水素に富むガスに改質され、この
改質されたガスは、外側改質室32の上端側から、外部
例えば燃料電池に送出される。
In such a structure, the burner 2
When the combustion is performed at 0, the combustion gas flows in the combustion chamber 21 and the combustion gas passage 23 as shown by the arrows, the reforming catalysts 25 and 26 in the reforming pipe 3 are sequentially heated, and the reforming pipe 24 reforms. It is discharged to the outside of the quality container 2. Then, when natural methane gas as the reforming raw material gas is introduced from above the inner reforming chamber 31 of the reforming pipe 3, the natural gas flows from the heated reforming catalyst 25 to the reforming catalyst 26, and the reforming catalyst By the action of 25 and 26, it is steam-reformed and reformed into a gas rich in hydrogen, and this reformed gas is sent from the upper end side of the outer reforming chamber 32 to the outside, for example, a fuel cell.

【0006】[0006]

【発明が解決しようとする課題】以上述べた図3の従来
例では、改質管1の外側改質室(被加熱室)32に、改
質触媒26が充填されているだけで、リターンパスが形
成されていないので、改質触媒26層で改質反応した生
成ガスは、高温のままで改質器本体1の外部に排出され
ることから、改質装置としての熱効率が悪い。また、バ
ーナ20が改質管3の内側に配設されているので、バー
ナ20の熱が改質触媒31から32へと伝熱されること
から、改質触媒31,32の半径方向の温度分布の大き
さが大きくなり、改質器本体のが容積が大形化する。本
発明は熱効率が向上し、小形化を図ることができる改質
装置を提供することを目的とする。
In the conventional example of FIG. 3 described above, the outside reforming chamber (heated chamber) 32 of the reforming pipe 1 is simply filled with the reforming catalyst 26, and the return path Since the gas is not formed, the generated gas that has undergone the reforming reaction in the reforming catalyst 26 layer is discharged to the outside of the reformer main body 1 at a high temperature, so that the thermal efficiency of the reforming device is poor. Further, since the burner 20 is disposed inside the reforming pipe 3, the heat of the burner 20 is transferred from the reforming catalysts 31 to 32, so that the temperature distribution of the reforming catalysts 31 and 32 in the radial direction. The size of the reformer body increases, and the volume of the reformer body increases. It is an object of the present invention to provide a reforming device that has improved thermal efficiency and can be downsized.

【0007】[0007]

【課題を解決するための手段】本発明は前記目的を達成
するため、改質器容器内に、内側管と外側管からなる同
心二重管構成であって、該内側管と外側管の一端が閉塞
された改質管に設けて、改質器容器の中央部に被加熱室
を形成し、かつこの被加熱室の周囲に加熱室を形成し、
前記加熱室に高温ガス流路を形成し、前記被加熱室に高
温ガスのうち使用済みの排ガスを排出する排出路を形成
すると共に、この排出路と前記改質管の間に伝熱充填層
を形成し、前記改質管の内部空間に同心二重管構成の触
媒層内管を配設し、この触媒層内管と前記改質管との空
間に触媒充填層を形成し、かつ前記触媒層内管の内側空
間に筒状の仕切体を配設し、この内周側と外周側にそれ
ぞれ生成ガスが通過するようにリターンパスを形成し、
前記高温ガスを前記伝熱充填層を通した後の排ガスを前
記排出路から排出し、前記改質管の内側管と前記触媒層
内管との間にある触媒充填層側から原料ガスを通過させ
るとともに、その後前記改質管の外側管と前記触媒層内
管との間にある触媒充填層側に原料ガスを通過させる際
に、前記原料ガスが改質され、この改質された生成ガス
が前記リターンパスをすべて通過した後、前記改質器容
器外部に取出せるようにしたものである。
In order to achieve the above-mentioned object, the present invention has a concentric double-tube structure consisting of an inner tube and an outer tube in a reformer container, and one end of the inner tube and the outer tube. Is provided in the closed reforming pipe, to form a heated chamber in the center of the reformer container, and to form a heating chamber around the heated chamber,
A hot gas passage is formed in the heating chamber, an exhaust passage for exhausting used exhaust gas of the high temperature gas is formed in the heated chamber, and a heat transfer packed layer is formed between the exhaust passage and the reforming pipe. A catalyst layer inner tube having a concentric double tube structure is disposed in the internal space of the reforming tube, and a catalyst packed layer is formed in the space between the catalyst layer inner tube and the reforming tube, and A cylindrical partition is disposed in the inner space of the catalyst layer inner tube, and a return path is formed on each of the inner peripheral side and the outer peripheral side so that the generated gas passes therethrough,
The exhaust gas after passing the high-temperature gas through the heat transfer packed bed is discharged from the exhaust passage, and the raw material gas is passed from the catalyst packed bed side between the inner tube of the reforming tube and the catalyst bed inner tube. In addition, the raw material gas is reformed when the raw material gas is passed through to the catalyst packed bed side between the outer pipe of the reforming pipe and the catalyst layer inner pipe, and the reformed product gas After passing through all of the return paths, it can be taken out of the reformer container.

【0008】[0008]

【作用】本発明によれば、改質容器内部の外周側に得ら
れる高温ガスにより、原料ガスが触媒充填層を通過する
際に生成される生成ガスは、リターンパスを通過した
後、改質容器外部に取出せるようにしたので、熱効率が
向上し、小形化を図ることができる。
According to the present invention, the high-temperature gas obtained on the outer peripheral side inside the reforming container causes the product gas generated when the raw material gas passes through the catalyst-packed bed to undergo reforming after passing through the return path. Since it can be taken out of the container, the thermal efficiency is improved and the size can be reduced.

【0009】[0009]

【実施例】以下、本発明の改質装置の実施例について図
面を参照して説明する。図1はその一実施例を示す縦断
面図であり、改質器容器1は、例えばセラミックウール
あるいはグラスウールからなる断熱層2が形成され、改
質器容器1内には底面側に円筒状であって燃焼ガスが通
過可能に穴を有する目皿6が配設され、この上部に同心
二重管構成の改質管3が配設され、これにより加熱室R
1 と被加熱室R2 に仕切られている。
Embodiments of the reforming apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical cross-sectional view showing an embodiment of the present invention. A reformer container 1 is provided with a heat insulating layer 2 made of, for example, ceramic wool or glass wool, and the inside of the reformer container 1 has a cylindrical shape on the bottom side. There is provided a perforated plate 6 having a hole through which combustion gas can pass, and a reforming tube 3 having a concentric double tube structure is provided above the perforated plate 6, whereby a heating chamber R
It is divided into 1 and the room to be heated R2.

【0010】改質管3は大口径の外側管34と小口径の
内側管35が同心状に配置され、外側管34と小口径の
内側管35の一端側が底部板体34により閉塞され、こ
れにより気密を保っている。そして、改質管3の内部空
間に、改質管3と同様な構成の同心二重管構成で、か
つ、底部が閉塞された触媒層内管40が配設されてい
る。触媒層内管40と改質管3の空間は、被加熱領域で
あり、ここに往復流路を形成するごとく改質触媒が充填
され、これにより触媒充填層4が形成されている。
In the reforming pipe 3, a large-diameter outer pipe 34 and a small-diameter inner pipe 35 are concentrically arranged, and one ends of the outer pipe 34 and the small-diameter inner pipe 35 are closed by a bottom plate 34. Keeps airtightness. Further, in the internal space of the reforming pipe 3, a catalyst layer inner pipe 40 having a concentric double pipe structure having the same structure as the reforming pipe 3 and having a closed bottom is arranged. The space between the catalyst layer inner pipe 40 and the reforming pipe 3 is a heated region, and the reforming catalyst is filled therein so as to form a reciprocating flow path, and thus the catalyst filling layer 4 is formed.

【0011】改質管3の内側管35と触媒層内管40の
上部には、原料ガスを触媒充填層4に流入させるための
原料ガス流入管13および原料ガスヘッダ17が配設さ
れ、改質管3の外側管34と触媒層内管40の上部に
は、改質ガスを改質器容器1外部に取出す改質ガス流出
管14および生成ガスヘッダ18が配設されている。
Above the inner tube 35 of the reforming tube 3 and the catalyst layer inner tube 40, a raw material gas inflow pipe 13 and a raw material gas header 17 for allowing the raw material gas to flow into the catalyst packed bed 4 are provided, and the reforming is performed. Above the outer pipe 34 of the pipe 3 and the catalyst layer inner pipe 40, a reformed gas outflow pipe 14 for taking out reformed gas to the outside of the reformer container 1 and a produced gas header 18 are arranged.

【0012】被加熱室R2 の中央位置に、改質器容器1
外部に加熱に使用された後の排ガスを取出すための排ガ
ス流出管5が植立され、改質器容器1の内部と外部が連
通されている。排ガス流出管5と改質管3の間に、伝熱
充填粒子71が充填され、これにより伝熱充填層7が形
成されている。
At the center of the heated chamber R2, the reformer container 1
An exhaust gas outflow pipe 5 for taking out the exhaust gas after being used for heating is planted outside, and the inside and outside of the reformer container 1 are communicated with each other. The heat transfer filling particles 71 are filled between the exhaust gas outflow pipe 5 and the reforming pipe 3, whereby the heat transfer filling layer 7 is formed.

【0013】改質管3の内側管の内部に、円筒状の仕切
板8が配設され、この内周面および外周面にスペーサ9
がそれぞれ螺旋状に形成され、これにより後述する生成
ガスがスペーサ9間を螺旋状に流下または流上する生成
ガスのリターンパス10が形成されている。
A cylindrical partition plate 8 is provided inside the inner tube of the reforming tube 3, and spacers 9 are provided on the inner and outer peripheral surfaces thereof.
Are formed in a spiral shape, thereby forming a return path 10 for the generated gas, in which the generated gas described later spirally flows down or flows up between the spacers 9.

【0014】加熱室R1 には、リング状の燃焼用バーナ
12が配設され、これは外側の空気管122と内側の燃
料管121を有し、それぞれの管121,122の下部
の管壁には、バーナノズル151,152が設けられて
いる。燃焼用バーナ12には、燃焼空気を導入する空気
流入管41および燃料ガスを導入する燃料ガス流入管1
1が接続されている。そして、前記伝熱充填層入口に設
ける目皿6の流路面積を、内側の伝熱充填層7の流路面
積より大きくなるように形成されている。
A ring-shaped combustion burner 12 is arranged in the heating chamber R1 and has an outer air pipe 122 and an inner fuel pipe 121, and the pipe walls under the respective pipes 121, 122 are arranged. Are provided with burner nozzles 151 and 152. The combustion burner 12 has an air inflow pipe 41 for introducing combustion air and a fuel gas inflow pipe 1 for introducing fuel gas.
1 is connected. The flow passage area of the plate 6 provided at the inlet of the heat transfer filling layer is formed to be larger than the flow passage area of the heat transfer filling layer 7 on the inside.

【0015】次に、以上のように構成された本実施例の
動作について説明する。加熱用燃料ガス流入管11から
導入される燃料ガスと空気流入管41から導入される燃
焼用空気は、燃焼用バーナ12に設けられているバーナ
ノズル151,152より、加熱室R1 内に噴出され、
燃焼室で燃焼される。これにより、得られる燃焼高温ガ
スにより改質管3の外側管34の管壁が加熱される。こ
の場合、外側管34の反対側に、断熱層2が形成されて
いるので、ほとんどの熱量が外側管34側に反射され
る。
Next, the operation of this embodiment configured as described above will be described. The fuel gas introduced from the heating fuel gas inflow pipe 11 and the combustion air introduced from the air inflow pipe 41 are ejected from the burner nozzles 151 and 152 provided in the combustion burner 12 into the heating chamber R1.
Burned in the combustion chamber. As a result, the obtained combustion hot gas heats the wall of the outer pipe 34 of the reforming pipe 3. In this case, since the heat insulating layer 2 is formed on the opposite side of the outer tube 34, most of the heat quantity is reflected to the outer tube 34 side.

【0016】そして、燃焼高温ガスは、外側改質管34
を加熱しながら流下し、下部に配設されている目皿6に
形成されている穴より、伝熱充填層7に入り、伝熱充填
層7内を上昇して内側改質管35を加熱して上部で反転
して、中央の排ガス流出管5を流下して改質器容器1外
部に排出される。
Then, the combustion hot gas is transferred to the outer reforming pipe 34.
While flowing into the heat transfer filling layer 7 through the holes formed in the bottom plate 6 disposed therein, and the inside of the heat transfer filling layer 7 is raised to heat the inner reforming pipe 35. Then, it is inverted at the upper part, flows down the central exhaust gas outflow pipe 5, and is discharged to the outside of the reformer container 1.

【0017】原料ガスは、原料ガス流入管13からヘッ
ダ17に入り、触媒充填層4の内側に入り、流下し、下
端で上昇して触媒層上部出口19を出て、外側のリター
ンパス10に入り、流下して下部で反転し、リターンパ
ス10の内側を上昇して生成ガスヘッダ18に出て、改
質ガス流出管14に出る。この間に、外側管34および
内側管35の管壁より加熱され、触媒充填層4内で化学
反応が行われ、例えばメタンガスと水蒸気からなる原料
ガスが改質されて水素と一酸化炭素に変わり、リターン
パス10で十分温度は低下して改質ガス流出管14から
流出する。
The raw material gas enters the header 17 through the raw material gas inflow pipe 13, enters the inside of the catalyst packed bed 4, flows down, rises at the lower end and exits the catalyst bed upper exit 19, and enters the outer return path 10. After entering, flowing down and inverting at the lower part, it rises inside the return path 10 to exit to the produced gas header 18, and exits to the reformed gas outflow pipe 14. During this, heating is performed from the wall of the outer pipe 34 and the inner pipe 35, a chemical reaction is performed in the catalyst packed bed 4, and the raw material gas composed of, for example, methane gas and steam is reformed and converted into hydrogen and carbon monoxide, The temperature is sufficiently lowered in the return path 10 and flows out from the reformed gas outflow pipe 14.

【0018】このようなことから、熱効率が向上し、小
形化を図ることができる。このことは次の実験結果から
も明らかである。すなわち、図2はこれを説明するため
のもので、図3の従来の改質装置と図1の実施例の改質
装置について、温度分布の比較を示したものである。図
2の横軸は、触媒層内部の流路に沿った距離であり、縦
軸は温度を示している。曲線60と曲線61は、本実施
例の燃焼加熱側ガスの温度と、被加熱側である触媒層内
のガスの温度分布を示してある。いずれも、上部から入
って中間点では最下点に達し、再び上部に流出する。そ
れぞれの曲線につけた矢印62は流れの方向を示してい
る。
As a result, the thermal efficiency is improved and the size can be reduced. This is also clear from the following experimental results. That is, FIG. 2 is for explaining this, and shows a comparison of the temperature distributions of the conventional reformer of FIG. 3 and the reformer of the embodiment of FIG. The horizontal axis of FIG. 2 is the distance along the flow path inside the catalyst layer, and the vertical axis is the temperature. Curves 60 and 61 show the temperature of the gas on the combustion heating side and the temperature distribution of the gas in the catalyst layer on the heated side of this example. Both enter from the top, reach the bottom at the midpoint, and flow out again. The arrow 62 attached to each curve indicates the direction of flow.

【0019】これに対して、図3の従来の改質装置の温
度分布は、曲線63と曲線64に示すごとく、いずれも
流入点における温度は同一であるが、本実施例の改質装
置と従来の改質装置の温度分布を比較すると、その差は
大きな相違が見られる。加熱側流体の温度は、従来の改
質装置では曲線63に示すごとく、なだらかな温度低下
で中間点まできて、伝熱充填層に入って急激に低下す
る。この影響で、被加熱側触媒層の温度分布を、流入す
る触媒層入口温度を両方同一温度について比較した結
果、曲線61と曲線64の相違が見られた。従来の改質
装置が曲線64に示すごとく、なかなか温度が上昇しな
いのに対して、本実施例の改質装置の曲線61は、最初
の半分の中間点に行くまでの間急激に上昇する。これ
は、改質反応による吸熱が行われた上に温度は上昇す
る。そして、中間点以降では、吸熱と入熱がバランスし
てほとんど平坦な温度分布を示している。
On the other hand, in the temperature distribution of the conventional reformer shown in FIG. 3, the temperatures at the inflow points are the same as shown by the curves 63 and 64, but the temperature is the same as that of the reformer of this embodiment. Comparing the temperature distributions of the conventional reformer, there is a big difference. In the conventional reforming apparatus, the temperature of the heating-side fluid reaches a midpoint with a gradual temperature decrease, as shown by a curve 63, and enters the heat transfer packed bed to rapidly decrease. Under this influence, as a result of comparing the temperature distribution of the heated catalyst layer with respect to the inflow catalyst layer inlet temperatures at the same temperature, a difference between the curves 61 and 64 was found. While the conventional reformer does not easily increase the temperature as shown by the curve 64, the curve 61 of the reformer of the present embodiment rises rapidly until it reaches the middle point of the first half. This is because the heat is absorbed by the reforming reaction and the temperature rises. Then, after the midpoint, the heat absorption and the heat input are balanced, and the temperature distribution is almost flat.

【0020】従来の装置の外側加熱層の下半分を伝熱充
填層の入口のみが伝熱が良く高温になるが、平坦な均一
温度を保つことができない。これに対して、本実施例の
場合には、外側と内側と同一幅の伝熱充填層にしても内
側の方が流路断面積が縮小する効果があるので、出口側
の内側の温度分布を上げることが可能になる。従って、
本実施例装置は、従来装置に比べて同一伝熱面積の装置
について比較した場合、本実施例装置の方が入熱が多い
分だけ、メタンガスから水素への改質反応が進行し、転
化率が高い値を示すものと考えられる。また、同一転化
率を得る装置を作るためには、伝熱面積が従来装置の7
5%で良いことになる。この場合、同一性能を得る改質
装置の改質器容器1の容積を従来の改質装置の約50%
に減少させることができるということがわかった。
In the lower half of the outer heating layer of the conventional apparatus, only the inlet of the heat transfer packed layer has good heat transfer and the temperature becomes high, but a flat and uniform temperature cannot be maintained. On the other hand, in the case of the present embodiment, even if a heat transfer filling layer having the same width as the outer side and the inner side is used, the inner side has the effect of reducing the flow passage cross-sectional area, so that the temperature distribution inside the outlet side It becomes possible to raise. Therefore,
When comparing the apparatus of this example with the apparatus of the same heat transfer area as compared with the conventional apparatus, the reforming reaction from methane gas to hydrogen proceeds due to the larger heat input of the apparatus of this example, and the conversion rate Is considered to indicate a high value. In addition, in order to create a device that achieves the same conversion rate, the heat transfer area is 7
5% is good. In this case, the volume of the reformer vessel 1 of the reformer that obtains the same performance is about 50% of that of the conventional reformer.
It turned out that it can be reduced to.

【0021】従来の改質装置で、伝熱充填層が改質管全
長に亘って設けていない場合、すなわち、途中から伝熱
充填層が始まる場合、この伝熱充填層入口で伝熱効率が
良くなるため、改質管管壁の温度が急上昇する。従っ
て、下部の伝熱充填層入口の目皿6の流路面積は、伝熱
充填層4の中間における流路面積より大きくとって徐々
に流路面積が縮小し、改質管3の内側改質管35の内壁
を加熱することにより、急激な温度上昇を避けることが
できる。
In the conventional reforming apparatus, when the heat transfer packed bed is not provided over the entire length of the reforming tube, that is, when the heat transfer packed bed starts halfway, the heat transfer efficiency is improved at the heat transfer packed bed inlet. Therefore, the temperature of the wall of the reforming tube rises sharply. Therefore, the flow passage area of the lower heat transfer packed bed inlet plate 6 is larger than the flow passage area in the middle of the heat transfer filled layer 4, and the flow passage area is gradually reduced. By heating the inner wall of the quality tube 35, a rapid temperature rise can be avoided.

【0022】また、本実施例の改質装置は、改質管3の
閉じた一端を下端側に配設してあるため、従来装置の一
例としてその上下が逆のものがあるが、これと伝熱触媒
層を対比してみると、下端で触媒が充填されているた
め、改質管の内側の境膜熱伝達率が大きいので、問題が
ない。ところが、従来の改質管の閉じた一端が上端にあ
るものでは、改質管の内壁は触媒粒子で常に充填するこ
とできず、改質管の膨脹で運転中にはどうやっても空間
ができてしまい、改質管の温度が上昇してしまうため、
断熱材を被せる必要がある。
In the reforming apparatus of this embodiment, the closed end of the reforming tube 3 is arranged at the lower end side, so that an example of a conventional apparatus is upside down. Comparing the heat transfer catalyst layers, there is no problem because the catalyst is filled at the lower end and the film heat transfer coefficient inside the reforming tube is large. However, in the case where the conventional closed end of the reforming pipe is at the upper end, the inner wall of the reforming pipe cannot always be filled with the catalyst particles, and expansion of the reforming pipe creates a space during operation. Since the temperature of the reforming tube will rise,
You need to cover it with insulation.

【0023】さらに、本実施例の改質装置は、改質生成
ガスのリターンパス10もその間隙を保つため、スペー
サ9が必要であるが、このスペーサ9は、螺旋状に配設
されているので、伝熱特性が改善される。
Further, the reformer of this embodiment requires the spacer 9 in order to maintain the gap in the return path 10 for the reformed product gas. The spacer 9 is arranged in a spiral shape. Therefore, the heat transfer characteristics are improved.

【0024】本発明は、以上述べた実施例に限定され
ず、例えば次のように変形してもよい。図1の実施例で
は、排ガス流出管5が小口径のものを示したが、これら
の管径を大きいものと小さいものを組合わせた構成であ
っても良い。この場合には、排ガス流出管が多重管の間
が環状になり、その内側に断熱層を介して内側のバーナ
および燃焼室が設けられる。さらに、改質器の中に、一
組の二重管構成の改質管だけでなく、複数組の二重管構
成の改質管を並設する場合であってもよい。さらに、図
1の実施例の構造全体を上下反転させた構造でも良い。
The present invention is not limited to the above-mentioned embodiments, but may be modified as follows, for example. In the embodiment of FIG. 1, the exhaust gas outflow pipe 5 is shown to have a small diameter, but it is also possible to combine these pipe diameters with a large pipe diameter and a small pipe diameter. In this case, the exhaust gas outflow pipe has an annular shape between the multiple pipes, and an inner burner and a combustion chamber are provided inside the exhaust gas outflow pipe via a heat insulating layer. Further, not only one set of reforming pipes having a double pipe structure but also a plurality of sets of reforming pipes having a double pipe structure may be installed in parallel in the reformer. Further, the structure of the embodiment of FIG. 1 may be turned upside down.

【0025】[0025]

【発明の効果】以上述べた本発明によれば、熱効率が向
上し、小形化を図ることができる改質装置を提供するこ
とができる。
According to the present invention described above, it is possible to provide a reforming apparatus which has improved thermal efficiency and can be miniaturized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の改質装置の一実施例を示す概略縦断面
図。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a reforming apparatus of the present invention.

【図2】図1の実施例の作用効果を説明するための図。FIG. 2 is a diagram for explaining the operation and effect of the embodiment of FIG.

【図3】従来の改質装置の一例を示す概略断面図。FIG. 3 is a schematic sectional view showing an example of a conventional reformer.

【符号の説明】[Explanation of symbols]

1…改質器容器、3…二重改質管、4…改質触媒層、5
…排ガス流出管、6…目皿、7…伝熱充填層、8…仕切
板、9…スペーサ、10…リターンパス、11…燃料ガ
ス流入管、12…バーナ、13…原料ガス流入管、14
…改質ガス流出管、15…空気流入管、R1 …加熱室、
R2 …被加熱室。
1 ... Reformer container, 3 ... Double reforming tube, 4 ... Reforming catalyst layer, 5
... Exhaust gas outflow pipe, 6 ... Perforated plate, 7 ... Heat transfer packed layer, 8 ... Partition plate, 9 ... Spacer, 10 ... Return path, 11 ... Fuel gas inflow pipe, 12 ... Burner, 13 ... Raw material gas inflow pipe, 14
... reformed gas outlet pipe, 15 ... air inlet pipe, R1 ... heating chamber,
R2 ... Heated room.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】改質器容器内に、内側管と外側管からなる
同心二重管構成であって、該内側管と外側管の一端が閉
塞された改質管に設けて、改質器容器の中央部に被加熱
室を形成し、かつこの被加熱室の周囲に加熱室を形成
し、 前記加熱室に高温ガス流路を形成し、前記被加熱室に高
温ガスのうち使用済みの排ガスを排出する排出路を形成
すると共に、この排出路と前記改質管の間に伝熱充填層
を形成し、 前記改質管の内部空間に同心二重管構成の触媒層内管を
配設し、この触媒層内管と前記改質管との空間に触媒充
填層を形成し、かつ前記触媒層内管の内側空間に筒状の
仕切体を配設し、この内周側と外周側にそれぞれ生成ガ
スが通過するようにリターンパスを形成し、 前記高温ガスを前記伝熱充填層を通した後の排ガスを前
記排出路から排出し、前記改質管の内側管と前記触媒層
内管との間にある触媒充填層側から原料ガスを通過させ
るとともに、その後前記改質管の外側管と前記触媒層内
管との間にある触媒充填層側に原料ガスを通過させる際
に、前記原料ガスが改質され、この改質された生成ガス
が前記リターンパスをすべて通過した後、前記改質器容
器外部に取出せるようにした改質装置。
1. A reformer vessel having a concentric double-tube structure consisting of an inner tube and an outer tube, wherein the inner tube and the outer tube are closed at one end, and the reformer is provided in the reformer container. A heated chamber is formed in the center of the container, and a heated chamber is formed around this heated chamber, a high temperature gas flow path is formed in the heated chamber, and a high temperature gas used in the heated chamber is used. A discharge passage for discharging exhaust gas is formed, and a heat transfer filling layer is formed between the discharge passage and the reforming pipe, and a catalyst layer inner pipe having a concentric double pipe structure is arranged in the internal space of the reforming pipe. A catalyst filling layer is formed in the space between the catalyst layer inner pipe and the reforming pipe, and a cylindrical partition is arranged in the inner space of the catalyst layer inner pipe. A return path is formed on each side so that the generated gas passes therethrough, and the exhaust gas after passing the high temperature gas through the heat transfer packed bed is discharged from the discharge passage. The raw material gas is passed from the catalyst packed bed side between the inner tube of the reforming tube and the catalyst layer inner tube, and then between the outer tube of the reforming tube and the catalyst layer inner tube. When the raw material gas is passed to a certain catalyst packed bed side, the raw material gas is reformed, and after the reformed product gas passes through all the return paths, it can be taken out of the reformer container. Reformer.
JP3133029A 1991-06-04 1991-06-04 Reformer Pending JPH06211501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3133029A JPH06211501A (en) 1991-06-04 1991-06-04 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133029A JPH06211501A (en) 1991-06-04 1991-06-04 Reformer

Publications (1)

Publication Number Publication Date
JPH06211501A true JPH06211501A (en) 1994-08-02

Family

ID=15095141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133029A Pending JPH06211501A (en) 1991-06-04 1991-06-04 Reformer

Country Status (1)

Country Link
JP (1) JPH06211501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008771A2 (en) * 1996-08-26 1998-03-05 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
WO2002096797A3 (en) * 2001-05-30 2003-11-13 Nuvera Fuel Cells Inc Heat transfer optimization in multishell reformer
JP2006240916A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Reformer
WO2007125870A1 (en) * 2006-04-26 2007-11-08 Panasonic Corporation Process for producing hydrogen generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008771A2 (en) * 1996-08-26 1998-03-05 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
WO1998008771A3 (en) * 1996-08-26 1998-06-25 Little Inc A Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
WO2002096797A3 (en) * 2001-05-30 2003-11-13 Nuvera Fuel Cells Inc Heat transfer optimization in multishell reformer
US7367996B2 (en) 2001-05-30 2008-05-06 Nuvera Fuel Cells, Inc. Heat transfer optimization in multi shelled reformers
JP2006240916A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Reformer
WO2007125870A1 (en) * 2006-04-26 2007-11-08 Panasonic Corporation Process for producing hydrogen generator

Similar Documents

Publication Publication Date Title
US7037472B2 (en) Single-pipe cylinder-type reformer
US4909809A (en) Apparatus for the production of gas
US6770106B1 (en) Partial oxidation reformer
US4071330A (en) Steam reforming process and apparatus therefor
KR101826064B1 (en) Process and apparatus for reforming hydrocarbons
US6969411B2 (en) Compact light weight autothermal reformer assembly
US20070000172A1 (en) Compact reforming reactor
JP2004531447A (en) Compact steam reformer
JP4504016B2 (en) Highly efficient and compact reformer unit for producing hydrogen from gaseous hydrocarbons in the low power range
KR20230042654A (en) Process for producing synthesis gas with reduced steam export
JPH06211501A (en) Reformer
CN105174214A (en) Method and device for manufacturing hydrogen through natural gas steam reforming by applying fluidized bed
KR970704252A (en) Fuel cell power plant furnace
JPH05303972A (en) Fuel reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JP2646101B2 (en) Fuel reformer
JPH06219704A (en) Reformer
JP4147521B2 (en) Self-oxidation internal heating type reforming method and apparatus
JPH04265147A (en) Fuel reformer
JPH01208303A (en) Fuel reformer
RU2009712C1 (en) Apparatus for catalytic conversion of hydrocarbons
JP2003112904A (en) Single tube type cylindrical reformer
JPH03232704A (en) Reformer
JP2712766B2 (en) Fuel reformer
JPH0397602A (en) Endothermic reactor