JPH03232704A - Reformer - Google Patents

Reformer

Info

Publication number
JPH03232704A
JPH03232704A JP2924490A JP2924490A JPH03232704A JP H03232704 A JPH03232704 A JP H03232704A JP 2924490 A JP2924490 A JP 2924490A JP 2924490 A JP2924490 A JP 2924490A JP H03232704 A JPH03232704 A JP H03232704A
Authority
JP
Japan
Prior art keywords
partition wall
cylindrical
catalyst body
heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2924490A
Other languages
Japanese (ja)
Inventor
Osao Okamura
岡村 長生
Nobuhiko Masunaga
増永 信彦
Tomoki Eguchi
江口 知己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Original Assignee
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN FUEL TECHNOL CORP, Toshiba Corp filed Critical JAPAN FUEL TECHNOL CORP
Priority to JP2924490A priority Critical patent/JPH03232704A/en
Publication of JPH03232704A publication Critical patent/JPH03232704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an equipment compact and increase reforming efficiency by providing partition walls of double cylindrical shape, heat radiation bodies comprising a porous solid and catalytic bodies of double cylindrical shape in a cylindrical vessel to make possible of an effective utilization of heat with radiation heat transfer. CONSTITUTION:The aimed reformer is constructed by a pressure vessel 17, partition walls 21 of double cylindrical shape, catalytic bodies 22 of double cylindrical shape, heat-radiation bodies 16 composed of a porous material permeable of hot gas and a heating means for heating raw material gas permeating through said catalytic bodies 22 with the radiation heat from the heat radiation bodies. Said partition walls 21 are composed of an outer partition wall 21a and an inner partition wall 21b to divide the vessel to a heating room A-side and a modifying room B-side and simultaneously divide the heating room to an outer combustion room 1a and an inner combustion room 1b. Besides, said catalytic bodies 22 are composed of an outer catalytic body 22a and an inner catalytic body 22b and are permeated by raw material gas to afford the aimed reformed gas.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、多孔性固体を用いて輻射伝熱により熱の有効
利用を図ることにより原料ガスの改質を促進させるよに
した改質装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention promotes the reforming of raw material gas by using a porous solid to effectively utilize heat through radiant heat transfer. The present invention relates to a reforming device.

(従来の技術) 改質装置の一例として例えば、水素ガスを得るために、
CH4とH20の混合した原料ガスをCH4+H20→
CO+3H2で示されるスチームリフォーミング反応を
用いて反応させ、H2とCOの混合した生成ガスを得る
ことが行われており、この反応装置が原料ガスの分解に
使用されている。
(Prior art) As an example of a reformer, for example, in order to obtain hydrogen gas,
CH4 + H20 → CH4 + H20 →
A steam reforming reaction represented by CO+3H2 is used to obtain a gas mixture of H2 and CO, and this reaction apparatus is used to decompose the raw material gas.

従来この種反応装置としては、例えば第3図に示すもの
が公知である(特開昭62−172615号公報)。第
3図中51は燃焼室、52は多孔性の熱輻射体、53は
受熱室、54は触媒が全体に均一に担持された略均−な
孔径を有する多孔性の受熱体、55は円筒容器60内を
燃焼室51と受熱室53とに仕切り原料ガス(CH4と
H20を混合したガス)58が漏洩しないようにした隔
壁、56は燃料の燃焼により得られた高温の燃焼ガス、
57は排ガス、59は原料ガス58の分解により得られ
たH2とCOを混合した生成ガス、61は原料ガス供給
管、62は多数の噴出口を有するバーナ1.6′3は排
ガス管、64は生成ガス取出し管である。
As a conventional reactor of this kind, the one shown in FIG. 3 is known (Japanese Patent Application Laid-open No. 172615/1983). In FIG. 3, 51 is a combustion chamber, 52 is a porous heat radiator, 53 is a heat receiving chamber, 54 is a porous heat receiver having a substantially uniform pore diameter and the catalyst is uniformly supported throughout, and 55 is a cylinder. A partition wall partitions the inside of the container 60 into a combustion chamber 51 and a heat receiving chamber 53 to prevent leakage of raw material gas (gas mixed with CH4 and H20) 58; 56 is a high-temperature combustion gas obtained by combustion of fuel;
57 is an exhaust gas, 59 is a generated gas obtained by decomposing the raw material gas 58 and is a mixture of H2 and CO, 61 is a raw material gas supply pipe, 62 is a burner 1.6'3 having a large number of ejection ports, 6' is an exhaust gas pipe, 64 is the produced gas extraction pipe.

上記反応装置では、バーナ62から噴射して燃焼される
高温燃焼ガス56は熱輻射体52を通過し、排ガス管6
3から排ガス57として排出される。燃焼ガス56の顕
熱は、熱輻射体52を通過する際に対流熱伝達によって
熱輻射体52に吸収され、熱輻射体52が加熱されて装
置内に輻射熱が放出され、放出された輻射熱は、隔壁5
5が金属材料或いはセラミックの場合は隔壁55の加熱
及び再輻射として受熱体54に受熱され、又隔壁55が
石英ガラス等のように透明な材質の場合は隔壁55を透
過して受熱体54に受熱され、受熱体54が加熱される
In the above reaction device, the high temperature combustion gas 56 injected from the burner 62 and burned passes through the heat radiator 52 and the exhaust gas pipe 6
3 is discharged as exhaust gas 57. The sensible heat of the combustion gas 56 is absorbed by the heat radiator 52 by convection heat transfer when it passes through the heat radiator 52, and the heat radiator 52 is heated and radiant heat is released into the device. , bulkhead 5
If the partition wall 55 is made of a metal material or ceramic, the heat is received by the heat receiving body 54 as heating and re-radiation of the partition wall 55, and if the partition wall 55 is made of a transparent material such as quartz glass, the heat passes through the partition wall 55 and reaches the heat receiving body 54. The heat is received, and the heat receiving body 54 is heated.

原料ガス58は受熱体54を通過する際に受熱体54に
より加熱されて分解し、H2とcoの混合した生成ガス
59となり、生成ガス取出し管64を通して装置外へ送
られる。
When the raw material gas 58 passes through the heat receiving body 54, it is heated and decomposed by the heat receiving body 54 to become a generated gas 59 which is a mixture of H2 and co, and is sent to the outside of the apparatus through the generated gas extraction pipe 64.

上述のごとく、熱輻射体52に吸収された熱を輻射によ
り受熱体54に与え、原料ガス58を受熱体54内に通
して加熱し、触媒の存在のもとに分解させることにより
、改質生成ガス59を得るようにすると、熱の有効利用
が図られると共に原料ガス58の分解がコンパクトな装
置により効果的に行われる。
As described above, the heat absorbed by the heat radiator 52 is given to the heat receiver 54 by radiation, and the raw material gas 58 is passed through the heat receiver 54 and heated, and decomposed in the presence of a catalyst, thereby achieving reforming. By obtaining the generated gas 59, heat can be used effectively and the raw material gas 58 can be effectively decomposed using a compact device.

(発明が解決しようとする課8) 以上述べた従来の反応装置は同心多重円筒形であるため
、この装置を大形大容量用に適用した場合、隔壁55の
直径と軸方向長さの比のとり方によっては、全体の外形
が大形となることがある。
(Issue 8 to be solved by the invention) Since the conventional reaction device described above has a concentric multi-cylindrical shape, when this device is applied to a large-scale, large-capacity system, the ratio of the diameter of the partition wall 55 to the axial length is Depending on how it is taken, the overall external shape may become large.

例えば、あまり隔壁55の直径を小さく細長い形状にす
ると軸方向の温度の変化幅が大きくなり改質効率が悪く
なる。
For example, if the diameter of the partition wall 55 is too small and the shape is elongated, the range of temperature change in the axial direction becomes large and the reforming efficiency deteriorates.

このような問題点を改善するため、隔壁55の直径と軸
方向長さをほぼ同じ程度の寸法にすることが考えられる
が、この場合隔壁55が大口径になるので、第3図に示
す従来形では隔壁55の内側に無駄な空間ができること
から全体が大形化し、さらに加熱源が隔壁55の外側に
しか配設されていないので、放熱量が比較的多量となり
、改質効率か悪くなる。
In order to improve this problem, it is conceivable to make the diameter and axial length of the partition wall 55 approximately the same, but in this case, the partition wall 55 would have a large diameter, so the conventional method shown in FIG. In terms of shape, wasted space is created inside the partition wall 55, which increases the overall size.Furthermore, since the heating source is only provided outside the partition wall 55, a relatively large amount of heat is radiated, resulting in poor reforming efficiency. .

本発明は全体がコンパクトであって、熱の有効利用か図
られ、改質効率が向上し、大容量用と【7ても適用可能
な改質装置を提供することを目的とする。
It is an object of the present invention to provide a reforming apparatus which is compact in its entirety, allows effective use of heat, improves reforming efficiency, and is applicable to large capacity applications.

[発明の構成〕 (課題を解決するための手段) 本発明は前記目的を達成するため、第1の発明は円筒状
の圧力容器と、この容器内に配設され、両端部が開口さ
れた円筒状の外側隔壁と両端部が開口された円筒状の内
側隔壁からなり、前記外側隔壁と前記内側隔壁の下端部
をそれぞれ底部材で連結し、前記内側隔壁の上端部を蓋
部材で連結してなる2重円筒形隔壁と、前記外側隔壁お
よび内側隔壁間に配設され、両端部が開口された円筒状
の外側触媒体と両端部が開口された円筒状の内側触媒体
からなり、前記外側触媒体および内側触媒体の上上端部
かそれぞれ蓋部材および底部材で閉塞され、かつ前記容
器外部から容器内部に導入される原料ガスを通過させて
改質排ガスを前記容器外部に排出する2重円筒形触媒体
と、前記内側隔壁内周側および前記外側隔壁外周側にそ
れぞれ配設され、高温ガスか通過可能な多孔性材料から
なる内側熱輻射体および外側熱輻射体と、前記内側熱輻
射体および外側熱輻射体に通過させる高温ガスを発生し
、この高温ガスにより加熱される熱輻射体の輻射熱によ
り前記外側触媒体および内側触媒体を通過する原料ガス
を加熱するための加熱手段とからなる改質装置である。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the first invention includes a cylindrical pressure vessel, and a pressure vessel disposed within the vessel, with both ends opened. It consists of a cylindrical outer partition wall and a cylindrical inner partition wall with both ends open, the lower ends of the outer partition wall and the inner partition wall are connected by a bottom member, and the upper end of the inner partition wall is connected by a lid member. a cylindrical outer catalyst body with both ends opened and a cylindrical inner catalyst body with both ends open, disposed between the outer and inner partition walls; The upper ends of the outer catalyst body and the inner catalyst body are respectively closed by a lid member and a bottom member, and the raw material gas introduced from the outside of the container into the inside of the container is passed through, and the reformed exhaust gas is discharged to the outside of the container. 2 a heavy cylindrical catalyst body; an inner heat radiator and an outer heat radiator that are respectively disposed on the inner peripheral side of the inner partition wall and on the outer peripheral side of the outer partition wall and are made of a porous material through which high-temperature gas can pass; heating means for generating high-temperature gas to be passed through the radiator and the outer heat radiator, and heating the raw material gas passing through the outer catalyst body and the inner catalyst body by the radiant heat of the heat radiator heated by the high-temperature gas; This is a reformer consisting of:

また、第2の発明は前述の2重円筒隔壁の構成とは異な
り、容器内に配設され、両端部が開口された円筒状の外
側隔壁と両端部が開口された円筒状の内側隔壁からなり
、前記外側隔壁と前記内側隔壁の下端部および上端部を
それぞれ底部材および蓋部材で連結してなる構成とした
ものである。
Further, unlike the above-mentioned double cylindrical partition structure, the second invention has a cylindrical outer partition wall that is disposed inside the container and has both ends opened, and a cylindrical inner partition wall that has both ends opened. The lower end portion and the upper end portion of the outer partition wall and the inner partition wall are connected by a bottom member and a lid member, respectively.

(作用) 本発明によれば、円筒状の容器内を加熱室側と改質室側
とに分離するための隔壁を、2重円筒形状とし、この内
側隔壁内周側と外側隔壁外周側に熱輻射体をそれぞれ配
設し、かつこれらに高温ガスをそれぞれ供給するように
し、また内側隔壁と外側隔壁との間に2重円筒形触媒体
を設けるようにしたので、全体がコンパクトであって、
熱の有効利用が図られ、改質効率が向上し大容量用とし
も適用できる。
(Function) According to the present invention, the partition wall for separating the inside of the cylindrical container into the heating chamber side and the reforming chamber side is formed into a double cylindrical shape, and the inner circumferential side of the inner partition wall and the outer circumferential side of the outer partition wall are Thermal radiators are provided and high temperature gas is supplied to each of them, and a double cylindrical catalyst body is provided between the inner partition wall and the outer partition wall, so the overall structure is compact. ,
Effective use of heat is achieved, reforming efficiency is improved, and it can be applied to large-capacity applications.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図はその第1の実施例の縦断面図を示すもので、
以下これについて説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal sectional view of the first embodiment.
This will be explained below.

圧力容器17は、有底円筒状であって、内周面に断熱材
35を有し、この開口部に上蓋19が上蓋取付フランジ
ボルト20により取り付けられている。
The pressure vessel 17 has a cylindrical shape with a bottom, has a heat insulating material 35 on its inner circumferential surface, and an upper lid 19 is attached to this opening with upper lid mounting flange bolts 20.

同心2重円筒形隔壁21は、加熱室A側と改質室B側と
に分離するとともに、加熱室を外側燃焼室1aと内側燃
焼室1bに分離するために、容器17内に配設され、両
端部が開口された円筒状の外側隔壁21aと、両端部が
開口された円筒状の内側隔壁21bからなり、外側隔壁
21aと内側隔壁21bの下端部をそれぞれ底部材21
dで連結し、内側隔壁21bの上端部を例えば鏡板から
なる蓋部材21cで連結されている。
The concentric double cylindrical partition wall 21 is disposed within the container 17 in order to separate the heating chamber A side and the reforming chamber B side, and to separate the heating chamber into an outer combustion chamber 1a and an inner combustion chamber 1b. , consists of a cylindrical outer partition wall 21a that is open at both ends, and a cylindrical inner partition wall 21b that is open at both ends, and the lower ends of the outer partition wall 21a and the inner partition wall 21b are connected to the bottom member 21, respectively.
d, and the upper end of the inner partition wall 21b is connected by a lid member 21c made of, for example, a mirror plate.

同心2重円筒形触媒体22は、原料ガスを通過させて改
質排ガスを得るためのもので、外側隔壁21aおよび内
側隔壁21b間に配設され、両端部が開口された円筒状
の外側触媒体22aと両端部が開口された円筒状の内側
触媒体22bからなり、外側触媒体22aおよび内側触
媒体22bの上下端部がそれぞれ触媒体蓋部材24およ
び触媒体底部材23で閉塞されている。
The concentric double cylindrical catalyst body 22 is for obtaining reformed exhaust gas by passing the raw material gas, and is arranged between the outer partition wall 21a and the inner partition wall 21b, and is a cylindrical outer contact with open ends. It consists of a medium 22a and a cylindrical inner catalyst body 22b with both ends open, and the upper and lower ends of the outer catalyst body 22a and the inner catalyst body 22b are respectively closed with a catalyst body cover member 24 and a catalyst body bottom member 23. .

内側熱輻射体16bおよび外側熱輻射体16aは、内側
隔壁21bの内周側および外側隔壁21aの外周側にそ
れぞれ配設され、高温ガスが通過可能な環状の多孔性材
料からなっている。
The inner heat radiator 16b and the outer heat radiator 16a are disposed on the inner peripheral side of the inner partition wall 21b and on the outer peripheral side of the outer partition wall 21a, respectively, and are made of an annular porous material through which high-temperature gas can pass.

この熱輻射体16a、16bは、高温ガスにさらされる
ため、セラミック粒子多孔体あるいはセラミックファイ
バ成形品を用いる。セラミ・ツク粒子多孔体は、アルミ
ナおよびシリカのセラミ・ンク材で構成されたセラミッ
ク粒子とウレタン粒子の混合物を2000℃以上の高温
で焼成し、ウレタン粒子を焼失して空隙率0.7〜0.
9の空間率の割合を多くしたものである。また、セラミ
ックファイバ成形品は、上記セラミック粒子多孔体と組
成はほぼ同一であるが、セラミック材をファイバ状(繊
維状)に焼成し、このファイバ状にしタモのとバインダ
を混合させ再焼成したものである。
The heat radiators 16a and 16b are made of porous ceramic particles or ceramic fiber molded products because they are exposed to high-temperature gas. Ceramic particle porous material is produced by firing a mixture of ceramic particles and urethane particles made of ceramic materials of alumina and silica at a high temperature of 2000°C or higher, burning out the urethane particles and reducing the porosity to 0.7 to 0. ..
This is an increase in the space ratio of 9. Ceramic fiber molded products have almost the same composition as the above-mentioned porous ceramic particles, but are made by firing ceramic material into a fiber shape, mixing ash and a binder in the fiber shape, and then firing it again. It is.

このような、セラミックファイバ成形品は前述のセラミ
ック粒子多孔体に比べて温度を急激に高温まで上げ下げ
してもこれに伴う亀裂破損が生じにくいので、加熱温度
が高い用途に適する。
Such a ceramic fiber molded product is less prone to cracking and damage even when the temperature is rapidly raised or lowered to a high temperature than the above-mentioned ceramic particle porous body, and is therefore suitable for applications where heating temperatures are high.

前記燃焼室1a、lbの下部、すなわち熱輻射体16a
と外側隔壁21aの間の下部空間ならびに熱輻射体16
bと内側隔壁21bの間の下部空間には、外側燃料管2
a、内側燃料管2bが設けられ、この燃料管2a、2b
の上面に、燃料を噴出するための噴出口3か多数個円周
上にほぼ均等に形成されている。
The lower part of the combustion chambers 1a, lb, that is, the heat radiator 16a
and the lower space between the outer partition wall 21a and the heat radiator 16
The outer fuel pipe 2 is located in the lower space between the inner partition wall 21b and the inner partition wall 21b.
a, an inner fuel pipe 2b is provided, and the fuel pipes 2a, 2b
A large number of jet ports 3 for jetting out fuel are formed on the upper surface of the fuel tank 3 almost uniformly on the circumference.

燃料導入管4は、容器17内を貫通するとともに、2本
に分岐された外側連絡管6aと内側連絡管6bに連結さ
れ、この連絡管6a、6bはそれぞれ燃料管2a、2B
)に連結され、燃料導入管4の途中経路には燃料の導入
;を制御するための燃料導入弁5が設けられ、また内側
連絡管6bの途中には内側燃料弁7が設けられている。
The fuel introduction pipe 4 penetrates the inside of the container 17 and is connected to an outer communication pipe 6a and an inner communication pipe 6b which are branched into two, and the communication pipes 6a and 6b are connected to the fuel pipes 2a and 2B, respectively.
), and a fuel introduction valve 5 for controlling the introduction of fuel is provided in the middle of the fuel introduction pipe 4, and an inner fuel valve 7 is provided in the middle of the inner communication pipe 6b.

空気導入管8は、容器17内を貫通するとともに、2本
に分岐された外側空気管12aと内側空気管12bに連
結され、この空気管12a。
The air introduction pipe 8 penetrates the inside of the container 17 and is connected to an outer air pipe 12a and an inner air pipe 12b which are branched into two.

12bはそれぞれ円周上等配に林立する外側予熱管13
aと内側予熱管13bに連結され、空気導入管8の途中
経路には空気の導入量を制御するための空気導入弁9が
設けられ、また内側連絡管10bの途中には内側空気弁
11が設けられている。
12b are outer preheating pipes 13 arranged at equal intervals on the circumference.
a and the inner preheating pipe 13b, an air introduction valve 9 for controlling the amount of air introduced is provided in the middle of the air introduction pipe 8, and an inner air valve 11 is provided in the middle of the inner connecting pipe 10b. It is provided.

外側予熱管13a、内側予熱管13bには、U字管14
が連結され、このU字管14は予熱管13a、13bと
同一円周上に設けたもどり管(図示せず)と連結され、
このもどり管にはそれぞれ空気噴出ノズル15a、15
bか連結されている。これにより、空気導入管8からの
空気が燃焼室1a、lbに噴射されるようになっている
A U-shaped tube 14 is provided in the outer preheating tube 13a and the inner preheating tube 13b.
This U-shaped tube 14 is connected to a return tube (not shown) provided on the same circumference as the preheating tubes 13a and 13b,
Air jet nozzles 15a and 15 are provided in these return pipes, respectively.
b are connected. Thereby, air from the air introduction pipe 8 is injected into the combustion chambers 1a, lb.

しかして、第1図において、外側隔壁21aは圧力容器
17の上部外周面に形成されているフランジにフランジ
締付ボルト18で締結されている。
Thus, in FIG. 1, the outer partition wall 21a is fastened to a flange formed on the upper outer peripheral surface of the pressure vessel 17 with flange tightening bolts 18.

前記外側隔壁21aと内側隔壁21bの間に形成されて
いる改質室Bに、前述の外側触媒体22aと内側触媒体
22bからなる2重円筒形触媒体22が収納され、両舷
媒体22a、22bは容器17内に固定されている触媒
体底部材23と上部の触媒体蓋部材24にはさみ、引張
りボルト25とスプリング26により触媒体蓋部材24
、触媒体底部材23の上下に間隙ができないように締付
けられている。
In the reforming chamber B formed between the outer partition wall 21a and the inner partition wall 21b, a double cylindrical catalyst body 22 consisting of the above-mentioned outer catalyst body 22a and inner catalyst body 22b is housed, and both side media 22a, 22b is sandwiched between the catalyst bottom member 23 fixed in the container 17 and the top catalyst lid member 24, and is attached to the catalyst lid member 24 by a tension bolt 25 and a spring 26.
, are tightened so that no gaps are formed above and below the catalyst body bottom member 23.

そして、触媒体蓋部材24には、圧力容器17内の頭部
側の円周上に等間隔に改質生成ガス出口管27が配設さ
れ、この改質生成ガス出口管27には、外周面にフィン
29を有する螺旋管28を介して放射状管30に連結さ
れ、この放射状管30に連結され、この放射状管30は
ヘッダ31と生成ガス出口管32を介して連結されてい
る。
The catalyst cover member 24 is provided with reformed gas outlet pipes 27 at equal intervals on the circumference of the head side of the pressure vessel 17. It is connected via a helical tube 28 with fins 29 on its surface to a radial tube 30, which is connected to a header 31 via a product gas outlet tube 32.

また、螺旋管28の外周側に原料ガス導入管33が配設
され、この原料ガス導入管33から導入される原料ガス
が、外側隔壁21a、内側隔壁21bと外側触媒体22
a、外側触媒体22bとの間の空間に供給されるように
なっている。
Further, a raw material gas introduction pipe 33 is disposed on the outer peripheral side of the spiral tube 28, and the raw material gas introduced from this raw material gas introduction pipe 33 is transferred to the outer partition wall 21a, the inner partition wall 21b, and the outer catalyst body 22.
a and the outer catalyst body 22b.

次に、以上述べた本発明の第1の実施例の動作について
述べる。改質に使用される原料ガスは、原料ガス導入管
33から入いり、螺旋管28の周囲の空間44を流下し
て外側隔壁21a、内側隔壁21bと外側触媒体22a
、内側触媒体22bの間の間隙に入いり外側触媒体22
a、内側触媒体22bを通過する間に改質が行なわれる
Next, the operation of the first embodiment of the present invention described above will be described. The raw material gas used for reforming enters from the raw material gas introduction pipe 33, flows down the space 44 around the spiral pipe 28, and passes through the outer partition wall 21a, the inner partition wall 21b, and the outer catalyst body 22a.
, the outer catalyst body 22 enters the gap between the inner catalyst body 22b.
a. Reforming is performed while passing through the inner catalyst body 22b.

この改質された改質生成ガスは、外側触媒体22aと内
側触媒体22bとの間の空間に集まり、改質生成ガス出
口管27に入り、ここで改質生成ガスは立ち上がり螺旋
管28により円周方向に向きをかえ、螺旋管28を経て
放射状管30を通り、中央のヘッダ31に集まり、生成
ガス出口管32に送られる。前記改質生成ガスが、螺旋
管28を通過する際に、この外周側を通過している原料
ガスと熱交換されて冷却され、この冷却された生成ガス
が生成ガス出口管32に送られる。
This reformed product gas collects in the space between the outer catalyst body 22a and the inner catalyst body 22b and enters the reformed product gas outlet pipe 27, where the reformed product gas rises and passes through the spiral pipe 28. It changes direction in the circumferential direction, passes through the helical tube 28 and the radial tube 30, collects in the central header 31, and is sent to the product gas outlet tube 32. When the reformed product gas passes through the spiral pipe 28, it is cooled by heat exchange with the raw material gas passing through the outer circumferential side thereof, and the cooled product gas is sent to the product gas outlet pipe 32.

前記触媒体22a、22bは、隔壁21a。The catalyst bodies 22a and 22b are partition walls 21a.

21bからの熱放射によって加熱されると同時に、原料
ガスの改質反応を行なうために触媒体22a。
The catalyst body 22a is heated by heat radiation from the catalyst body 21b and at the same time performs a reforming reaction of the raw material gas.

22bを通過する間に吸熱反応が行なわれる。この場合
の熱源が、隔壁21a、21bからの輻射熱で与えられ
る事になる。前記隔壁21a。
22b, an endothermic reaction takes place. The heat source in this case is provided by radiant heat from the partition walls 21a and 21b. The partition wall 21a.

21bは、燃焼室1a、1b内で燃料管2a。21b is a fuel pipe 2a within the combustion chambers 1a, 1b.

2bからの燃料と空気噴出ノズル15a、15bからの
空気によって燃焼した燃焼高温ガスが隔壁21a、21
bと熱輻射体16a、16bに吸収される。燃焼高温ガ
スは熱輻射体16a、16b内を通過する間に温度が下
がり、熱輻射体16a。
The combustion high temperature gas combusted by the fuel from 2b and the air from the air jet nozzles 15a, 15b flows into the partition walls 21a, 21.
b and is absorbed by the heat radiators 16a and 16b. The temperature of the combustion high-temperature gas decreases while passing through the heat radiators 16a and 16b, and the temperature of the combustion gas decreases.

16bの下流側に設置されている予熱管13a。Preheating pipe 13a installed downstream of 16b.

13bの間隙を通過する間に、熱交換されて更に冷却さ
れ、これにより温度か低ドして燃焼排ガスとして外側排
ガス管34a、内側排ガス管34bを経由して燃焼排ガ
ス管34cに集まり外部に送り出される。
While passing through the gap 13b, heat is exchanged and further cooled, thereby lowering the temperature and gathering in the combustion exhaust gas pipe 34c via the outer exhaust gas pipe 34a and the inner exhaust gas pipe 34b as combustion exhaust gas, and sending it out to the outside. It will be done.

このように、熱輻射体16a、16bの下流側冷却管と
して予熱管13a、13bを設けて、排ガスを強制冷却
することにより、輻射体16a。
In this way, the preheating pipes 13a and 13b are provided as downstream cooling pipes for the heat radiators 16a and 16b, and the exhaust gas is forcibly cooled, thereby making the radiator 16a.

16bの温度低下幅が大きくなり、上流側温度を低下さ
せることなく、効率を上げることができる。
16b becomes larger, and efficiency can be increased without lowering the upstream temperature.

この事については、実験結果からも明らかであり、また
日本機械学会論文集848巻435号(昭和57年11
月)に越後亮三著「ガスエンタルピとふく射エネルギ間
の効果的変換方法と工業用炉への応用」に述べられてい
る事から、ここではこの詳細な説明は省略する。
This is clear from the experimental results, and the Transactions of the Japan Society of Mechanical Engineers, Vol. 848, No. 435 (November 1980)
Since this is described in Ryozo Echigo's ``Effective conversion method between gas enthalpy and radiant energy and its application to industrial furnaces'' in May), a detailed explanation of this is omitted here.

以上述べた第1の実施例による効果は次の通りである。The effects of the first embodiment described above are as follows.

すなわち、円筒状の圧力容器17内を加熱室A側と改質
室B側に分離するための隔壁を円筒状の外側隔壁21a
と円筒状の内側隔壁21bからなる2重円筒隔壁21と
し、外側隔壁21aの外周側と内側隔壁21bの内周側
にそれぞれ熱輻射体16a、16bを配設し、また外側
隔壁21aと内側隔壁21bの間に、外側触媒体22a
と内側触媒体22bを配設するようにしたので、大形大
容量のものに適用でき、隔壁21a。
That is, the partition wall for separating the inside of the cylindrical pressure vessel 17 into the heating chamber A side and the reforming chamber B side is the cylindrical outer partition wall 21a.
The double cylindrical partition wall 21 consists of a cylindrical inner partition wall 21b, and heat radiators 16a and 16b are arranged on the outer circumferential side of the outer partition wall 21a and the inner circumferential side of the inner partition wall 21b, respectively, and the outer partition wall 21a and the inner partition wall 21b, the outer catalyst body 22a
Since the inner catalyst body 22b is arranged, it can be applied to large-sized and large-capacity devices, and the partition wall 21a.

21bの径が大きくても隔壁21a、21bの内側のス
ペースを6効に利用でき、これにより全体をコンパクト
化できる。
Even if the diameter of the partition wall 21b is large, the space inside the partition walls 21a and 21b can be effectively utilized, thereby making the whole structure compact.

さらに触媒体22は、外側触媒体22aと内側触媒体2
2bにより同心2重円筒状にして、外側触媒体22a、
内側触媒体22bの間の間隙空間を改質されたガスの通
路に利用する事により、原料ガスと改質されたガスの分
離が容易になっている。
Further, the catalyst body 22 includes an outer catalyst body 22a and an inner catalyst body 2.
2b into a concentric double cylindrical shape, and an outer catalyst body 22a,
By using the gap space between the inner catalyst bodies 22b as a passage for the reformed gas, separation of the raw material gas and the reformed gas is facilitated.

熱輻射体16a、16bの下流側の冷却された燃焼ガス
を、予熱管13a、13bにより予熱するようにしてい
るので、この予熱した分だけ燃焼室1a、lbの温度を
高めることができ、これにより改質効率が向上する。ま
た、外側触媒体22aの外周側および内側触媒体22b
の内周側にそれぞれ原料ガスが送られるので、第3図の
従来装置に比べて改質ガスを多量に生成することができ
る。
Since the cooled combustion gas on the downstream side of the thermal radiators 16a and 16b is preheated by the preheating tubes 13a and 13b, the temperature of the combustion chambers 1a and 1b can be increased by the preheated amount. This improves the reforming efficiency. Further, the outer peripheral side of the outer catalyst body 22a and the inner catalyst body 22b
Since the raw material gas is sent to the inner circumferential side of each, a larger amount of reformed gas can be generated than in the conventional apparatus shown in FIG.

さらに、内側燃料弁7および内側空気弁11を設ける事
により隔壁21a、21bの温度をそれぞれ測定し両方
の温度がほぼ同一によるように燃料およ燃焼空気の内側
、外側の比率を調節する事かできる。
Furthermore, by providing the inner fuel valve 7 and the inner air valve 11, the temperatures of the partition walls 21a and 21b can be measured respectively, and the ratio of the fuel and combustion air between the inner and outer sides can be adjusted so that the temperatures of both are approximately the same. can.

また、燃焼ガスは輻射体16a、16b内を通過する間
に温度が下がり、予熱管13a。
Further, the temperature of the combustion gas decreases while passing through the radiators 16a and 16b, and the temperature of the combustion gas decreases as it passes through the radiators 16a and 16b.

13bの間隙を通過する間に、空気予熱管13a。While passing through the gap 13b, the air preheating tube 13a.

13bと熱交換されて温度が下がるので、更に冷却、温
度が低下して燃焼排ガスとして外側排ガス管34a、内
側排ガス管34bを経由して燃焼排ガス管34cに集ま
り外部に送り出されるので、効率良く改質ガスを発生す
ることができる。さらに改質側の改質生成ガスは、原料
ガス導入管33、排ガス管34a、34bを通り、螺旋
管28を通過する際に、この外周側を通過している原料
ガスと熱交換されて冷却され、この冷却された生成ガス
が生成ガス出口32に送られるので、効率良く改質ガス
を発生することができる。
13b, the temperature is further cooled and the temperature is lowered, and the combustion exhaust gas is collected in the combustion exhaust gas pipe 34c via the outer exhaust gas pipe 34a and the inner exhaust gas pipe 34b, and sent out to the outside, so it is efficiently improved. It can generate quality gas. Furthermore, the reformed gas on the reforming side passes through the raw material gas introduction pipe 33, the exhaust gas pipes 34a and 34b, and when passing through the spiral pipe 28, it is cooled by heat exchange with the raw material gas passing through the outer circumferential side. Since the cooled product gas is sent to the product gas outlet 32, reformed gas can be efficiently generated.

また熱輻射体16a、16bにファイバ状繊維をコンパ
ウンドして成形したセラミックファイバ成形品を使用す
る事によって亀裂などができない破損しにくい健全な改
質装置を得ることができる。
Furthermore, by using a ceramic fiber molded product made by compounding and molding fiber-like fibers for the thermal radiators 16a and 16b, it is possible to obtain a healthy reforming device that is resistant to cracks and damage.

次に、第2図を参照して本発明の第2の実施例について
説明するが、ここでは第1図の実施例とは異なる点につ
いてのみ説明する。第1図では、同心2重円筒形隔壁2
1は、加熱室A側と改質室B側とに分離するとともに、
加熱室Aを外側燃焼室1aと内側燃焼室1bに分離する
ために、圧力容器17内に配設され、両端部が開口され
た円筒状の外側隔壁21aと、両端部が開口された円筒
状の内側隔壁21bからなり、外側隔壁21aと内側隔
壁21bの下端部をそれぞれ底部材21dで連結し、内
側隔壁21bの上端部を例えば鏡板からなる蓋部材21
cて連結されている。そして、燃料管2B、2bと空気
噴出ノズル15a。
Next, a second embodiment of the present invention will be described with reference to FIG. 2, but only the points different from the embodiment shown in FIG. 1 will be explained here. In Figure 1, the concentric double cylindrical bulkhead 2
1 is separated into a heating chamber A side and a reforming chamber B side, and
In order to separate the heating chamber A into an outer combustion chamber 1a and an inner combustion chamber 1b, a cylindrical outer partition wall 21a with open ends and a cylindrical outer partition wall 21a with open ends disposed inside the pressure vessel 17 and a cylindrical outer partition wall 21a with open ends. The lower ends of the outer partition wall 21a and the inner partition wall 21b are connected by a bottom member 21d, and the upper end of the inner partition wall 21b is connected to a lid member 21 made of a mirror plate, for example.
c are connected. And fuel pipes 2B, 2b and air jet nozzle 15a.

15bを、それぞれリング状にして円周上に配置して、
リング状に燃焼する燃焼バーナを形成している。これに
対して、第2図の実施例では同心2重円筒形隔壁21は
、圧力容器17内に配設され、両端部が開口された円筒
状の外、側隔壁21aと両端部が開口された円筒状の内
側隔壁21bからなり、外側隔壁21aと内側隔壁21
bの下端部および上端部をそれぞれ底部材21dおよび
蓋部材19で連結してなる構成としたものである。そし
て、シリンダ状の燃焼バーナ2cを、圧力容器17内の
上部の燃焼室空間71cにまとめ、ここで加熱のための
燃焼を行うように構成したものである。
15b are each arranged in a ring shape on the circumference,
It forms a combustion burner that burns in a ring shape. On the other hand, in the embodiment shown in FIG. 2, the concentric double cylindrical partition wall 21 is disposed inside the pressure vessel 17, and has a cylindrical outer wall with both ends open, and a side partition wall 21a with both ends open. It consists of a cylindrical inner partition wall 21b, an outer partition wall 21a and an inner partition wall 21.
The lower end and the upper end of b are connected by a bottom member 21d and a lid member 19, respectively. The cylindrical combustion burner 2c is arranged in an upper combustion chamber space 71c within the pressure vessel 17, and combustion for heating is performed here.

第2図の実施例において、燃焼バーナ2Cには、燃料導
入管4から燃料が噴出口3に供給されるとともに、燃焼
バーナ2Cの噴射口3の周囲には空気導入管8がら空気
がそれぞれ供給され、噴射口3の外周部において燃料と
空気とが合流されて噴射口3の周囲で燃料が燃焼する。
In the embodiment shown in FIG. 2, fuel is supplied to the injection port 3 of the combustion burner 2C from a fuel introduction pipe 4, and air is supplied from an air introduction pipe 8 around the injection port 3 of the combustion burner 2C. The fuel and air are combined at the outer periphery of the injection port 3 and the fuel is combusted around the injection port 3.

燃焼室71c内で形成されている断熱材35の内壁にそ
って燃焼した高温ガスは上昇し、外側加熱流路71aに
導入される。また、燃焼バーナ2cの周囲には断熱材3
5て作られた円周上に部分的に土手40か形成されてい
るので、燃焼ガスの一部は矢印41に示す方向に流され
、内側加熱流路71bに導入される。このあと、燃焼ガ
スは輻射体16a、16bに流入される。
The high temperature gas burned along the inner wall of the heat insulating material 35 formed within the combustion chamber 71c rises and is introduced into the outer heating flow path 71a. In addition, a heat insulating material 3 is provided around the combustion burner 2c.
Since a bank 40 is partially formed on the circumference made by 5, a part of the combustion gas is flowed in the direction shown by the arrow 41 and introduced into the inner heating flow path 71b. After this, the combustion gas flows into the radiators 16a, 16b.

そして、熱輻射体16aを通過した燃焼排ガスは、外側
排ガス管34aから圧力容器17の外部に排出されるが
、熱輻射体16bを通過した燃焼排ガスは、第2図では
第1図とは反対に圧力容器17の上部に排出される。そ
のため、第1図の隔壁21a、21bの鏡板21cはな
く、内外の隔壁21a、21bは上部で同一リング状の
上蓋19で締結されている。さらに、下流熱交換のため
の予熱管13a、13bは、それぞれ圧力容器17内下
部に設けたU字管14a、14bと連結され、このU字
管14a、14bと圧力容器17内上部に設けた空気管
12a、12bと連結され、この空気管12a、12b
と空気管12c。
The combustion exhaust gas that has passed through the thermal radiator 16a is discharged to the outside of the pressure vessel 17 from the outer exhaust gas pipe 34a, but the combustion exhaust gas that has passed through the thermal radiator 16b is opposite to that in FIG. is discharged to the top of the pressure vessel 17. Therefore, the mirror plates 21c of the partition walls 21a and 21b shown in FIG. 1 are not provided, and the inner and outer partition walls 21a and 21b are fastened at their upper portions by the same ring-shaped top cover 19. Further, preheating pipes 13a and 13b for downstream heat exchange are connected to U-shaped pipes 14a and 14b provided at the lower part of the pressure vessel 17, respectively, and these U-shaped pipes 14a and 14b are connected to the U-shaped pipes 14a and 14b provided at the upper part of the pressure vessel 17. connected to the air pipes 12a, 12b, and the air pipes 12a, 12b
and air pipe 12c.

12dが連結され、この空気管12c、12dと加熱空
気管42a、42bが連結され、この加熱空気管42a
、42bは、第2図には示されていないが、−本にまと
めて圧力容器17内下部の空気導入管8に接続されてい
る。
12d are connected, and these air pipes 12c and 12d are connected to heated air pipes 42a and 42b, and this heated air pipe 42a is connected to
, 42b are not shown in FIG. 2, but are collectively connected to the air introduction pipe 8 in the lower part of the pressure vessel 17.

以上述べたことから、第1図の実施例では外側隔壁21
Hの直外側に外側燃焼室1aがあり、内側隔壁21bの
面内側に燃焼室1bがあり、しかも火炎が近いために燃
焼室1a、lbの間隙を大きくとって火炎と隔壁21a
、21bの間を離さなければいけなかったが、第2図は
火炎は下部燃焼室71cで形成されるので上部の加熱流
路71a、71bは間隙をせまくすることができる。
From the above, in the embodiment shown in FIG.
There is an outer combustion chamber 1a just outside of H, and a combustion chamber 1b on the inner side of the inner partition wall 21b.Moreover, since the flames are close to each other, a large gap is created between the combustion chambers 1a and 1b to separate the flame from the partition wall 21a.
, 21b, but in FIG. 2, the flame is formed in the lower combustion chamber 71c, so the gap between the upper heating channels 71a and 71b can be narrowed.

これにより、第2図の実施例は第1図の実施例より圧力
容器17の外径を小さくすることができ、さらに全体の
容積も縮小できる。
As a result, in the embodiment shown in FIG. 2, the outer diameter of the pressure vessel 17 can be made smaller than in the embodiment shown in FIG. 1, and the overall volume can also be reduced.

[発明の効果] 以上述べた本発明によれば、全体がコンパクトであって
、熱の有効利用が図られ、改質効率が向上し、大容量用
としても適用可能な改質装置を提供することができる。
[Effects of the Invention] According to the present invention described above, it is possible to provide a reforming device that is compact as a whole, makes effective use of heat, improves reforming efficiency, and is applicable to large-capacity applications. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の改質装置の第1の実施例を示す縦断面
図、第2図は本発明の改質装置の第2の実施例を示す縦
断面図、第3図は従来の輻射形反応装置の断面図である
。 1・・・燃焼室、2・・・燃料管、3・・・噴出口、4
・・・燃料導入管、5・・・燃料導入弁、6・・連絡管
、7・・・燃料弁、8・・空気導入管、9・・・空気導
入弁、10・・連絡管、11・・・内側空気弁、12・
・・空気管、13・・予熱管、14・・・U字管、15
・・・空気噴出ノズル、16・・・熱輻射体、17・・
・圧力容器、18・・・隔壁取付フランジボルト、19
・・・上蓋、21・・・隔壁、22・・・触媒体、23
・・・触媒体底部材、24・・・触媒体蓋部材。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of the reforming device of the present invention, FIG. 2 is a vertical cross-sectional view showing a second embodiment of the reforming device of the present invention, and FIG. FIG. 2 is a cross-sectional view of a radiation reactor. 1... Combustion chamber, 2... Fuel pipe, 3... Spout, 4
... Fuel introduction pipe, 5 ... Fuel introduction valve, 6 ... Communication pipe, 7 ... Fuel valve, 8 ... Air introduction pipe, 9 ... Air introduction valve, 10 ... Communication pipe, 11 ...Inner air valve, 12.
... Air pipe, 13 ... Preheating pipe, 14 ... U-shaped tube, 15
...Air jet nozzle, 16...Heat radiator, 17...
・Pressure vessel, 18... Bulkhead mounting flange bolt, 19
... Upper lid, 21 ... Partition wall, 22 ... Catalyst body, 23
... Catalyst body bottom member, 24... Catalyst body cover member.

Claims (2)

【特許請求の範囲】[Claims] (1)円筒状の圧力容器と、 この容器内に配設され、両端部が開口された円筒状の外
側隔壁と両端部が開口された円筒状の内側隔壁からなり
、前記外側隔壁と前記内側隔壁の下端部をそれぞれ底部
材で連結し、前記内側隔壁の上端部を蓋部材で連結して
なる2重円筒形隔壁と、 前記外側隔壁および内側隔壁間に配設され、両端部が開
口された円筒状の外側触媒体と両端部が開口された円筒
状の内側触媒体からなり、前記外側触媒体および内側触
媒体の上下端部がそれぞれ蓋部材および底部材で閉塞さ
れ、かつ前記容器外部から容器内部に導入される原料ガ
スを通過させて改質排ガスを前記容器外部に排出する2
重円筒形触媒体と、 前記内側隔壁内周側および前記外側隔壁外周側にそれぞ
れ配設され、高温ガスが通過可能な多孔性材料からなる
内側熱輻射体および外側熱輻射体と、 前記内側熱輻射体および外側熱輻射体に通過させる高温
ガスを発生し、この高温ガスにより加熱される熱輻射体
の輻射熱により前記外側触媒体および内側触媒体を通過
する原料ガスを加熱するための加熱手段と、 からなる改質装置。
(1) A cylindrical pressure vessel, and a cylindrical outer partition wall with both ends opened and a cylindrical inner partition wall with both ends opened, disposed inside this container, and comprising the outer partition wall and the inner side partition wall. A double cylindrical partition having lower ends of the partition wall connected by a bottom member and an upper end of the inner partition wall connected by a cover member, and a double cylindrical partition wall disposed between the outer partition wall and the inner partition wall, both ends of which are open. It consists of a cylindrical outer catalyst body and a cylindrical inner catalyst body with both ends opened, and the upper and lower ends of the outer catalyst body and the inner catalyst body are respectively closed with a lid member and a bottom member, and the outer catalyst body is closed to the outside of the container. 2. Passing the raw material gas introduced into the container from the container and discharging the reformed exhaust gas to the outside of the container.
a heavy cylindrical catalyst; an inner heat radiator and an outer heat radiator made of a porous material through which high-temperature gas can pass, and which are disposed on the inner circumferential side of the inner partition wall and the outer circumferential side of the outer partition wall, respectively; and the inner heat radiator. heating means for generating high-temperature gas to be passed through the radiator and the outer heat radiator, and heating the raw material gas passing through the outer catalyst body and the inner catalyst body by the radiant heat of the heat radiator heated by the high-temperature gas; A reforming device consisting of.
(2)円筒状の圧力容器と、 この容器内に配設され、両端部が開口された円筒状の外
側隔壁と両端部が開口された円筒状の内側隔壁からなり
、前記外側隔壁と前記内側隔壁の下端部および上端部を
それぞれ底部材および蓋部材で連結してなる2重円筒形
隔壁と、 前記外側隔壁および内側隔壁間に配設され、両端部が開
口された円筒状の外側触媒体と両端部が開口された円筒
状の内側触媒体からなり、前記外側触媒体および内側触
媒体の上下端部がそれぞれ蓋部材および底部材で閉塞さ
れ、かつ前記容器外部から容器内部に導入される原料ガ
スを通過させて改質排ガスを前記容器外部に排出する2
重円筒形触媒体と、 前記内側隔壁内周側および前記外側隔壁外周側にそれぞ
れ配設され、高温ガスが通過可能な多孔性材料からなる
内側熱輻射体および外側熱輻射体と、 前記内側熱輻射体および外側熱輻射体に通過させる高温
ガスを発生し、この高温ガスにより加熱される熱輻射体
の輻射熱により前記外側触媒体および内側触媒体を通過
する原料ガスを加熱するための加熱手段とからなる改質
装置。
(2) A cylindrical pressure vessel, and a cylindrical outer partition wall with both ends opened, and a cylindrical inner partition wall with both ends opened, disposed inside the container, the outer partition wall and the inner A double cylindrical partition wall formed by connecting the lower and upper ends of the partition wall with a bottom member and a lid member, respectively; and a cylindrical outer catalyst body disposed between the outer partition wall and the inner partition wall and having both ends opened. and a cylindrical inner catalyst body with both ends open, the upper and lower ends of the outer catalyst body and the inner catalyst body are respectively closed with a lid member and a bottom member, and are introduced into the container from the outside of the container. Passing the raw material gas and discharging the reformed exhaust gas to the outside of the container 2
a heavy cylindrical catalyst; an inner heat radiator and an outer heat radiator made of a porous material through which high-temperature gas can pass, and which are disposed on the inner circumferential side of the inner partition wall and the outer circumferential side of the outer partition wall, respectively; and the inner heat radiator. heating means for generating high-temperature gas to be passed through the radiator and the outer heat radiator, and heating the raw material gas passing through the outer catalyst body and the inner catalyst body by the radiant heat of the heat radiator heated by the high-temperature gas; A reformer consisting of
JP2924490A 1990-02-08 1990-02-08 Reformer Pending JPH03232704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2924490A JPH03232704A (en) 1990-02-08 1990-02-08 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2924490A JPH03232704A (en) 1990-02-08 1990-02-08 Reformer

Publications (1)

Publication Number Publication Date
JPH03232704A true JPH03232704A (en) 1991-10-16

Family

ID=12270836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2924490A Pending JPH03232704A (en) 1990-02-08 1990-02-08 Reformer

Country Status (1)

Country Link
JP (1) JPH03232704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206105A (en) * 2002-01-11 2003-07-22 Honda Motor Co Ltd Catalyst reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206105A (en) * 2002-01-11 2003-07-22 Honda Motor Co Ltd Catalyst reactor

Similar Documents

Publication Publication Date Title
SU1075947A3 (en) Apparatus for conducting endothermic reactions
EP0450872B1 (en) Endothermic reaction apparatus
JPH0422827Y2 (en)
US8273314B2 (en) Internal combustion exchanger-reactor for fixed bed endothermic reaction
US5567398A (en) Endothermic reaction apparatus and method
US4909809A (en) Apparatus for the production of gas
US3531263A (en) Integrated reformer unit
JPS62210047A (en) Apparatus for reaction
JP2001527501A (en) Exhaust gas collection assembly of burner for catalytic reformer
US6153152A (en) Endothermic reaction apparatus and method
CN103702753A (en) Reactor for carrying out autothermal gas-phase dehydrogenation
US4018573A (en) Reactor for the catalytic conversion of hydrocarbons with a gas containing oxygen to form a fuel gas
KR970704252A (en) Fuel cell power plant furnace
JPH03127A (en) Indirect heating in reaction room for endothermic reaction and apparatus for performing it
JPH03232704A (en) Reformer
KR100429602B1 (en) Fuel Reformer for Fuel Cell
JPH0271834A (en) Steam reforming device
JPS647119B2 (en)
JPS6227305A (en) Plate type reformer
RU2009712C1 (en) Apparatus for catalytic conversion of hydrocarbons
JPH03242303A (en) Reforming apparatus
JPH0124534B2 (en)
JPH01168332A (en) Apparatus for reforming fuel
JPH06211501A (en) Reformer
JPH0525537B2 (en)