JPH06196192A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH06196192A
JPH06196192A JP4341769A JP34176992A JPH06196192A JP H06196192 A JPH06196192 A JP H06196192A JP 4341769 A JP4341769 A JP 4341769A JP 34176992 A JP34176992 A JP 34176992A JP H06196192 A JPH06196192 A JP H06196192A
Authority
JP
Japan
Prior art keywords
air
reaction chamber
supply pipe
fuel
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4341769A
Other languages
Japanese (ja)
Inventor
Katsumi Nagata
勝巳 永田
Osao Kudome
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4341769A priority Critical patent/JPH06196192A/en
Publication of JPH06196192A publication Critical patent/JPH06196192A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To uniformize a temperature in a reaction chamber by supplying air flowing outside of a cell tube from the upper end part side of an air supply pipe, and flowing it to the lower part side from the reaction chamber upper part side. CONSTITUTION:Air 2 supplied from an air inlet pipe 12 in a lower part of a module is supplied to a reaction chamber 7 after passing through an air preheater 4 and also passing through an air supply pipe 22 arranged in the central part of the reaction chamber 7. A ceramics foaming body 6 to promote heat transfer to the air 2 from inside of the reaction chamber 7, is filled in the air supply pipe 22. The air coming out from an upper end opening part of the air supply pipe flows to the lower part side from the upper part side of the reaction chamber 7, and passes through the air preheater 4, and is discharged outside of the module after being used for power generation. Thereby, fuel gas 10 flowing to above from below in a cell tube 1 and the heated air flowing below from above outside of it flow oppositely to each other, and as for the supplied air, heat can be absorbed efficiently in the air from the whole reaction chamber, so that a temperature in the reaction chamber can be uniformized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池に
関し、特に反応室内の温度を均一化するように図ったも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a uniform temperature in a reaction chamber.

【0002】[0002]

【従来の技術】図2に従来技術に係る固体電解質型燃料
電池の概略を示す。図2において、1はセルチューブ,
2は空気,3は排空気,4は空気予熱器,5は空気排出
管,6はセラミックス発泡体,7は反応室,8は燃料ヘ
ッダー,9は断熱材,10は燃料ガス,11燃料供給
管,12は空気入口管及び13は空気出口管を各々図示
する。
2. Description of the Related Art FIG. 2 schematically shows a conventional solid oxide fuel cell. In FIG. 2, 1 is a cell tube,
2 is air, 3 is exhaust air, 4 is air preheater, 5 is air exhaust pipe, 6 is ceramic foam, 7 is reaction chamber, 8 is fuel header, 9 is heat insulating material, 10 is fuel gas, 11 is fuel supply A tube, 12 is an air inlet tube, and 13 is an air outlet tube.

【0003】図2を参照して従来のモジュールにおける
空気予熱方法を説明すると、先ず、空気入口管12から
導入された空気2は空気予熱器4により、約700℃程
度まで予熱された後、反応室7の入口に介装されたセラ
ミックス発泡体6の表面により反応室7内の熱を吸収
し、さらに900℃まで予熱され反応室7内に加熱空気
が供給されている。
The air preheating method in the conventional module will be described with reference to FIG. 2. First, the air 2 introduced from the air inlet pipe 12 is preheated to about 700 ° C. by the air preheater 4, and then the reaction is performed. The surface of the ceramic foam 6 interposed at the inlet of the chamber 7 absorbs heat in the reaction chamber 7, and is further preheated to 900 ° C. and heated air is supplied into the reaction chamber 7.

【0004】さらに、反応室7内を上昇しながら発電に
消費された後、排空気3は例えばAl23製の空気排出
管5を通過し、次いで空気予熱器4を通った後、空気出
口管13からモジュール外に排出されている。
Further, after being raised in the reaction chamber 7 and consumed for power generation, the exhaust air 3 passes through an air exhaust pipe 5 made of, for example, Al 2 O 3 , and then passes through an air preheater 4 and then air. It is discharged from the outlet pipe 13 to the outside of the module.

【0005】一方、燃料ガス10は燃料ガスヘッダー8
より、セルチューブ1内へ燃料供給管11を通って供給
されている。その後、セルチューブ1内を上昇しながら
発電に用いられた後、燃料ヘッダー8を通ってモジュー
ル外へ排出されている。
On the other hand, the fuel gas 10 is the fuel gas header 8
Therefore, the fuel is supplied into the cell tube 1 through the fuel supply pipe 11. After that, it is used for power generation while rising in the cell tube 1, and then discharged to the outside of the module through the fuel header 8.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来技術に
おいては発電に用いられるセルチューブ1内の燃料ガス
10とその外部を流れる加熱された空気2とが同じ方向
に流れている。
By the way, in the prior art, the fuel gas 10 in the cell tube 1 used for power generation and the heated air 2 flowing outside thereof flow in the same direction.

【0007】この際、セルチューブ1内においては発電
時にセルの内部抵抗による電圧降下分だけの発熱(下記
「数1」参照)が生じる。
At this time, heat is generated in the cell tube 1 during power generation by the amount of voltage drop due to the internal resistance of the cell (see "Equation 1" below).

【0008】[0008]

【数1】Q=I・ΔE=I2 R ここでQ:発電量,I:電流,ΔE:電圧降下,R:セ
ル内部抵抗である。
## EQU1 ## Q = I.ΔE = I 2 R Here, Q is the power generation amount, I is the current, ΔE is the voltage drop, and R is the cell internal resistance.

【0009】この反応がセルチューブ1の下方から上方
(入口側から出口側)へ向って進行していくので、当該
セルチューブ1の上部(出口側)近傍の温度が上昇傾向
になる。
Since this reaction proceeds from the lower side of the cell tube 1 to the upper side (from the inlet side to the outlet side), the temperature near the upper portion (outlet side) of the cell tube 1 tends to rise.

【0010】また、空気1もセルチューブ1の反応熱に
より上昇しながら吸熱するので、反応室7の上部の温度
が上昇する。一方、セラミックス発泡体6が反応室7下
部の熱量を吸収するために、反応室7の下部温度は低下
する傾向となる。
Since the air 1 also absorbs heat while rising due to the reaction heat of the cell tube 1, the temperature of the upper part of the reaction chamber 7 rises. On the other hand, since the ceramic foam 6 absorbs the amount of heat in the lower portion of the reaction chamber 7, the lower temperature of the reaction chamber 7 tends to decrease.

【0011】従って、反応室7内の温度は全般的に下部
側が低く、上部側が高いという温度勾配を生じるという
問題がある。従って、反応室内の温度上昇を積極的に抑
えるため空気流量を増大し、そのため補機動力を必要と
し、発電効率が悪いという問題がある。
Therefore, there is a problem that the temperature inside the reaction chamber 7 is generally low on the lower side and high on the upper side. Therefore, there is a problem that the air flow rate is increased in order to positively suppress the temperature rise in the reaction chamber, which requires auxiliary machine power, resulting in poor power generation efficiency.

【0012】本発明は上記問題に鑑み、反応室内の温度
の均一化を図った固体電解質型燃料電池を提供すること
を目的とする。
In view of the above problems, it is an object of the present invention to provide a solid oxide fuel cell in which the temperature inside the reaction chamber is made uniform.

【0013】[0013]

【課題を解決するための手段】前記目的を達成する本発
明に係る固体電解質型燃料電池の構成は、モジュールの
周囲が断熱材で囲まれてなり、内部上部に配した燃料ヘ
ッダーと、この燃料ヘッダーの下方側に設けられた反応
室下部を有する反応室と、この反応室の下方側に形成し
た空気予熱器と、上記燃料ヘッダーから反応室内に吊下
げられ内部に燃料供給管を配設した有底のセルチューブ
とを具備する固体電解質型燃料電池において、上記燃料
ヘッダーの下面近傍に上端開口部を有すると共に、供給
空気を下方から上方へ通過させてなる空気供給管を反応
室内に設けてなり、上記セルチューブ内を流れる燃料ガ
スを下方から上方へ向って流すと共に、当該セルチュー
ブ外を流れる空気を上方から下方へ向って流すことを特
徴とする。
In order to achieve the above object, a solid oxide fuel cell according to the present invention has a structure in which a module is surrounded by a heat insulating material, and a fuel header arranged in an upper part of the inside and a fuel header A reaction chamber having a reaction chamber lower portion provided on the lower side of the header, an air preheater formed on the lower side of the reaction chamber, and a fuel supply pipe disposed inside the reaction chamber suspended from the fuel header. In a solid oxide fuel cell including a bottomed cell tube, an upper end opening is provided in the vicinity of the lower surface of the fuel header, and an air supply pipe for passing supply air from below to above is provided in the reaction chamber. In addition, the fuel gas flowing inside the cell tube flows downward from above, and the air flowing outside the cell tube flows downward from above.

【0014】[0014]

【作用】前記構成において、反応室内に吊下げられた多
数のセルチューブ内を流れる燃料ガスを下方から上方へ
流すと共に、当該セルチューブの外側を流れる空気を空
気供給管の上端部側から供給し、反応室上部側から下部
側へ流し、反応室内の均熱化を図る。
In the above structure, the fuel gas flowing in the many cell tubes suspended in the reaction chamber is caused to flow from the lower side to the upper side, and the air flowing outside the cell tubes is supplied from the upper end side of the air supply pipe. , Flow from the upper side of the reaction chamber to the lower side to achieve uniform heating in the reaction chamber.

【0015】[0015]

【実施例】以下、本発明の固体電解質型燃料電池の好適
な一実施例を図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the solid oxide fuel cell of the present invention will be described below with reference to the drawings.

【0016】同図に示すように、固体電解質型燃料電池
モジュールは全体が断熱材9で囲まれた内部上部が燃料
ヘッダー8と、その下方に設けられた反応室下部21と
の間を反応室7として形成されており、その下部側には
空気予熱器4が備えられている。
As shown in the figure, in the solid oxide fuel cell module, a reaction chamber is provided between a fuel header 8 having an inner upper portion surrounded by a heat insulating material 9 and a reaction chamber lower portion 21 provided therebelow. 7 and is provided with an air preheater 4 on the lower side thereof.

【0017】上記反応室7内には、円筒型有底のセルチ
ューブ1が燃料ヘッダー8に取付けられて多数配置され
ており、その内部に燃料供給管10が下端近傍まで挿入
され、図示しない燃料供給部より燃料供給管10内に燃
料を供給している。
In the reaction chamber 7, a large number of cylindrical bottomed cell tubes 1 are attached to a fuel header 8 and arranged therein. A fuel supply pipe 10 is inserted into the inside of the fuel header 8, and a fuel not shown is shown. Fuel is supplied from the supply unit into the fuel supply pipe 10.

【0018】また、空気予熱器4の上部には、スカート
状の空気を導入する開口端部を有し且つその内部にセラ
ミックス発泡体6を充填した空気供給管22が配設され
ており、この空気供給管22の上端部は開放されてお
り、反応室7の下面の上部近傍まで達している。
An air supply pipe 22 having a skirt-shaped open end for introducing air and having a ceramic foam 6 filled therein is disposed above the air preheater 4. The upper end of the air supply pipe 22 is open and reaches the vicinity of the upper part of the lower surface of the reaction chamber 7.

【0019】さらに、モジュールの下方には、空気入口
管12と空気出口管13とが各々接続されている。この
空気予熱器4内においては、空気供給路と空気排出路と
が別々の流路を形成したので、排空気3の流路と空気2
の流路とは混合しないで熱交換を行うものである。尚、
反応室7内で発電に供しなかった排空気3は空気予熱器
4の横方向より流入し、下方の空気出口管13より排出
される。
Further, an air inlet pipe 12 and an air outlet pipe 13 are connected below the module. In the air preheater 4, since the air supply passage and the air discharge passage form separate passages, the passage of the exhaust air 3 and the air 2 are formed.
The heat exchange is performed without being mixed with the flow channel of. still,
Exhaust air 3 that has not been used for power generation in the reaction chamber 7 flows in from the lateral direction of the air preheater 4 and is discharged from the air outlet pipe 13 below.

【0020】上記構成において、モジュール下部の空気
入口管12より供給された空気2は、空気予熱器4を通
り、さらに反応室7の中央部に配設した空気供給管22
を通った後、反応室7内へ供給される。この際、本実施
例では空気供給管22内には反応室7内からの空気2へ
の伝熱を促進するためにセラミックス発泡体6が充填さ
れている。尚、このセラミックス発泡体6は必ずしも充
填する必要はないが、充填した方が反応室4内の温度が
均一化するので好ましい。
In the above structure, the air 2 supplied from the air inlet pipe 12 at the lower part of the module passes through the air preheater 4 and further the air supply pipe 22 arranged in the central portion of the reaction chamber 7.
After passing through, it is supplied into the reaction chamber 7. At this time, in this embodiment, the air supply pipe 22 is filled with the ceramic foam 6 in order to promote heat transfer from the inside of the reaction chamber 7 to the air 2. The ceramic foam 6 is not necessarily filled, but it is preferable to fill it because the temperature in the reaction chamber 4 becomes uniform.

【0021】このセラミックス発泡体6が充填された空
気供給管22の上端開口部から出た空気2は反応室4の
上部側から下部側へ流れ、発電に用いられた後、空気予
熱器4を通り、モジュール外へ排出される。上記空気供
給管22の材質は、反応室7の熱(輻射熱、伝導熱)を
効率的に充填したセラミックス発泡体6に伝えるために
例えば石英管や熱伝導率の高い材料(例えば金属)を用
いなければよい。
The air 2 discharged from the upper end opening of the air supply pipe 22 filled with the ceramic foam 6 flows from the upper side to the lower side of the reaction chamber 4, is used for power generation, and then flows through the air preheater 4. And discharged to the outside of the module. As the material of the air supply pipe 22, for example, a quartz pipe or a material having a high thermal conductivity (for example, a metal) is used in order to efficiently transfer the heat (radiation heat, conduction heat) of the reaction chamber 7 to the filled ceramic foam body 6. Good if not.

【0022】よって、セルチューブ1内を下方から上方
に向って流れる燃料ガス10とその外側を上方から下方
に向って流れる加熱された空気とは対向して流れること
となり、供給される空気2は反応室7全体より空気への
効率的な吸熱ができるので、反応室7内温度の均一化が
図れる。尚、反応室7の下方部分において温度が下がる
場合には、反応室下部21内にも上記セラミックス発泡
体6を配し、反応室下部21から下方へ当該反応室7内
の輻射熱等が逃げるのを妨げるようにしてもよい。
Therefore, the fuel gas 10 flowing from the lower side to the upper side in the cell tube 1 and the heated air flowing from the outer side to the lower side from the upper side flow opposite to each other, and the supplied air 2 is supplied. Since heat can be efficiently absorbed into the air from the entire reaction chamber 7, the temperature inside the reaction chamber 7 can be made uniform. When the temperature of the lower part of the reaction chamber 7 drops, the ceramic foam 6 is also placed in the lower part 21 of the reaction chamber so that the radiant heat in the lower part of the reaction chamber 21 escapes downward. May be blocked.

【0023】[0023]

【発明の効果】以上、実施例と共に説明したように本発
明によれば空気を反応室の上部近傍へ加熱しながら供給
し、その後、セルチューブ内の燃料ガスと対向するよ
う、反応室下方側へ流れるので、反応室内温度の均一化
を図ることができる。また、モジュールが大容量化した
場合には、空気の均一分配のため空気供給管を複数にす
る必要があるが、このような場合においても反応室内部
の熱を効率的に吸熱できると共に反応室内部の温度上昇
も抑えることができる。よって、反応室内温度の上昇を
抑えるために空気流量を増やすために積極的に冷却しな
ければならないが、本発明の構造とすると空気流量を減
らすことが可能となり、その分補機動力を削減できる。
As described above with reference to the embodiments, according to the present invention, air is supplied to the vicinity of the upper portion of the reaction chamber while being heated, and thereafter, the lower side of the reaction chamber is placed so as to face the fuel gas in the cell tube. The temperature inside the reaction chamber can be made uniform because it flows into the chamber. Further, when the module has a large capacity, it is necessary to have a plurality of air supply pipes for uniform distribution of air. In such a case, the heat inside the reaction chamber can be efficiently absorbed and the reaction chamber can be efficiently absorbed. The internal temperature rise can also be suppressed. Therefore, in order to suppress the temperature rise in the reaction chamber, it is necessary to actively cool the air to increase the air flow rate. However, with the structure of the present invention, the air flow rate can be reduced, and the auxiliary machine power can be reduced accordingly. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る固体電解質型燃料電池の概略図
である。
FIG. 1 is a schematic view of a solid oxide fuel cell according to this embodiment.

【図2】従来技術に係る固体電解質型燃料電池の概略図
である。
FIG. 2 is a schematic diagram of a solid oxide fuel cell according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 セルチューブ 2 空気 3 排空気 4 空気予熱器 5 空気排出管 6 セラミックス発泡体 7 反応室 8 燃料ヘッダー 9 断熱材 10 燃料ガス 11 燃料供給管 12 空気入口管 13 空気出口管 21 反応室下部 22 空気供給管 1 Cell Tube 2 Air 3 Exhaust Air 4 Air Preheater 5 Air Discharge Pipe 6 Ceramic Foam 7 Reaction Chamber 8 Fuel Header 9 Insulation Material 10 Fuel Gas 11 Fuel Supply Pipe 12 Air Inlet Pipe 13 Air Outlet Pipe 21 Lower Reaction Chamber 22 Air Supply pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 モジュールの周囲が断熱材で囲まれてな
り、内部上部に配した燃料ヘッダーと、この燃料ヘッダ
ーの下方側に設けられた反応室下部を有する反応室と、
この反応室の下方側に形成した空気予熱器と、上記燃料
ヘッダーから反応室内に吊下げられ内部に燃料供給管を
配設した有底のセルチューブとを具備する固体電解質型
燃料電池において、上記燃料ヘッダーの下面近傍に上端
開口部を有すると共に、供給空気を下方から上方へ通過
させてなる空気供給管を反応室内に設けてなり、上記セ
ルチューブ内を流れる燃料ガスを下方から上方へ向って
流すと共に、当該セルチューブ外を流れる空気を上方か
ら下方へ向って流すことを特徴とする固体電解質型燃料
電池。
1. A fuel header having a module surrounded by a heat insulating material and disposed in an upper part of the inside, and a reaction chamber having a reaction chamber lower part provided below the fuel header.
A solid oxide fuel cell comprising an air preheater formed on the lower side of the reaction chamber and a bottomed cell tube suspended from the fuel header into the reaction chamber and provided with a fuel supply pipe inside, The fuel header has an upper end opening near the lower surface, and an air supply pipe, which allows the supply air to pass from the lower side to the upper side, is provided in the reaction chamber. The fuel gas flowing in the cell tube is directed from the lower side to the upper side. A solid oxide fuel cell, wherein the air flowing outside the cell tube is caused to flow downward from above.
【請求項2】 請求項1において、空気供給管内にセラ
ミックス発泡体を充填してなることを特徴とする固体電
解質型燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the air supply pipe is filled with a ceramic foam.
JP4341769A 1992-12-22 1992-12-22 Solid electrolyte type fuel cell Withdrawn JPH06196192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4341769A JPH06196192A (en) 1992-12-22 1992-12-22 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4341769A JPH06196192A (en) 1992-12-22 1992-12-22 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH06196192A true JPH06196192A (en) 1994-07-15

Family

ID=18348625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4341769A Withdrawn JPH06196192A (en) 1992-12-22 1992-12-22 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH06196192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006009264A1 (en) * 2004-07-21 2008-05-01 京セラ株式会社 Fuel cell system
JP2009158122A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell module and fuel cell device
JP2015052147A (en) * 2013-09-06 2015-03-19 株式会社東芝 Electrochemical apparatus and operation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006009264A1 (en) * 2004-07-21 2008-05-01 京セラ株式会社 Fuel cell system
JP5208417B2 (en) * 2004-07-21 2013-06-12 京セラ株式会社 Fuel cell system
JP2009158122A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell module and fuel cell device
JP2015052147A (en) * 2013-09-06 2015-03-19 株式会社東芝 Electrochemical apparatus and operation method thereof

Similar Documents

Publication Publication Date Title
JP3098813B2 (en) Method of dissipating heat from fuel cell and temperature balancing member
JPH02112798A (en) Melting furnace for treating waste and heating method thereof
US5032365A (en) Reaction apparatus
US5405712A (en) Solid oxide fuel cell generator
KR100286958B1 (en) Longitudinal Graphitization Device for Carbon Electrode Body
JP2005078859A (en) Fuel cell system
JPH06196192A (en) Solid electrolyte type fuel cell
US8030597B2 (en) Partition-type heating apparatus
KR100934716B1 (en) Reactor and Reaction Method
JPS61106401A (en) Reforming apparatus
KR101083633B1 (en) Temp-emplifier using mixture of temp-treated water
CN112880404B (en) Battery material roasting and cooling system under inert atmosphere and application method thereof
JPH06349513A (en) Cylindrical fuel cell module
JPS63128559A (en) Solid electrolyte fuel cell module
US8445154B2 (en) Header for supplying gas in fuel cell and fuel cell power system
JP2528836B2 (en) Cooled fuel reformer
JP3842352B2 (en) Fuel reformer
JP2601707B2 (en) Catalytic reactor
CN207849330U (en) A kind of steam boiler
JP3377646B2 (en) Solid oxide fuel cell module
JPS63126539A (en) Fuel reformer
CN221301931U (en) Graphitizing furnace with novel cooling system
CN215598108U (en) Reducing furnace for improving quality of silicon rod
CN118248900B (en) Gas circulation system and control method thereof
JP2000329475A (en) Heater furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307