JPH0516834B2 - - Google Patents

Info

Publication number
JPH0516834B2
JPH0516834B2 JP58017866A JP1786683A JPH0516834B2 JP H0516834 B2 JPH0516834 B2 JP H0516834B2 JP 58017866 A JP58017866 A JP 58017866A JP 1786683 A JP1786683 A JP 1786683A JP H0516834 B2 JPH0516834 B2 JP H0516834B2
Authority
JP
Japan
Prior art keywords
fermentation
culture solution
dextran
molecular weight
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58017866A
Other languages
Japanese (ja)
Other versions
JPS59143598A (en
Inventor
Kokichi Hanaoka
Eijiro Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58017866A priority Critical patent/JPS59143598A/en
Publication of JPS59143598A publication Critical patent/JPS59143598A/en
Publication of JPH0516834B2 publication Critical patent/JPH0516834B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多糖体の製造方法に関し、更に詳細に
は出発原料としてイネ科植物性繊維を用いた多糖
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a polysaccharide, and more particularly to a method for producing a polysaccharide using grass fiber as a starting material.

(従来技術) 従来、セルロースの糖化法として、セルロース
をセルラーゼによつて分解する酵素法が知られて
いる(特公昭57−3357号、特開昭57−146592号公
報参照)。
(Prior Art) Conventionally, as a method for saccharification of cellulose, an enzymatic method in which cellulose is decomposed by cellulase is known (see Japanese Patent Publication No. 57-3357 and Japanese Patent Application Laid-open No. 57-146592).

かかる酵素法によつて得られる最終製品は、グ
ルコース等の単糖体である。この様なグルコース
等の単糖体は、医薬品としても、栄養剤等に使用
されている。
The final product obtained by such an enzymatic method is a monosaccharide such as glucose. Such monosaccharides such as glucose are used as pharmaceuticals, nutritional supplements, and the like.

しかし、グルコース等の単糖体には、例えばB
型肝炎に対する治療結果は認められない。
However, for monosaccharides such as glucose, for example, B
No treatment results for type hepatitis were observed.

一方、グルコースが直鎖状に連結された多糖体
であるデキストランは、血漿増量剤或いは医薬製
剤として知られている。
On the other hand, dextran, which is a polysaccharide in which glucose is linked in a linear chain, is known as a plasma expander or a pharmaceutical preparation.

このため、デキストラン等の多糖体の薬効につ
て注目されつつある。
For this reason, the medicinal efficacy of polysaccharides such as dextran is attracting attention.

ところで、かかるデキストランの製造は、通
常、微生物を用いてシヨ糖から生産されている。
By the way, such dextran is usually produced from sucrose using microorganisms.

(発明が解決しようとする課題) この様にシヨ糖を出発原料とすることによつ
て、デキストランの生産効率を良好にできるため
である。
(Problem to be Solved by the Invention) This is because by using sucrose as a starting material in this way, the production efficiency of dextran can be improved.

他方、グルコースが直鎖状に連結されたイネワ
ラ等の植物繊維を形成する天然セルロースを加水
分解してデキストラン等の多糖体を製造すること
も考えられる。
On the other hand, it is also conceivable to produce polysaccharides such as dextran by hydrolyzing natural cellulose that forms plant fibers such as rice straw in which glucose is linked in a linear chain.

しかしながら、天然セルロースを出発原料とす
ると、一般的に天然セルロースは結晶性が高く加
水分解に対して高い抵抗性を示すため、予め植物
繊維を機械的、化学的、又は生物的な処理を施し
て加水分解を向上しておくことが必要である。
However, when natural cellulose is used as a starting material, natural cellulose is generally highly crystalline and highly resistant to hydrolysis. It is necessary to improve hydrolysis.

また、この様な処理を施したセルロースにセル
ラーゼ等の酵素を作用させると、特開昭57−
146592号公報等に記載されている如く、最終的に
はグルコース等の単糖体に転換されてしまうので
ある。
Furthermore, when cellulose treated in this way is treated with enzymes such as cellulase, JP-A-57-
As described in Publication No. 146592, etc., it is ultimately converted into monosaccharides such as glucose.

このため、従来、多糖体の製造方法として、天
然セルロースを出発原料としては採用されなかつ
たのである。
For this reason, natural cellulose has not been used as a starting material in conventional methods for producing polysaccharides.

そこで、本発明の目的は、従来において採用さ
れていなかつたイナワラ等のイネ科植物性繊維を
出発原料に用い、前処理を施すことなく多糖体を
製造する多糖体の製造方法を提供することにあ
る。
Therefore, an object of the present invention is to provide a method for producing polysaccharides, which uses fibers from grasses, such as rice straw, as a starting material, which have not been used in the past, to produce polysaccharides without pretreatment. be.

(課題を解決するための手段) 本発明者等は、前記目的を達成すべく検討を重
ねた結果、イネワラを培養液中に浸漬し、太陽光
を照射させつつ自然醗酵させたところ、多糖体を
容易に得ることができることを見出し、本発明に
到達した。
(Means for Solving the Problem) As a result of repeated studies to achieve the above object, the present inventors immersed rice straw in a culture solution and naturally fermented it while irradiating it with sunlight. The present invention was achieved based on the discovery that it is possible to easily obtain the following.

即ち、本発明は、イネ科植物性繊維をアンモニ
ア性窒素、硝酸性窒素、可溶性リン酸、及び可溶
性加里を含む培養液中に浸漬し、イネ科植物に付
着している醗酵菌の存在下で太陽光を照射しつつ
醗酵せしめ、次いで、前記培養液のPH値が7〜
9.2に到達したとき、前記醗酵を停止することを
特徴とする多糖体の製造方法にある。
That is, the present invention involves immersing grass fibers in a culture solution containing ammonia nitrogen, nitrate nitrogen, soluble phosphoric acid, and soluble potassium in the presence of fermentation bacteria attached to the grass plant. Fermentation is performed while irradiating sunlight, and then the pH value of the culture solution is 7 to 7.
The method for producing a polysaccharide is characterized in that the fermentation is stopped when a temperature of 9.2 is reached.

かかる構成の本発明において、イネ科植物性繊
維がイネワラであることが、得られる多糖体の収
量を多くできる。
In the present invention having such a configuration, if the grass fiber is rice straw, the yield of the obtained polysaccharide can be increased.

(作用) 本発明によれば、イネワラ等のイネ科植物性繊
維に前処理を施すことなく醗酵せしめ、培養液の
PH値が7〜9.2に到達したとき、醗酵を停止する
ことによつて、デキストランに換算して分子量が
70×103以上で且つ第2級アミン成分を含有する
水溶性多糖体を主成分とする生成物を得ることが
できる。
(Function) According to the present invention, fibers from grasses, such as rice straw, are fermented without pretreatment, and the culture solution is
When the pH value reaches 7 to 9.2, by stopping the fermentation, the molecular weight in terms of dextran decreases.
A product whose main component is a water-soluble polysaccharide having an amount of 70×10 3 or more and containing a secondary amine component can be obtained.

また、かかる醗酵を太陽光の照射下で進行させ
るため、イネ科植物性繊維に付着した雑菌等によ
つて、醗酵途中でのイネ科植物性繊維の腐敗発生
を防止できる。
Furthermore, since the fermentation proceeds under sunlight irradiation, it is possible to prevent the grass fibers from rotting during fermentation due to various bacteria adhering to the grass fibers.

しかし、得られた多糖体には、B型肝炎の治療
効果が認められる。
However, the obtained polysaccharide has a therapeutic effect on hepatitis B.

(発明の構成) 本発明の出発原料としては、イネ科植物性繊維
を使用する。かかるイネ科植物性繊維としては、
イネワラ、葦、ムギワラ等を使用することができ
る。特に、イネワラを出発原料として使用した場
合には、多糖体の収量を著しく向上できる。
(Structure of the Invention) As the starting material of the present invention, grass fiber is used. Such grass fibers include:
Rice straw, reed, wheat straw, etc. can be used. In particular, when rice straw is used as a starting material, the yield of polysaccharide can be significantly improved.

この様なイネ科植物性繊維は、培養液中に浸漬
される。
Such grass fibers are immersed in a culture solution.

この際に、イネ科植物性繊維を5〜30mm程度の
チツプ状とすることが、原料を容易に培養液中に
浸漬でき好ましい。
At this time, it is preferable to form the grass fiber into chips of about 5 to 30 mm, so that the raw material can be easily immersed in the culture solution.

また、使用される培養液中には、アンモニア性
窒素、硝酸性窒素、可溶性リン酸、及び可溶性加
里が含有されている。
The culture solution used also contains ammonia nitrogen, nitrate nitrogen, soluble phosphoric acid, and soluble potassium.

かかる培養液としては、アンモニア性窒素1.0
重量%、硝酸性窒素5.5重量%、可溶性リン酸6.0
重量%、及び可溶性加里19.0重量%から成る基礎
培養液が0.01〜0.5重量%混合されているものが
好ましい。
Such a culture solution contains ammonia nitrogen 1.0
wt%, nitrate nitrogen 5.5 wt%, soluble phosphoric acid 6.0
% by weight, and 0.01 to 0.5% by weight of a basal culture solution consisting of 19.0% by weight of soluble potassium.

前記培養液とイネ科植物性繊維とは、浸漬比
15:1〜60:1の割合で浸漬して醗酵に供するこ
とが良好な醗酵を行う上で好ましい。
The immersion ratio between the culture solution and the grass fiber is
For good fermentation, it is preferable to immerse and ferment at a ratio of 15:1 to 60:1.

本発明においては、培養液に浸漬したイネ科植
物性繊維に太陽光を照射しつつ醗酵する。
In the present invention, fermentation is carried out while irradiating sunlight onto grass fibers immersed in a culture solution.

かかる醗酵を、太陽光を透過する材料、例えば
透明ビニールシートの蓋等で密封可能に形成され
た培養槽中で行うことが、醗酵中の雑菌混入を防
止でき好ましい。
It is preferable to carry out such fermentation in a culture tank that is sealed with a material that transmits sunlight, such as a lid made of a transparent vinyl sheet, to prevent contamination with bacteria during fermentation.

ここで、太陽光を照射することなくイネ科植物
性繊維を醗酵せんとすると、イネ科植物性繊維自
体に付着していた雑菌によつて腐敗が進行し、最
終目的とする多糖体を得ることができない。
If you try to ferment the grass fiber without exposing it to sunlight, the bacteria attached to the grass fiber will cause it to rot, making it difficult to obtain the final target polysaccharide. I can't.

この様に、本発明においては、太陽光の照射を
必要とするため、培養槽としては浅底で且つ広口
の容器を使用することが好ましい。
As described above, since the present invention requires sunlight irradiation, it is preferable to use a container with a shallow bottom and a wide mouth as the culture tank.

本発明においては、所定の醗酵が行われている
か否かを判断及び醗酵の停止時期の判断は、培養
液のPH値をチエツクすることによつて容易に行う
ことができる。
In the present invention, it is possible to easily determine whether or not the prescribed fermentation is being performed and to determine when to stop the fermentation by checking the pH value of the culture solution.

つまり、培養液の初期Hz値は弱アルカリ性であ
るが、所定の醗酵が行われている場合、培養液の
PH値が急激に低下してPH4程度の強酸性を呈した
後、徐々にPH値が上昇する。
In other words, the initial Hz value of the culture solution is slightly alkaline, but if the specified fermentation is carried out, the culture solution's Hz value will be slightly alkaline.
After the PH value suddenly decreases and becomes strongly acidic at about PH4, the PH value gradually increases.

そして、培養液のPH値が7〜9.2に到達したと
き、醗酵を停止する。
Then, when the pH value of the culture solution reaches 7 to 9.2, fermentation is stopped.

ここで、培養液のPH値が7未満である場合、或
いは9.2を越えた場合には、多糖体の収量が減少
する。イネ科植物性繊維を形成するセルロースの
加水分解程度が不充分、或いは過度に進行したこ
とによるものと推察される。
Here, if the pH value of the culture solution is less than 7 or exceeds 9.2, the yield of polysaccharide will decrease. This is presumed to be due to insufficient or excessive hydrolysis of cellulose, which forms the grass fiber.

この様な本発明の製造方法において、醗酵に要
する醗酵時間は、温度等によつて異なるが略120
〜240日である。
In such a production method of the present invention, the fermentation time required for fermentation varies depending on the temperature etc., but is about 120 minutes.
~240 days.

かかる醗酵時間の短縮は、培養液中に原生動
物、好ましくはモナス類を投入し、混合物の醗酵
温度を10〜30℃に保つことによつて達成すること
ができる。原生動物或いはモナス類が増殖してセ
ルロースの加水分解が促進されるためと考えられ
る。
Such shortening of the fermentation time can be achieved by introducing protozoa, preferably Monas, into the culture solution and maintaining the fermentation temperature of the mixture at 10 to 30°C. This is thought to be due to the proliferation of protozoa or Monas, which promotes cellulose hydrolysis.

ここで、「モナス類」とは、土中や水たまりに
生息する枯草菌やプソイドモナス等の醗酵菌の総
称であり、「BERGY′S MANUAL OF
DETERMINATIVE BACTERIOLOGY 8TH
EDITION」の第1195頁に記載されている
「MONAS」も含まれる。
Here, "monas" is a general term for fermentation bacteria such as Bacillus subtilis and pseudomonas that live in the soil and puddles.
DETERMINATIVE BACTERIOLOGY 8TH
"MONAS" listed on page 1195 of "EDITION" is also included.

尚、この様な枯草菌やプソイドモナス等の醗酵
菌は、通常、イネワラ等のイネ科植物に付着して
おり、モナス類を添加しなくても所定の醗光を行
うことができる。
In addition, such fermenting bacteria such as Bacillus subtilis and Pseudomonas are usually attached to gramineous plants such as rice straw, and it is possible to carry out the prescribed fermentation without adding Monas.

醗酵が終了して得られた醗酵物は、残留繊維成
分を圧搾濾過して除去し、得られた瀘液を遠心分
離によつて沈殿物を除去した後、更に限外濾過を
行い不純物としての金属イオン取り除く。
After completion of the fermentation, the fermented product obtained is filtered to remove residual fiber components, and the resulting filtrate is centrifuged to remove precipitates, and then ultrafiltrated to remove impurities. Removes metal ions.

この様にして得られた精製物は、高温高圧滅菌
した後に、保存される。
The purified product thus obtained is stored after being sterilized at high temperature and high pressure.

かかる精製物は、水に可溶であるが、エタノー
ル及びメタノールに不溶である。
Such purified products are soluble in water but insoluble in ethanol and methanol.

また、精製物の分子量を高速液クロマトグラフ
イーによつて測定すると、分子量70×103のデキ
ストラン及び分子量500×103のデキストランの各
ピークが発現する位置に、大きなピークが発現す
る。
Furthermore, when the molecular weight of the purified product is measured by high performance liquid chromatography, large peaks appear at the positions where the respective peaks of dextran with a molecular weight of 70×10 3 and dextran with a molecular weight of 500×10 3 are expressed.

更に、前記精製物の赤外吸収スペクトルを測定
すると、1560cm-1近傍及び3350cm-1近傍に出現す
る第2級アミン成分特有の吸収も見られる。
Furthermore, when the infrared absorption spectrum of the purified product is measured, absorptions peculiar to the secondary amine component appearing near 1560 cm -1 and 3350 cm -1 are also observed.

従つて、以上の分析結果から、本発明で得られ
た生成物は、第2級アミン成分を含有するデキス
トラン換算で分子量70×103以上の水溶性多糖体
を主成分とするものである。
Therefore, from the above analysis results, the product obtained in the present invention is mainly composed of a water-soluble polysaccharide containing a secondary amine component and having a molecular weight of 70×10 3 or more in terms of dextran.

また、かかる本発明によつて得られた生成物の
臨床実験によれば、B型肝炎に対する治療効果を
呈することが判明した。
Further, according to clinical experiments of the product obtained according to the present invention, it was found that it exhibits a therapeutic effect on hepatitis B.

尚、醗酵後の残留繊維は、繊維中のリグニン成
分がかなり分解されており、前記残留繊維を飼料
や肥料に利用することができる。
In addition, in the residual fiber after fermentation, the lignin component in the fiber has been considerably decomposed, and the residual fiber can be used as feed or fertilizer.

(実施例) 本発明を実施例によつて更に一層詳細に説明す
る。
(Example) The present invention will be explained in further detail with reference to Examples.

実施例 1 培養槽中に、アンモニア性窒素1.0重量%、硝
酸性窒素5.5重量%、可溶性リン酸6.0重量%、及
び可溶性加里19.0重量%から成る基礎培養液が
0.1重量%配合された培養液1000gを注入し、更
にモナス液4gを加えて均一に混合する。
Example 1 A basal culture solution consisting of 1.0% by weight of ammonia nitrogen, 5.5% by weight of nitrate nitrogen, 6.0% by weight of soluble phosphoric acid, and 19.0% by weight of soluble potassium was placed in a culture tank.
Inject 1000 g of culture solution containing 0.1% by weight, add 4 g of Monas liquid, and mix uniformly.

尚、本実施例において使用した「モナス液」と
は、枯草菌やプソイドモナス等の醗酵菌を多量に
含む液であり、後述する様に、醗酵終了後に得ら
れた醗酵物を濾過した際に、得られる瀘液の一部
を使用することができる。
The "Monas liquid" used in this example is a liquid containing a large amount of fermenting bacteria such as Bacillus subtilis and Pseudomonas, and as described later, when the fermented product obtained after the completion of fermentation is filtered, A portion of the resulting filtrate can be used.

次いで、長さ15mm程度に切断された乾燥葦チツ
プ40gを培養液中に加え充分に浸漬した後、培養
槽を透明ビニールシートで蓋をして密閉状態とす
る。
Next, 40 g of dried reed chips cut to a length of about 15 mm are added to the culture solution and thoroughly immersed, and then the culture tank is sealed with a transparent vinyl sheet.

かかる培養槽を屋外に置き、太陽光が透明ビニ
ールシートを透過して培養槽内に入射可能の状態
とし、10〜30℃の範囲で自然醗酵させた。
The culture tank was placed outdoors to allow sunlight to pass through the transparent vinyl sheet and enter the culture tank, and natural fermentation was carried out at a temperature in the range of 10 to 30°C.

醗酵中の培養液のPH値を測定し、その結果を第
1図に示す。
The PH value of the culture solution during fermentation was measured, and the results are shown in Figure 1.

第1図から明らかな様に、醗酵開始時には弱ア
ルカリ性を示していた培養液は、醗酵開始から約
20日程経過すると、PH値が約4程度に急激に低下
した後、緩やかに上昇する。培養液のPH値は、醗
酵開始から約192日目に約8.7となり醗光を終了し
た。
As is clear from Figure 1, the culture solution, which was slightly alkaline at the start of the fermentation, became approximately alkaline after the start of the fermentation.
After 20 days, the pH value drops rapidly to about 4, and then rises slowly. The pH value of the culture solution reached approximately 8.7 on the 192nd day from the start of fermentation, and fermentation was terminated.

得られた醗酵物は、繊維分を圧搾濾過して除去
し、得られた瀘液を遠心分離によつて沈澱物を除
去した後、限外濾過を行い不純物としての金属イ
オンを取り除いた。
The obtained fermented product was filtered to remove fibers, and the resulting filtrate was centrifuged to remove precipitates, and then ultrafiltrated to remove metal ions as impurities.

更に、得られた生成物を、圧力1.2Kg/cm2、温
度121℃で60分間の高温高圧滅菌した。
Further, the obtained product was sterilized under high temperature and high pressure at a pressure of 1.2 Kg/cm 2 and a temperature of 121° C. for 60 minutes.

この様にして得られた精製物は、水に可溶であ
るが、エタノール及びメタノールに不溶である。
The purified product thus obtained is soluble in water but insoluble in ethanol and methanol.

また、得られた精製物の分子量を高速液クロマ
トグラフイー(日立635型)を用いて下記条件で
測定し、測定したチヤートを第2図に示す。
Further, the molecular weight of the obtained purified product was measured using high performance liquid chromatography (Hitachi Model 635) under the following conditions, and the measured chart is shown in FIG.

Colum Shodex lonpak s′800p+s′804+s′801 Sampl 10μ Detector:RI4k×10-5RLUFS′ Pressure:25Kg/cm2 Eluent:H2O Flow Rate:1.0ml/min Chart speed:5mm/min Colom temp.:60℃RT 第2図から明らかなように、得られた精製物
は、分子量70×103のデキストラン及び分子量500
×103のデキストランの各ピークが発現する位置
に、主たるピークが発現するものである。
Colum Shodex lonpak s′800p+s′804+s′801 Sample 10μ Detector: RI4k×10 -5 RLUFS′ Pressure: 25Kg/cm 2 Eluent: H 2 O Flow Rate: 1.0ml/min Chart speed: 5mm/min Colom temp.: 60 ℃RT As is clear from Figure 2, the obtained purified product contains dextran with a molecular weight of 70 × 10 3 and dextran with a molecular weight of 500
The main peak is expressed at the position where each peak of ×10 3 dextran is expressed.

従つて、本実施例で得られた精製物は、デキス
トラン換算で分子量70×103以上の多糖体を主成
分とするものである。
Therefore, the purified product obtained in this example mainly contains a polysaccharide having a molecular weight of 70×10 3 or more in terms of dextran.

尚、第2図において、分子量70×103のデキス
トラン又は分子量500×103のデキストランの各ピ
ークを、Dextan70K又はDextan500Kとして示
す。
In FIG. 2, each peak of dextran with a molecular weight of 70×10 3 or dextran with a molecular weight of 500×10 3 is shown as Dextan70K or Dextan500K.

比較例 1 実施例1において、培養槽の蓋として使用した
透明ビニールシートに代えて太陽光が透過しない
プラスチツク製の蓋を使用して培養槽を密閉状態
とした他は、実施例1と同様に行つた。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that instead of the transparent vinyl sheet used as the lid of the culture tank in Example 1, a plastic lid that does not transmit sunlight was used to seal the culture tank. I went.

培養液のPH値の低下が少なく醗酵状態が不充分
で且つ黴が発生してきたため、以後の実験を中止
した。
The pH value of the culture solution did not decrease much, the fermentation state was insufficient, and mold was generated, so the subsequent experiments were discontinued.

実施例 2 実施例1において、乾燥葦に代えて乾燥ムギワ
ラとした他は、実施例1と同様にして醗酵を行つ
た。
Example 2 Fermentation was carried out in the same manner as in Example 1, except that dried wheat straw was used instead of dried reeds.

本実施例において、醗酵の停止は醗酵開始日か
ら190日目であつて、培養液のPH値は9.0であつ
た。
In this example, fermentation was stopped on the 190th day from the start of fermentation, and the pH value of the culture solution was 9.0.

この間の培養液のPH値の変化は、第3図に示す
様に、弱アルカリ製の培養液のPHが4、2程度ま
で急激に低下した後、PH値が9.0まで徐々に上昇
した。
As shown in FIG. 3, the pH value of the culture solution during this period rapidly decreased to about 4.2, and then gradually increased to 9.0.

得られた醗酵物は、実施例1と同様の方法で精
製した後、実施例1と同一条件で高速液クロマト
グラフイー(日立635型)によつて測定した。測
定したチヤートを第4図に示す。
The obtained fermented product was purified in the same manner as in Example 1, and then measured by high performance liquid chromatography (Hitachi Model 635) under the same conditions as in Example 1. The measured chart is shown in Figure 4.

本実施例においても、得られた精製物は、分子
量70×103のデキストラン及び分子量500×103
デキストランの各ピークが発現する位置に、主た
るピークが発現するものである。
In this example as well, the obtained purified product has a main peak expressed at the position where the respective peaks of dextran with a molecular weight of 70×10 3 and dextran with a molecular weight of 500×10 3 are expressed.

尚、本実施例で得られた精製物は、水に可溶で
あるが、エタノール及びメタノールに不溶であつ
た。
The purified product obtained in this example was soluble in water, but insoluble in ethanol and methanol.

実施例 3 実施例1において、乾燥葦に代えて乾燥イネワ
ラを用いた他は、実施例1と同様に醗酵を行つ
た。
Example 3 Fermentation was carried out in the same manner as in Example 1, except that dried rice straw was used instead of dried reeds.

かかる醗酵は、醗酵開始日から190日目後に、
培養液のPH値が9.2に到達した時点で停止した。
Such fermentation is carried out after 190 days from the start date of fermentation.
The culture was stopped when the pH value of the culture solution reached 9.2.

醗酵中の培養液のPH値は、第5図に示す様に、
一旦急激に低下した後、PH値が9.2まで徐々に上
昇した。
The pH value of the culture solution during fermentation is as shown in Figure 5.
After a sudden drop, the PH value gradually increased to 9.2.

また、得られた培養物も実施例1と同様にして
精製し、実施例1と同様の条件で高速液クロマト
グラフイー(日立635型)によつて測定した。測
定したチヤートを第6図に示す。
The obtained culture was also purified in the same manner as in Example 1, and measured by high performance liquid chromatography (Hitachi Model 635) under the same conditions as in Example 1. The measured chart is shown in Figure 6.

第6図に示す様に、本実施例においても、得ら
れた醗酵物は、分子量70×103のデキストラン及
び分子量500×103のデキストランの各ピークが発
現する位置に、主たるピークが発現するものであ
る。
As shown in FIG. 6, in this example as well, the obtained fermentation product had a main peak expressed at the position where the respective peaks of dextran with a molecular weight of 70×10 3 and dextran with a molecular weight of 500×10 3 were expressed. It is something.

しかも、第6図に示す各デキストランに相当す
るピーク高さが、第2図及び第4図に示す実施例
1及び実施例2の各エキストランに相当するピー
ク高さに比較して高い。
Moreover, the peak heights corresponding to each dextran shown in FIG. 6 are higher than the peak heights corresponding to each extratran of Example 1 and Example 2 shown in FIGS. 2 and 4.

このことから、原料としてイネワラを使用する
ことによつて、分子量70×103のデキストラン及
び分子量500×103のデキストランに相当する多糖
体の収量を多くすることができる。
From this, by using rice straw as a raw material, it is possible to increase the yield of dextran with a molecular weight of 70×10 3 and a polysaccharide corresponding to dextran with a molecular weight of 500×10 3 .

更に、高速液クロマトグラフイーで測定した試
料について、赤外吸収スペクトルの測定し、その
結果を第11図に示す。
Furthermore, the infrared absorption spectrum of the sample measured by high performance liquid chromatography was measured, and the results are shown in FIG.

第11図において、1560cm-1近傍及び3350cm-1
近傍に第2級アミン成分特有の吸収が見られ、得
られた多糖体には、第2級アミン成分が含まれて
いる。
In Figure 11, near 1560 cm -1 and 3350 cm -1
Absorption peculiar to the secondary amine component is observed in the vicinity, and the obtained polysaccharide contains the secondary amine component.

実施例 4 実施例3で得られた培養物の精製物を用いて臨
床実験を行つた。
Example 4 A clinical experiment was conducted using the purified culture obtained in Example 3.

臨床実験は、B型肝炎の50才の男性患者に、実
施例3で得られた精製物の100mgを湯抽出して約
1とした水溶液を、1日3回に分けて毎日飲用
させることによつて投与した。
In the clinical experiment, a 50-year-old male patient with hepatitis B was given an aqueous solution of 100 mg of the purified product obtained in Example 3 extracted with hot water to a concentration of about 1, divided into three doses per day. It was then administered.

実験開始後の患者の血液検査等の結果を第7〜
10図に示す。
After the start of the experiment, the results of the patient's blood tests, etc.
It is shown in Figure 10.

第7〜10図から明らかな様に、実施例3で得
られた精製物の水溶液の飲用を開始した後、患者
の肝炎の症状が急激に改善されている。
As is clear from FIGS. 7 to 10, after the patient started drinking the aqueous solution of the purified product obtained in Example 3, the symptoms of hepatitis of the patient were rapidly improved.

この患者は、何等の副作用を併発することな
く、通常、4ケ月以上の入院を要するところを50
日で退院できた。
This patient underwent treatment for 50 days, which would normally require hospitalization for more than 4 months, without any side effects.
I was discharged from the hospital within a day.

実施例 5 実施例3で得られた培養物の精製物について、
ddy系雄マウスを用いて実験した。先ず、10匹の
マウスの各々に対して100mg/Kgの前記精製物を
連続投与した後、肝炎を発症させるカーボンテト
ラクロライド20μ/Kgを各マウス腹部皮下に注
射し、24時間後の血液中のGOT、GPT値を検査
して肝炎の発症程度を見た。
Example 5 Regarding the purified culture product obtained in Example 3,
Experiments were conducted using ddy male mice. First, 100 mg/Kg of the purified product was continuously administered to each of 10 mice, and then 20 μ/Kg of carbon tetrachloride, which causes hepatitis, was injected subcutaneously into the abdomen of each mouse. GOT and GPT values were tested to determine the degree of hepatitis.

比較として、肝炎用医薬として知られているL
−メチオニン100mg/Kgを同様にして6日間連続
投与した水準群と、何等の薬品を投与しなかつた
水準群とに、同様にカーボンテトラクロライド
20μ/Kgをマウス腹部皮下に注射し、同様にし
て24時間後の血液中のGOT、GPT値を検査し
た。
For comparison, L, which is known as a drug for hepatitis,
- In the same way, carbon tetrachloride was administered to a level group in which 100 mg/Kg of methionine was administered continuously for 6 days, and to a level group in which no drugs were administered.
20μ/Kg was injected subcutaneously into the mouse abdomen, and GOT and GPT values in the blood were examined in the same manner 24 hours later.

検査結果を第12図に示す。第12図におい
て、血液中のGOT、GPT値をS−GPTとして現
している。
The test results are shown in Figure 12. In FIG. 12, GOT and GPT values in blood are expressed as S-GPT.

第12図から明らかな様に、実施例3で得られ
た培養物の精製物が予め投与された水準群Aは、
何等の薬品が投与されなかつた水準群Cに対して
は勿論のこと、L−メチオニンが予め投与された
水準群Bに比較しても、肝炎の発症程度が軽かつ
た。
As is clear from FIG. 12, the level group A to which the purified culture product obtained in Example 3 was administered in advance,
The degree of onset of hepatitis was milder than in level group C, in which no drug was administered, as well as in level group B, in which L-methionine was administered in advance.

比較例 2 実施例3において、PH値が9.2に到達した後、
更に酵光が続行してPH値が9.8になつた時点で醗
酵を停止した。
Comparative Example 2 In Example 3, after the PH value reached 9.2,
The fermentation was further continued and the fermentation was stopped when the pH value reached 9.8.

得られた醗酵物を実施例3と同様にして精製
し、高速液クロマトグラフイーによつて分子量を
測定したところ、グルコースに相当するピークが
著しく大となり、分子量70×103のデキストラン
及び分子量500×103のデキストランに相当するピ
ークが著しく小さくなつていることが判つてた。
このため、以後の実験を中止した。
When the obtained fermented product was purified in the same manner as in Example 3 and its molecular weight was measured by high performance liquid chromatography, the peak corresponding to glucose was significantly large, indicating that dextran with a molecular weight of 70×10 3 and dextran with a molecular weight of 500 It was found that the peak corresponding to ×10 3 dextran had become significantly smaller.
For this reason, further experiments were discontinued.

実施例 6 実施例1において、乾燥葦チツプに代えて乾燥
イナワラチツプを用い、且つモナス液を添加しな
かつた他は、実施例1と同様の条件下で自然醗酵
させた。
Example 6 Natural fermentation was carried out under the same conditions as in Example 1, except that dried rice straw chips were used instead of dried reed chips and Monas liquid was not added.

醗酵中の培養液PH値は、乾燥イナワラチツプを
用いて醗酵させた実施例3と同様な変化を示し、
培養液PH値が9に到達した時点で醗酵を停止し
た。
The pH value of the culture solution during fermentation showed the same change as in Example 3, in which dry rice chips were used for fermentation.
Fermentation was stopped when the pH value of the culture solution reached 9.

但し、本実施例ではモナス液を添加しない自然
醗酵であるため、培養日数が実施例3の培養日数
よりも約20日程長くなつた。
However, since this example involved natural fermentation without adding Monas liquid, the number of culture days was approximately 20 days longer than the number of culture days in Example 3.

得られた培養物を実施例1と同様にして精製
し、実施例1と同様の条件で高速液クロマトグラ
フイーによつて測定した。その結果、実施例3の
培養物の高速液クロマトグラフイーチヤート(図
6)と同様に、分子量70×103のデキストラン及
び分子量500×103のデキストランの各ピークが発
現する位置に、主たるピークが発現することを確
認した。
The obtained culture was purified in the same manner as in Example 1, and measured by high performance liquid chromatography under the same conditions as in Example 1. As a result, similar to the high-performance liquid chromatography chart (Figure 6) of the culture of Example 3, a main peak was found at the position where the peaks of dextran with a molecular weight of 70 x 10 3 and dextran with a molecular weight of 500 x 10 3 were expressed. was confirmed to occur.

比較例 3 実施例3において、PH値が6.5に到達した時点
で醗酵を停止し、得られた醗酵物を実施例3と同
様にして精製して高速液クロマトグラフイーによ
つて分子量を測定した。
Comparative Example 3 In Example 3, the fermentation was stopped when the pH value reached 6.5, and the obtained fermented product was purified in the same manner as in Example 3, and the molecular weight was measured by high performance liquid chromatography. .

グリコースに相当するピーク、分子量70×103
のデキストラン、及び分子量500×103のデキスト
ランに相当する各ピークが著しく小さく、収量が
少ないことが判明した。このため、以後の実験を
中止した。
Peak corresponding to glycose, molecular weight 70×10 3
It was found that the peaks corresponding to dextran with a molecular weight of 500×10 3 and dextran with a molecular weight of 500×10 3 were extremely small, and the yield was low. For this reason, further experiments were discontinued.

(発明の効果) 本発明によつて、デキストランに換算して分子
量が70×103以上で且つ第2級アミン成分を含有
する水溶性多糖体を、イネ科植物性繊維に前処理
を施すことなく得られることができる。
(Effects of the Invention) According to the present invention, grass fiber is pretreated with a water-soluble polysaccharide having a molecular weight of 70×10 3 or more in terms of dextran and containing a secondary amine component. You can get it without.

しかも、得られた多糖体は、B型肝炎の治療効
果を奏し、B型肝炎の治療に使用可能である。
Furthermore, the obtained polysaccharide exhibits a therapeutic effect on hepatitis B and can be used for the treatment of hepatitis B.

また、本発明によつて得られた多糖体は、天然
原料から醗酵によつて得られたものでり、味噌、
パン、菓子等の食品添加物として健康食品にも利
用可能である。
In addition, the polysaccharide obtained by the present invention is obtained by fermentation from natural raw materials, and is used in miso, miso,
It can also be used in health foods as a food additive for bread, confectionery, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の醗酵状況を示す培養液のPH
値の推移グラフ、第2図は実施例1で得られた培
養物の高速液クロマトグラフイーのチヤート、第
3図は実施例2の醗酵状況を示す培養液のPH値の
推移グラフ、第4図は実施例2で得られた培養物
の高速液クロマトグラフイーのチヤート、第5図
は実施例3の醗酵状況を示す培養液のPH値の推移
グラフ、第6図は実施例3で得られた培養物の高
速液クロマトグラフイーのチヤート、第7図は実
施例4における臨床実験において、患者のGPT、
GOTの推移を示すグラフ、第8図は実施例4の
臨床実験における患者のLAP、γ−GTPの推移
を示すグラフ、第9図は実施例4の臨床実験にお
ける患者の黄疸指数、血小板数の推移を示すグラ
フ、第10図は実施例4の臨床実験における患者
のヘマトリクツト値、ヘモグロビン量、赤血球数
の推移を示すグラフ、第11図は実施例3で得ら
れた培養物の赤外吸収スペクトルのチヤート、第
12図は実施例5の動物実験の結果を示すグラフ
である。
Figure 1 shows the pH of the culture solution showing the fermentation status of Example 1.
Figure 2 is a chart of high performance liquid chromatography of the culture obtained in Example 1. Figure 3 is a graph of the pH value of the culture solution showing the fermentation status of Example 2. The figure is a chart of high-performance liquid chromatography of the culture obtained in Example 2, Figure 5 is a graph of the change in PH value of the culture solution showing the fermentation status of Example 3, and Figure 6 is a chart of the pH value of the culture solution obtained in Example 3. Figure 7 shows a chart of high-performance liquid chromatography of the culture obtained in the clinical experiment in Example 4.
Graph showing changes in GOT, Figure 8 is a graph showing changes in LAP and γ-GTP of patients in the clinical experiment of Example 4, Figure 9 is a graph showing changes in jaundice index and platelet count of patients in the clinical experiment of Example 4. Figure 10 is a graph showing the changes in the patient's hematric value, hemoglobin amount, and red blood cell count in the clinical experiment of Example 4. Figure 11 is the infrared absorption spectrum of the culture obtained in Example 3. FIG. 12 is a graph showing the results of the animal experiment of Example 5.

Claims (1)

【特許請求の範囲】 1 イネ科植物性繊維をアンモニア性窒素、硝酸
性窒素、可溶性リン酸、及び可溶性加里を含む培
養液中に浸漬し、イネ科植物に付着している醗酵
菌の存在下で太陽光を照射しつつ醗酵せしめ、 次いで、前記培養液のPH値が7〜9.2に到達し
たとき、前記醗酵を停止することを特徴とする多
糖体の製造方法。 2 イネ科植物性繊維がイネワラである特許請求
の範囲第1項記載の多糖体の製造方法。
[Claims] 1. Graminee plant fibers are immersed in a culture solution containing ammonia nitrogen, nitrate nitrogen, soluble phosphoric acid, and soluble potassium in the presence of fermentation bacteria attached to the grasses. 1. A method for producing a polysaccharide, comprising: fermenting the culture solution while irradiating it with sunlight; and then stopping the fermentation when the pH value of the culture solution reaches 7 to 9.2. 2. The method for producing a polysaccharide according to claim 1, wherein the grass fiber is rice straw.
JP58017866A 1983-02-04 1983-02-04 Production of polysaccharide Granted JPS59143598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017866A JPS59143598A (en) 1983-02-04 1983-02-04 Production of polysaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017866A JPS59143598A (en) 1983-02-04 1983-02-04 Production of polysaccharide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4098853A Division JPH0686481B2 (en) 1992-03-25 1992-03-25 Polysaccharide

Publications (2)

Publication Number Publication Date
JPS59143598A JPS59143598A (en) 1984-08-17
JPH0516834B2 true JPH0516834B2 (en) 1993-03-05

Family

ID=11955580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017866A Granted JPS59143598A (en) 1983-02-04 1983-02-04 Production of polysaccharide

Country Status (1)

Country Link
JP (1) JPS59143598A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180108B1 (en) * 2008-04-15 2008-11-12 株式会社インテリジェントアセットマネジメント Method for producing fermentation product and fermentation product
CN107823524A (en) * 2017-11-15 2018-03-23 广西博白县华春福家庭农场 A kind of Chinese medicine composition for treating hepatitis B and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573357A (en) * 1980-06-06 1982-01-08 Jeol Ltd Objective lens for scanning electron microscope
JPS57146592A (en) * 1981-03-09 1982-09-10 Agency Of Ind Science & Technol Saccharifying method of cellulose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573357A (en) * 1980-06-06 1982-01-08 Jeol Ltd Objective lens for scanning electron microscope
JPS57146592A (en) * 1981-03-09 1982-09-10 Agency Of Ind Science & Technol Saccharifying method of cellulose

Also Published As

Publication number Publication date
JPS59143598A (en) 1984-08-17

Similar Documents

Publication Publication Date Title
EP0417254B1 (en) Production of beta-1,3-glucan in algae
CN112430546B (en) Heterotrophic fermentation preparation method and application of chlamydomonas reinhardtii and chlamydomonas reinhardtii powder
CN102344872B (en) Method for preparing sweet potato yellow wine containing anthocyanidin
KR100344755B1 (en) Immunopotentiator and its manufacturing method
JPS6237015B2 (en)
CN1027083C (en) Technology for preparing nutritive liquor with solid culture of Golden mushroom
JPH0516834B2 (en)
WO1995018626A1 (en) A tonic drug made from basidiomycetes, algae, chinese herbal medicine and the method thereof
JPH05310802A (en) Polysaccharide
CN115589888A (en) Organic selenium-rich quality-improving cultivation method for paper mulberry and application thereof
US6465218B1 (en) Biologically active substance and process of preparing the same
JPH01180832A (en) Hot-water extract from fresh-water chlorella with high iodine content, production and use thereof
CN1129435C (en) Germanium yeast human diet nutritional supplement
KR20000058843A (en) The method for manufacturing of health drink
KR0149831B1 (en) Health food by complex enzyme and processing method of it
KR102191161B1 (en) The Mixture for cultivation of Fragrant Mushroom for increased cell growth speed by invigoration of giant mitochondria
JPS60224497A (en) Production of highly converted syrup
KR880002189B1 (en) Process for producing alcohol from non boiling starch using enzyme
CN107190043B (en) Moringa oleifera brown sugar and preparation method thereof
CN1115244A (en) Method for prepn. of multifunctional health-care medicine by using lindera glauca fruit as main raw material
RU2007461C1 (en) Method of producing sugars of cellulose-containing materials
Khairani et al. The effect of fermentation temperature and the crude extract concentration of bitter leaf (Andrographis Paniculata) on inhibition of α-glucosidase enzyme activity for antidiabetic drugs
CN105779257A (en) Lotus root and honey vinegar capable of beautifying skin and preparation method thereof
CN115413531A (en) Culture material for culturing needle mushrooms and needle mushroom culturing method
Farnworth et al. Reactivity of the Sulphur Linkage in Wool