JPH0515545B2 - - Google Patents

Info

Publication number
JPH0515545B2
JPH0515545B2 JP63105435A JP10543588A JPH0515545B2 JP H0515545 B2 JPH0515545 B2 JP H0515545B2 JP 63105435 A JP63105435 A JP 63105435A JP 10543588 A JP10543588 A JP 10543588A JP H0515545 B2 JPH0515545 B2 JP H0515545B2
Authority
JP
Japan
Prior art keywords
reinforcing layer
steel
strength
flexible
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63105435A
Other languages
Japanese (ja)
Other versions
JPH01278339A (en
Inventor
Tadashi Fuku
Tsuneo Okamoto
Yasuhiro Goshima
Takaaki Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10543588A priority Critical patent/JPH01278339A/en
Publication of JPH01278339A publication Critical patent/JPH01278339A/en
Publication of JPH0515545B2 publication Critical patent/JPH0515545B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガス、油、水等の流体を輸送するの
に用いられる可撓性流体輸送管に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to flexible fluid transport pipes used to transport fluids such as gas, oil, and water.

[従来の技術] 近年ガス及び原油の抗井の深井戸化に伴い硫化
水素を含むサワー環境(湿潤硫化水素環境)が多
くなつてきた。
[Prior Art] In recent years, as gas and crude oil wells have become deeper, sour environments containing hydrogen sulfide (wet hydrogen sulfide environments) have become more common.

プラスチツク内管の上に金属補強層を有する可
撓性流体輸送管においては、前記金属補強層が直
接内部のサワー流体に接することは無いが、プラ
スチツク内管を透過してくる水及び硫化水素は、
補強層間に滞留し、その作用により金属補強鋼材
に水素誘起割れ(HIC)、硫化物応力腐食割れ
(SSCC)等を発生する。
In a flexible fluid transport pipe that has a metal reinforcing layer on the plastic inner tube, the metal reinforcing layer does not come into direct contact with the sour fluid inside, but the water and hydrogen sulfide that permeate through the plastic inner tube are ,
It stays between the reinforcing layers and causes hydrogen-induced cracking (HIC), sulfide stress corrosion cracking (SSCC), etc. in metal-reinforced steel materials.

硫化物応力腐食割れについては一般に、炭素鋼
の場合その硬度をHRC22(ロツクウエルC硬さ
22)以下にすることで発生を防ぐことが出来る。
そのため従来、サワー環境で使用される可撓性流
体輸送管は、その金属補強材としてC0.2%以下の
低炭素鋼線材を伸線加工後異形引抜、ローラーダ
イス加工、圧延等の異形加工により所定の断面形
状の異形鋼線となし、そのままないしは500℃以
下の低温焼鈍を行い引張強さを80Kg/mm2以下とし
たものを使用していた(引張強さ80Kg/mm2
HRC22と近似的に等しい)。
Regarding sulfide stress corrosion cracking, the hardness of carbon steel is generally determined by HRC22 (Rockwell C hardness).
22) You can prevent this from occurring by doing the following:
For this reason, conventionally, flexible fluid transport pipes used in sour environments are made by drawing low-carbon steel wire rods with C0.2% or less as metal reinforcement, and then drawing them into different shapes, roller die processing, rolling, etc. Deformed steel wires with a predetermined cross-sectional shape were used, either as they were, or by low-temperature annealing at 500°C or lower to have a tensile strength of 80 kg/mm 2 or less (tensile strength 80 kg/mm 2
approximately equal to HRC22).

しかし、使用環境の硫化水素分圧の上昇に伴
い、低炭素鋼材の圧延材には水素誘起割れが発生
することが明らかとなつた。
However, it has become clear that hydrogen-induced cracking occurs in rolled low-carbon steel materials as the hydrogen sulfide partial pressure in the usage environment increases.

また、従来の低炭素鋼補強材は、その接続(溶
接)部分の強度低下が著しく、設計応力を大きく
とることが出来ない。
Furthermore, with conventional low carbon steel reinforcements, the strength of the connected (welded) portions is significantly reduced, making it impossible to increase the design stress.

[発明が解決しようとする問題] 本発明の目的は、耐水素誘起割れ性、耐硫化物
腐食割れ性に優れ、溶接箇所の強度低下の少ない
高強度鋼材を補強層とする可撓性サワー流体輸送
管を提供することである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a flexible sour fluid having a reinforcing layer made of high-strength steel that has excellent hydrogen-induced cracking resistance and sulfide corrosion cracking resistance, and has little strength loss at welded parts. The purpose is to provide transportation pipes.

[課題を解決するための手段] 圧力補強材としてC0.40〜0.70%,Si0.1〜1%,
Mn0.2〜1%,P0.025%以下,S0.010%以下を含
有し、必要に応じてAl0.008〜0.050%を含有し、
残部がFeおよび不可避的不純物の組成であり、
球状化組織を有し、引張強さが50Kg/mm2〜80Kg/
mm2であることを特徴とする耐水素誘起割れ特性等
に優れた高強度鋼線あるいは高強度鋼帯(本発明
では高強度鋼線および高強度鋼帯を高強度鋼帯と
略記する)を使用する。
[Means to solve the problem] C0.40-0.70%, Si0.1-1%, as pressure reinforcement material,
Contains Mn0.2-1%, P0.025% or less, S0.010% or less, and optionally contains Al0.008-0.050%,
The remainder is the composition of Fe and unavoidable impurities,
It has a spheroidal structure and has a tensile strength of 50Kg/mm 2 to 80Kg/
mm 2 and has excellent hydrogen-induced cracking resistance, etc. (in the present invention, high-strength steel wire and high-strength steel strip are abbreviated as high-strength steel strip). use.

[作用] 以下本発明の補強材の成分限定理由について説
明する。
[Function] The reason for limiting the components of the reinforcing material of the present invention will be explained below.

Cは0.40%未満では、球状化焼鈍により目標の
強度が得られないこと、及び溶接箇所の強度低下
が大きいことにより、0.40%を下限とした。また
C0.70%を超えると、冷間での強加工が困難とな
り、加工中に鋼線や鋼帯内部に微細クラツクが発
生してHIC特性を劣化するのみならず端面に割れ
が発生するため、0.70%を上限とした。
If C is less than 0.40%, the target strength cannot be obtained due to spheroidizing annealing, and the strength of the welded area will be greatly reduced, so 0.40% was set as the lower limit. Also
If C exceeds 0.70%, strong cold working becomes difficult, and fine cracks occur inside the steel wire or steel strip during processing, which not only deteriorates the HIC properties but also causes cracks to occur on the end face. The upper limit was set at 0.70%.

Siは脱酸剤として、最低0.10%以上必要であ
り、その量は多くなるに従つて強度が向上する。
しかし、1%を超えると、鋳片およびビレツト加
熱炉での脱炭が激しくなり、これがそのまま鋼線
や鋼帯に残り、冷間加工時に割れが多発するため
好ましくない。
As a deoxidizing agent, Si is required to be at least 0.10% or more, and as the amount increases, the strength improves.
However, if it exceeds 1%, decarburization in the slab and billet heating furnace becomes severe, and this remains in the steel wire or strip, which is not preferable because it causes frequent cracks during cold working.

Mnは熱間脆性を防止するため0.2%以上必要で
ある。またMnは安価で強度を向上させる元素で
あるため、その量は多いほど好ましい。しかし
MnはPとともに偏析しやすい元素であり、特に
本発明では中心偏析に起因するHICの発生頻度が
高くなるため、1%を上限とした。
Mn is required at 0.2% or more to prevent hot brittleness. Furthermore, since Mn is an element that is inexpensive and improves strength, the larger the amount, the more preferable. but
Mn is an element that tends to segregate together with P, and in particular, in the present invention, the frequency of HIC caused by center segregation increases, so the upper limit was set at 1%.

Pは粒界に偏析しやすいため、加工性の低下、
HIC割れを誘発しやすいので、その量は少ないほ
ど好ましい。しかし、連続鋳造で製造する場合、
溶製温度を高くするため復Pが起こるので、上限
のみを0.025%に規定した。
P tends to segregate at grain boundaries, resulting in decreased workability and
Since it is easy to induce HIC cracking, the smaller the amount, the better. However, when manufacturing by continuous casting,
Since re-P occurs due to the high melting temperature, only the upper limit was set at 0.025%.

SはPと同様な弊害のほか、耐食性の点で少量
ほど好ましいが、現在経済的に製造できる0.010
%以下とした。なお、Sは0.001%迄は工業的生
産が十分可能である。
In addition to the same disadvantages as P, a small amount of S is preferable in terms of corrosion resistance, but 0.010 S is currently economically producible.
% or less. Note that industrial production of S up to 0.001% is possible.

Alは結晶粒の細粒化および脱酸剤として使用
される場合と、反対に粗粒鋼指定およびAlによ
る鋼中非金属介在物を防止するためAlを添加し
ない場合がある。Al添加の場合、例えば細粒化
に必要なSolAlとして、最低0.006%以上必要であ
るが、このとき全Al量のうちSolAlとInsolの分
配(比率)は8:2であるため、下限を0.008%
とした。
Al is used in some cases to refine the crystal grains and as a deoxidizing agent, while in other cases Al is not added to designate coarse-grained steel and to prevent nonmetallic inclusions in the steel due to Al. In the case of Al addition, for example, the minimum amount of SolAl required for grain refinement is 0.006% or more, but since the distribution (ratio) of SolAl and Insol in the total amount of Al is 8:2, the lower limit is set to 0.008%. %
And so.

Alは0.050%を越えると、鋼中非金属介在物が
増加するため、製品々質および歩留が低下する。
When Al exceeds 0.050%, nonmetallic inclusions in the steel increase, resulting in a decrease in product quality and yield.

溶製歩留およびバラツキを考慮すると、Al添
加の場合には通常0.015〜0.035%が好ましい。
Considering the melting yield and variation, it is usually preferable to add Al in an amount of 0.015 to 0.035%.

一方Al無添加の場合の鋼中Al量は0.008%未満
の値を示す。
On the other hand, the amount of Al in steel without Al addition shows a value of less than 0.008%.

Alは上述の目的により、必要に応じて使用す
ればよい。
Al may be used as necessary depending on the purpose described above.

以上の組成からなる鋼材を加工して補強鋼線
(形鋼線)や補強鋼帯とするが、加工された鋼線
や鋼帯はそのまま使用すると、鋼線や鋼帯内部の
比較的ひずみの集中する部分に水素誘起割れが発
生するため、焼鈍により歪を除去する必要があ
る。
Steel materials with the above compositions are processed to make reinforcing steel wires (shaped steel wires) and reinforcing steel strips, but if the processed steel wires and steel strips are used as they are, the internal strain of the steel wires and steel strips will be relatively low. Since hydrogen-induced cracking occurs in concentrated areas, it is necessary to remove the strain by annealing.

ここで焼鈍後の引張強さは、設計応力を大きく
とり、可撓管の重量を軽減するために50Kg/mm2
上あることが必要であり、また硫化物応力腐食割
れ防止のために80Kg/mm2以下であることが要求さ
れる。
Here, the tensile strength after annealing must be 50Kg/mm2 or more in order to increase the design stress and reduce the weight of the flexible tube, and 80Kg/mm2 or more to prevent sulfide stress corrosion cracking. It is required to be less than mm 2 .

本発明に係る補強材の成分系で好ましい引張強
度を得るには、600℃前後の温度で球状化焼鈍を
行い、加工歪を除去するとともに、パーライト組
織をフエライトマトリツクス中に微細な球状セメ
ンタイトの分散した組織すなわち球状化組織とす
る必要がある。前述の球状化組織の程度は、例え
ばJIS G 3539の球状化組織写真に示される区分
No.1〜No.6のうちNo.1〜No.3が好ましい。即ちNo.
4以上では球状化の程度が小さく、水素誘起割れ
を生じやすいため好ましくない。
In order to obtain a preferable tensile strength with the component system of the reinforcing material according to the present invention, spheroidizing annealing is performed at a temperature of around 600°C to remove processing strain and to create a pearlite structure with fine spherical cementite in the ferrite matrix. It is necessary to form a dispersed structure, that is, a spheroidized structure. The degree of the spheroidized structure mentioned above is determined by the classification shown in the spheroidized structure photograph of JIS G 3539, for example.
Among No. 1 to No. 6, No. 1 to No. 3 are preferred. That is, No.
If it is 4 or more, the degree of spheroidization is small and hydrogen-induced cracking is likely to occur, which is not preferable.

[実施例] 第1図は本発明に係る可撓性サワー流体輸送管
の縦断面図の例を示す。1はプラスチツクの内管
であり、その上に耐水素誘起割れ性に優れた内部
補強鋼線2(溝形鋼線)が上層2−1と下層2−
2とが噛み合うように螺旋巻きされ、さらにその
上に同じ材質の外部補強層3(鋼帯)が内部補強
層2よりも大きなピツチで、上下2層が反対方向
に螺旋巻きされている。金属補強層は内外補強層
のいずれか一方(2又は3のいずれか)で形成し
てもよい。最外層4はプラスチツク外被であり、
金属補強層が外部環境から損傷を受けるのを防止
している。
[Example] FIG. 1 shows an example of a longitudinal cross-sectional view of a flexible sour fluid transport pipe according to the present invention. Reference numeral 1 denotes a plastic inner tube, on which an internally reinforcing steel wire 2 (channel steel wire) with excellent resistance to hydrogen-induced cracking is placed on an upper layer 2-1 and a lower layer 2-.
2 are spirally wound so as to mesh with each other, and furthermore, an external reinforcing layer 3 (steel strip) made of the same material is further spirally wound in opposite directions with a pitch larger than that of the internal reinforcing layer 2. The metal reinforcing layer may be formed of either the inner or outer reinforcing layer (either 2 or 3). The outermost layer 4 is a plastic jacket;
The metal reinforcing layer is protected from damage from the external environment.

前記金属補強層の特性例を従来材と比較して第
1表に示す。
Table 1 shows examples of the characteristics of the metal reinforcing layer in comparison with conventional materials.

本発明に係る補強材においては、水素誘起割れ
の発生は無く、しかも定常部、溶接部の引張強さ
は従来品よりも高くなつている。
In the reinforcing material according to the present invention, hydrogen-induced cracking does not occur, and the tensile strength of the steady portion and welded portion is higher than that of conventional products.

[発明の効果] 本発明によれば、サワー流体を輸送する可撓管
の金属補強層に水素誘起割れ、硫化物応力腐食割
れ等の有害な損傷を生ずることが無く、さらに前
記補強層の定常部、溶接部の強度が高く、設計応
力を高くとることが可能となり、可撓管の軽量化
が出来る。
[Effects of the Invention] According to the present invention, harmful damage such as hydrogen-induced cracking and sulfide stress corrosion cracking does not occur in the metal reinforcing layer of the flexible pipe for transporting sour fluid, and furthermore, the steady state of the reinforcing layer The strength of the parts and welded parts is high, making it possible to have a high design stress, and making it possible to reduce the weight of the flexible tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る可撓性サワー流体輸送管
の例の縦断面図である。 1…プラスチツク内管、2(2−1,2−2)
…内部補強層、3…外部補強層、4…プラスチツ
ク外被。
FIG. 1 is a longitudinal cross-sectional view of an example of a flexible sour fluid transport tube according to the present invention. 1...Plastic inner tube, 2 (2-1, 2-2)
...Internal reinforcing layer, 3... External reinforcing layer, 4... Plastic jacket.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ゴム又はプラスチツクの内管と、前記内管の
上に設けられた金属補強層と、前記金属補強層の
上に設けられたプラスチツク外被とから成る可撓
性流体輸送管において、前記金属補強層が C0.40〜0.70%,Si0.1〜1%, Mn0.2〜1%,P0.025%以下, S0.010%以下, を含有し、必要に応じてAl0.008〜0.050%を含有
し、残部がFe及び不可避的不純物の組成であり、
球状化組織を有する引張強さ50Kg/mm2〜80Kg/mm2
の高強度鋼帯より成ることを特徴とする可撓性サ
ワー流体輸送管。
[Claims] 1. A flexible fluid transport comprising a rubber or plastic inner tube, a metal reinforcing layer provided on the inner tube, and a plastic outer jacket provided on the metal reinforcing layer. In the pipe, the metal reinforcing layer contains 0.40 to 0.70% C, 0.1 to 1% Si, 0.2 to 1% Mn, 0.025% or less of P, and 0.010% or less of S, and if necessary, Al0. Contains .008 to 0.050%, the remainder is Fe and unavoidable impurities,
Tensile strength with spheroidized structure 50Kg/mm 2 ~ 80Kg/mm 2
A flexible sour fluid transport pipe characterized in that it is made of high strength steel strip.
JP10543588A 1988-04-30 1988-04-30 Flexural sour fluid transport pipe Granted JPH01278339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10543588A JPH01278339A (en) 1988-04-30 1988-04-30 Flexural sour fluid transport pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10543588A JPH01278339A (en) 1988-04-30 1988-04-30 Flexural sour fluid transport pipe

Publications (2)

Publication Number Publication Date
JPH01278339A JPH01278339A (en) 1989-11-08
JPH0515545B2 true JPH0515545B2 (en) 1993-03-01

Family

ID=14407513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10543588A Granted JPH01278339A (en) 1988-04-30 1988-04-30 Flexural sour fluid transport pipe

Country Status (1)

Country Link
JP (1) JPH01278339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510610A (en) * 2000-10-09 2004-04-08 ヒューエック フォリエン ゲゼルシャフト エム.ベー.ハー. Metal-coated film and method of making and using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355047A (en) * 2000-06-14 2001-12-25 Kawasaki Steel Corp High carbon steel tube excellent in cold workability and induction hardenability and its production method
BR112012021432A2 (en) 2010-02-24 2016-05-31 Furukawa Electric Co Ltd flexible tube for fluid transport.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51163119U (en) * 1975-06-20 1976-12-25
JPS60150386U (en) * 1984-03-19 1985-10-05 古河電気工業株式会社 flexible composite tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510610A (en) * 2000-10-09 2004-04-08 ヒューエック フォリエン ゲゼルシャフト エム.ベー.ハー. Metal-coated film and method of making and using the same

Also Published As

Publication number Publication date
JPH01278339A (en) 1989-11-08

Similar Documents

Publication Publication Date Title
KR100882394B1 (en) Seamless steel pipe and method for production thereof
KR101062087B1 (en) Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof
US8512487B2 (en) Seamless expandable oil country tubular goods and manufacturing method thereof
US5117874A (en) Flexible fluid transport pipe having hydrogen-induced cracking resistant high-strength steel
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JPS5937328B2 (en) Method for producing hot-rolled steel for steel pipes with excellent sour resistance properties
JPS634046A (en) High-tensile steel for oil well excellent in resistance to sulfide cracking
JPH0515545B2 (en)
JP2001164337A (en) High tensile strength steel excellent in delayed fracture characteristic and producing method therefor
JP6256464B2 (en) Wire rod and manufacturing method thereof
CN106702273A (en) Economical H2S corrosion-resistant normalized pipeline steel and production method
JPH0583611B2 (en)
JP3731103B2 (en) High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof
JPS6356300B2 (en)
JPH1030122A (en) Production of hot rolled steel strip with high strength and high toughness
JP2003293078A (en) Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JPS6157892B2 (en)
JPH0892649A (en) Production of high strength hot bend steel tube
JPH042720A (en) Production of high strength steel wire for use in sour environment
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPS581014A (en) Production of hot coil having high hydrogen induced cracking resistance
CN106756537A (en) A kind of resistance to H2The excellent high tough normalizing pipe line steel of S corrosive natures and production method
JP2721761B2 (en) Manufacturing method of welded steel pipe with excellent wear resistance
JPH069693B2 (en) Method for producing duplex stainless steel pipe with excellent corrosion resistance
JP2004277759A (en) Steel wire with excellent corrosion resistance