JP2001164337A - High tensile strength steel excellent in delayed fracture characteristic and producing method therefor - Google Patents

High tensile strength steel excellent in delayed fracture characteristic and producing method therefor

Info

Publication number
JP2001164337A
JP2001164337A JP35066499A JP35066499A JP2001164337A JP 2001164337 A JP2001164337 A JP 2001164337A JP 35066499 A JP35066499 A JP 35066499A JP 35066499 A JP35066499 A JP 35066499A JP 2001164337 A JP2001164337 A JP 2001164337A
Authority
JP
Japan
Prior art keywords
steel
hardness
delayed fracture
steel material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35066499A
Other languages
Japanese (ja)
Inventor
Hajime Ishikawa
肇 石川
Atsuhiko Yoshie
淳彦 吉江
Satoshi Sugimaru
聡 杉丸
Hiroshi Oba
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35066499A priority Critical patent/JP2001164337A/en
Publication of JP2001164337A publication Critical patent/JP2001164337A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce PC steel excellent in delayed fracture characteristics and to provide a method for producing the same. SOLUTION: In this high tensile strength steel rod or steel wire excellent in delayed fracture characteristics, the central part of the steel is provided with tempered martensite in which the fractional ratio of intergranular ferrite or pearlite is <=5%, the difference between the hardness of the surface layer and the hardness of the central part is <=100 Hv, and also, the maximum hardness of the surface layer is lower than the value obtained by adding 50 Hv to the average value of the cross-sectional hardness, and in method for producing the same, a wire rod with a wire diameter of <=9 mm obtained by subjecting a billet containing, by mass, 0.1 to 0.40% C, 0,10 to 0.50% Si, 0.3 to 1.0% Mn, <=0.03% P, <=0.02% S, <=0.005% Al, and the balance iron with inevitable impurities and cast by a billet continuous casting method to hot rolling and thereafter executing cold drawing is quenched in the temperature range of 850 to 1050 deg.C and is tempered in a state of being heated to the temperature range of 350 to 550 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスポット溶接性の優
れたPC(プレストレスコンクリート)鋼材およびその
製造方法に関するものである。特に、本発明は引張強さ
1200MPa 以上の強度レベルで高い延性を有する耐遅
れ破壊特性に良好な高張力鋼棒または鋼線およびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PC (prestressed concrete) steel excellent in spot weldability and a method for producing the same. In particular, the present invention relates to a high-strength steel rod or a steel wire having high ductility at a tensile strength of 1200 MPa or more and excellent in delayed fracture resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】コンクリートパイルの中でも剛性および
曲げ強さの向上、コンクリートのひび割れ防止の目的で
コンクリートに圧縮をあたえて強化するものはPCパイ
ルと称され以下に記述する方法で製造される。まず、円
周上に並列に配したPC鋼材に軟鋼線を螺旋状に巻き付
けた後(以後螺旋筋と称す)、PC鋼材と螺旋筋の交点
を固定して円筒状の籠片型補強体(以下補強体と略称)
を製造する。次いでこの補強体を型枠に導入し、補強体
を構成するPC鋼材の両端を固定して引張強さの70%
前後の応力で緊張する。型枠内に注入したコンクリート
が固化した後にPC鋼材の緊張力が除去され、同時にコ
ンクリートに圧縮力が付与されてPCパイルが製造され
る。この製造工程中、補強体の組立を自動化するため
に、溶接性の良好な低中炭素鋼の熱処理強化型PC鋼材
が使用され、PC鋼材と螺旋筋の固定はスポット溶接に
より行われる。
2. Description of the Related Art Among concrete piles, concrete piles which are reinforced by compressing concrete for the purpose of improving rigidity and bending strength and preventing cracking of concrete are called PC piles and are manufactured by a method described below. First, after a mild steel wire is spirally wound around a PC steel material arranged in parallel on a circumference (hereinafter referred to as a spiral muscle), an intersection of the PC steel material and the spiral muscle is fixed, and a cylindrical cage piece type reinforcing body ( (Hereinafter abbreviated as reinforcement)
To manufacture. Next, this reinforcement was introduced into a mold, and both ends of a PC steel material constituting the reinforcement were fixed to 70% of the tensile strength.
Tension due to front and rear stress. After the concrete poured into the form is solidified, the tension of the PC steel material is removed, and at the same time, a compressive force is applied to the concrete to produce a PC pile. During this manufacturing process, in order to automate the assembling of the reinforcing member, a heat-treated reinforced PC steel material of low-medium carbon steel having good weldability is used, and fixing of the helical muscle to the PC steel material is performed by spot welding.

【0003】近年、鋼構造物の巨大化にともない、その
部材に使用される鋼材はますます高強度化する傾向にあ
る。例えば、コンクリートパイルに主筋として使用され
るPC鋼棒はJIS G3109に規定されるように引
張強さ1420MPa 以上とされている。線材用鋼として
製造される鋼は、転炉の精錬を完了した後、主に連続鋳
造法にてビレットに鋳造される。精錬完了時に溶鋼中に
含まれるフリー酸素は、鋳造に先立って脱酸材を投入し
て酸化物として除去する。脱酸材としては、Alを用い
る脱酸が代表的である。脱酸の結果、生成した脱酸生成
物としてのAl2 3 は、その大部分は溶鋼中を浮上し
て分離されるが、その一部は鋼中に残存し、連続鋳造後
に鋼中に残存する粗大な介在物は熱処理後の水素感受性
を上昇させる。このため、ビレット鋳造法によるPC鋼
材として耐遅れ破壊特性の優れた鋼材が要求される。
[0003] In recent years, with the increase in the size of steel structures, the steel materials used for the members tend to have higher strength. For example, a PC steel rod used as a main reinforcement in a concrete pile has a tensile strength of 1420 MPa or more as specified in JIS G3109. After the refining of the converter is completed, the steel produced as wire rod steel is mainly cast into a billet by a continuous casting method. Free oxygen contained in molten steel at the completion of refining is removed as an oxide by adding a deoxidizing material prior to casting. A typical example of the deoxidizing material is deoxidizing using Al. Al 2 O 3 as a deoxidation product generated as a result of deoxidation is mostly floated and separated in molten steel, but a part thereof remains in the steel, and remains in the steel after continuous casting. The remaining coarse inclusions increase the hydrogen sensitivity after heat treatment. For this reason, a steel material having excellent delayed fracture resistance is required as a PC steel material by billet casting.

【0004】[0004]

【発明が解決しようとする課題】一般に、ビレット連続
鋳造法では介在物が微細分散し、再加熱γ粒が細粒にな
る傾向があり、耐遅れ破壊特性が向上する。しかしなが
ら、線径が9mm以上の太径のPC鋼棒では中心部の冷却
速度が遅くなり焼入れ性が低下しフェライトやパーライ
ト組織が生成しやすく、不均一組織となる。
In general, in the continuous billet casting method, inclusions tend to be finely dispersed, and the reheated γ grains tend to be fine, and the delayed fracture resistance is improved. However, in the case of a large-diameter PC steel rod having a wire diameter of 9 mm or more, the cooling rate at the center is slowed down, hardenability is reduced, and ferrite or pearlite structure is easily generated, resulting in a non-uniform structure.

【0005】コンクリートポール、パイルなどのコンク
リート構造物に使用されるPC鋼材の場合には、前述し
たように、約1200MPa 以上の強度が要求されてい
る。このような高張力鋼で遅れ破壊特性を満足させるた
め発明者らは組織および硬さと遅れ破壊との関係の詳細
な検討を行った。その結果次のような事実が判明した。 均一な組織の方が耐遅れ破壊特性は良好である。
[0005] In the case of PC steel materials used for concrete structures such as concrete poles and piles, as described above, a strength of about 1200 MPa or more is required. In order to satisfy the delayed fracture characteristics with such a high-strength steel, the present inventors have conducted detailed studies on the relationship between the structure and hardness and the delayed fracture. As a result, the following facts became clear. A uniform structure has better delayed fracture resistance.

【0006】 焼戻しマルテンサイトでは組織が微細
であるほど耐遅れ破壊特性に優れている。すなわち、ビ
レット鋳造法では介在物が微細分散し、ピニング効果に
より組織が細粒化し遅れ破壊特性が向上する。しかし、
太径で急速加熱、急速冷却で焼入れするとビレット鋳造
法によりγ粒径が小さくなっていくため冷却速度の遅い
中心部でフェライトやパーライトが生成しやすい。この
ため、中心部で軟化し表層部で硬化する不均一な組織と
なる。その結果、鋼全体の強度を高めるために焼入れ時
の冷却速度が速くする必要があり表層部での遅れ破壊感
受性がさらに高くなる。
[0006] The finer the structure of tempered martensite, the better the delayed fracture resistance. That is, in the billet casting method, inclusions are finely dispersed, the structure is finely divided by the pinning effect, and the delayed fracture characteristics are improved. But,
When quenching by rapid heating and rapid cooling with a large diameter, the γ grain size is reduced by the billet casting method, so that ferrite and pearlite are likely to be formed in the central portion where the cooling rate is slow. For this reason, a non-uniform structure softens at the center and hardens at the surface layer. As a result, it is necessary to increase the cooling rate during quenching in order to increase the strength of the entire steel, and the delayed fracture susceptibility in the surface layer further increases.

【0007】耐遅れ破壊特性を向上させるための均一な
組織は、遅れ破壊試験時の付加加重が均一にかかるため
に表層の硬さと中心部の硬さの差を低く抑える必要があ
る。また、遅れ破壊の破壊起点は表層近傍にあり、割れ
感受性を下げるためには表層部の硬さを低くする必要が
ある。このため、ビレット鋳造法によるPC鋼材として
耐遅れ破壊特性に優れた鋼材の開発が切望されていた。
In a uniform structure for improving delayed fracture resistance, it is necessary to suppress the difference between the hardness of the surface layer and the hardness of the center portion because the additional load during the delayed fracture test is uniformly applied. Further, the fracture origin of delayed fracture is near the surface layer, and it is necessary to lower the hardness of the surface layer in order to reduce the susceptibility to cracking. For this reason, development of a steel material having excellent delayed fracture resistance as a PC steel material by billet casting has been desired.

【0008】[0008]

【課題を解決するための手段】本発明は、上記問題点を
解決するために提案されたものであり、引張強さ120
0MPa 以上の強度レベルで高い延性を有する耐遅れ破壊
特性の良好な高強力棒鋼または鋼線を含む鋼材とその製
造方法であり、その要旨は次のとおりである。なお、本
発明で規定する質量%とは重量%を意味する。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above problems, and has a tensile strength of 120.
A steel material including a high-strength steel bar or a steel wire having high ductility at a strength level of 0 MPa or more and excellent in delayed fracture resistance and a method for producing the same, and the gist thereof are as follows. In addition, the mass% defined in the present invention means weight%.

【0009】(1)質量%で、C:0.1〜0.4%、
Si:0.1〜0.5%、Mn:0.3〜1.0%、
P:0.03%以下、S:0.02%以下、Al:0.
005%以下、を含有し、残部が鉄及び不可避不純物か
らなり、線径が9mm以上で、鋼中心部の粒界フェライト
またはパーライトの分率が5%以下の焼き戻しマルテン
サイト組織を有し、表層の硬さと中心部の硬さとの差が
100Hv以下、かつ、表層の最高硬さが断面硬さの平均
値に50Hvを加算した値より低いことを特徴とする遅れ
破壊特性の優れた高張力鋼材。
(1) In mass%, C: 0.1 to 0.4%,
Si: 0.1-0.5%, Mn: 0.3-1.0%,
P: 0.03% or less, S: 0.02% or less, Al: 0.
005% or less, the balance being iron and unavoidable impurities, having a wire diameter of 9 mm or more, and having a tempered martensite structure with a grain boundary ferrite or pearlite fraction of 5% or less at the center of the steel, High tensile strength with excellent delayed fracture characteristics characterized in that the difference between the hardness of the surface layer and the hardness at the center is 100 Hv or less, and the maximum hardness of the surface layer is lower than the value obtained by adding 50 Hv to the average value of the cross-sectional hardness. Steel.

【0010】(2)さらに鋼材成分として、質量%で、
Nb:0.005〜0.05%、Ti:0.005〜
0.05%、V:0.002〜0.020%、の1種ま
たは2種以上を含有したことを特徴とする請求項1記載
の遅れ破壊特性の優れた高張力鋼材。
(2) Further, as a steel material component, in mass%,
Nb: 0.005 to 0.05%, Ti: 0.005 to
The high-tensile steel material having excellent delayed fracture properties according to claim 1, wherein one or more of 0.05% and V: 0.002 to 0.020% are contained.

【0011】(3)さらに鋼材成分として、質量%で、
Cu:0.02〜0.1%、Ni:0.02〜0.1
%、Cr:0.02〜0.1%、Mo:0.02〜0.
10%、B:0.0005〜0.005%、の1種また
は2種以上を含有したことを特徴とする請求項1あるい
は2記載の遅れ破壊特性の優れた高張力鋼材。
(3) Further, as a steel material component, by mass%,
Cu: 0.02-0.1%, Ni: 0.02-0.1
%, Cr: 0.02 to 0.1%, Mo: 0.02 to 0.
The high-tensile steel material having excellent delayed fracture characteristics according to claim 1 or 2, comprising one or more of 10% and B: 0.0005 to 0.005%.

【0012】(4)さらに鋼材成分として、質量%で、
Ca:0.0005〜0.005%、REM:0.00
05〜0.005%、Mg:0.0005〜0.007
%、の1種または2種以上を含有したことを特徴とする
請求項1乃至3記載の遅れ破壊特性の優れた高張力鋼
材。
(4) Further, as a steel material component, in mass%,
Ca: 0.0005-0.005%, REM: 0.00
0.05 to 0.005%, Mg: 0.0005 to 0.007
The high-tensile steel material having excellent delayed fracture characteristics according to any one of claims 1 to 3, further comprising one or more of

【0013】ビレット連続鋳造方法で鋳造した、請求項
1乃至4のいずれかの項に記載の鋼材成分を有する鋳片
を、熱間圧延後冷間引き抜き加工した線径9mm以上の鋼
材を、850〜1050℃の温度範囲に加熱後焼き入れ
し、次いで、350〜550℃の温度領域に急速加熱し
た後に焼き戻すことを特徴とする遅れ破壊特性の優れた
高張力鋼材の製造方法。
A slab having a steel material composition according to any one of claims 1 to 4, which is cast by a billet continuous casting method, is hot-rolled and then cold-drawn to obtain a steel material having a wire diameter of 9 mm or more. A method for producing a high-tensile steel material having excellent delayed fracture characteristics, characterized in that the material is quenched after heating to a temperature range of from 10 to 1050 ° C, then rapidly heated to a temperature range of 350 to 550 ° C, and then tempered.

【0014】[0014]

【発明の実施の形態】先ず、本発明による遅れ破壊特性
の優れた高張力鋼材に用いる化学成分を以下の通りに規
定する。 C:Cはマルテンサイトの強度を高めるとともに添加す
るが、0.1%未満ではその効果は少ない。一方、Cを
過量に添加するとスポット溶接部の硬さが高くなり溶接
割れ感受性が上昇するため、その上限を0.4%とす
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, chemical components used in a high-tensile steel having excellent delayed fracture characteristics according to the present invention are defined as follows. C: C is added together with increasing the strength of martensite, but less than 0.1% has little effect. On the other hand, if C is added in an excessive amount, the hardness of the spot-welded portion increases and the susceptibility to weld cracking increases, so the upper limit is made 0.4%.

【0015】Si:Siは強度およびリラクゼーション
特性確保のために必要な元素であり、0.1未満では効
果がない。一方、Si量が0.5%超になると熱間加工
性が低下するため、上限を0.5%とした。 Mn:Mnは一様伸びと焼入性の向上のために必要であ
る。0.3%未満ではその効果はない。1.0%超添加
にしても強度改善効果は飽和する。また、中心偏析部に
ミクロマルテンサイトを生成し延伸性を低下させる。M
n量は0.3〜1.0の範囲とする。
Si: Si is an element necessary for securing strength and relaxation properties, and if less than 0.1, there is no effect. On the other hand, if the Si content exceeds 0.5%, the hot workability decreases, so the upper limit was made 0.5%. Mn: Mn is necessary for improving uniform elongation and hardenability. If less than 0.3%, the effect is not obtained. Even if added over 1.0%, the strength improving effect is saturated. In addition, micro-martensite is generated in the center segregation part, and the stretchability is reduced. M
The n amount is in the range of 0.3 to 1.0.

【0016】P:Pは粒界に偏析し粒界脆化を起こしや
すくするため、0.03%以下にする必要がある。不純
物元素であるPは極力低減することが望ましい。 S:SもPと同様に粒界に偏析し粒界脆化を起こしやす
くするため、0.02%以下にする必要がある。不純物
元素であるSは極力低減することが望ましい。 Al:ビレット連続鋳造法ではAlは極力低減すること
が必要である。Alが0.005%を超えると生成する
介在物の組成がAl2 3 主体となり粗大化しやすい。
また、ノズル閉塞の原因となりやすい。そのため上限を
0.005%とした。
P: P must be made 0.03% or less in order to segregate at the grain boundaries and easily cause grain boundary embrittlement. It is desirable that P, which is an impurity element, be reduced as much as possible. S: S is also required to be 0.02% or less because S also segregates at the grain boundary similarly to P and easily causes grain boundary embrittlement. It is desirable that S, which is an impurity element, be reduced as much as possible. Al: In the billet continuous casting method, it is necessary to reduce Al as much as possible. If the content of Al exceeds 0.005%, the composition of the generated inclusions is mainly composed of Al 2 O 3 and is likely to be coarse.
In addition, it is likely to cause nozzle blockage. Therefore, the upper limit is made 0.005%.

【0017】本発明は上記元素の他に残部がFeおよび
不可避不純物とするものである。さらに、特性向上をは
かるために以下に述べるNb,Ti,V,Cu,Ni,
Cr,Mo,B,Ca,REM,Mgの1種または2種
以上を必要に応じて含有する。 Nb:NbはNb析出物のピニング効果によりオーステ
ナイト粒を微細化し延性を向上させる。そのためには
0.005%以上の添加が必要である。しかしながら、
0.05%超添加するとスポット溶接部の硬さを上昇さ
せ溶接割れ感受性を上昇させる。このためNbの適正範
囲を0.005〜0.05%とした。
In the present invention, in addition to the above elements, the balance is Fe and inevitable impurities. Further, in order to improve the characteristics, Nb, Ti, V, Cu, Ni,
One or more of Cr, Mo, B, Ca, REM, and Mg are contained as necessary. Nb: Nb refines austenite grains and improves ductility by the pinning effect of Nb precipitates. For that purpose, 0.005% or more must be added. However,
Addition of more than 0.05% increases the hardness of the spot weld and increases the susceptibility to weld cracking. Therefore, the appropriate range of Nb is set to 0.005 to 0.05%.

【0018】Ti:TiはTi析出物のピニング効果に
よりNbと同様に組織を微細化する。そのためには0.
005%以上の添加が必要である。しかし、0.05%
超添加すると粗大なTiNが多量に析出するため材質特
性を劣化させる。このため、上限を0.05%とした。 V:Vは炭窒化物を析出させγ粒を微細化し強度、延性
を向上させる。そのためには0.002%以上の添加が
必要であり、下限値を0.002%とした。しかし多量
の添加では効果が飽和するため上限値を0.020%と
した。
Ti: Ti refines the structure similarly to Nb due to the pinning effect of Ti precipitates. For that, 0.
005% or more must be added. However, 0.05%
If added excessively, coarse TiN precipitates in large quantities, deteriorating the material properties. Therefore, the upper limit is set to 0.05%. V: V precipitates carbonitrides, refines γ grains, and improves strength and ductility. For that purpose, 0.002% or more must be added, and the lower limit is made 0.002%. However, the effect is saturated with a large amount of addition, so the upper limit was made 0.020%.

【0019】Cu:Cuは0.05%未満では焼入性の
向上が十分でないために0.02%を下限値とした。し
かし、0.1%を超えると熱間割れを引き起こすため上
限値を0.1%とした。 Ni:Niは0.05%未満では焼入性の向上が十分で
ないために0.02%を下限値とした。しかし、0.1
%を超えると効果は飽和するため上限値を0.1%とし
た。
Cu: If the Cu content is less than 0.05%, the hardenability is not sufficiently improved, so 0.02% was made the lower limit value. However, if it exceeds 0.1%, hot cracking will occur, so the upper limit is made 0.1%. Ni: If Ni is less than 0.05%, the hardenability is not sufficiently improved, so 0.02% was made the lower limit. However, 0.1
%, The effect is saturated, so the upper limit is set to 0.1%.

【0020】Cr:Crは固溶強化、焼入性向上のため
に鋼の強度を上昇させるが、0.02%以下では効果が
不十分である。しかし、0.1%を超えると効果は飽和
するため上限値を0.1%とした。 Mo:Moはリラクセーション特性を向上させるために
有効な元素である。しかしながら、少なくとも0.02
%以上添加しないとその効果は認められない。また、
0.10%超添加するとスポット溶接部の割れ感受性が
上昇する。そのためMoの成分範囲を0.02〜0.1
0%までとした。
Cr: Cr increases the strength of steel for solid solution strengthening and hardenability, but the effect is insufficient if it is 0.02% or less. However, when the content exceeds 0.1%, the effect is saturated, so the upper limit is set to 0.1%. Mo: Mo is an element effective for improving relaxation characteristics. However, at least 0.02
%, The effect is not recognized. Also,
If added in excess of 0.10%, the crack susceptibility of the spot weld increases. Therefore, the component range of Mo is set to 0.02 to 0.1.
It was set to 0%.

【0021】B:Bは0.0005%未満では焼入性の
向上が十分でないために0.0005%を下限値とし
た。しかし、0.005%を超えると効果は飽和するた
め上限値を0.005%とした。次に熱処理条件を限定
した理由を述べる。 Ca:Caは組織を微細化するために有効な元素であ
る。0.0005未満では効果がないため0.0005
%を下限値とした。しかし、0.005%を超えると清
浄度が低下するとともに介在物が粗大化するため上限値
を0.005%とした。
B: If B is less than 0.0005%, the hardenability is not sufficiently improved, so 0.0005% was made the lower limit. However, if the content exceeds 0.005%, the effect is saturated, so the upper limit is set to 0.005%. Next, the reasons for limiting the heat treatment conditions will be described. Ca: Ca is an element effective for refining the structure. If it is less than 0.0005, there is no effect.
% Was defined as the lower limit. However, when the content exceeds 0.005%, the cleanliness decreases and the inclusions become coarse, so the upper limit value is set to 0.005%.

【0022】REM:REMもCaと同様に組織を微細
化するために有効な元素である。0.0005未満では
効果がないため0.0005%を下限値とした。しか
し、0.005%を超えると清浄度が低下するとともに
介在物が粗大化するため上限値を0.005%とした。 Mg:Mgは鋼は鋼中で微細な酸化物を生成しオーステ
ナイトを細粒にするため、0.0005%以上添加す
る。しかし、Mgで0.007%超添加すると酸化物が
粗大化し伸線加工性を低下させる。そのため、上限を
0.007%とする。
REM: REM, like Ca, is also an effective element for refining the structure. If it is less than 0.0005, there is no effect, so 0.0005% is set as the lower limit. However, when the content exceeds 0.005%, the cleanliness decreases and the inclusions become coarse, so the upper limit value is set to 0.005%. Mg: Mg is added in an amount of 0.0005% or more because steel forms fine oxides in the steel and makes austenite fine. However, if Mg is added in excess of 0.007%, the oxide becomes coarse and the wire drawing workability is reduced. Therefore, the upper limit is made 0.007%.

【0023】次に本発明による高張力鋼材の製造方法に
ついて説明する。一般に鋳片をビレット連続鋳造法に鋳
造することにより介在物を微細化できる。鋳片を熱間圧
延または冷間引き抜き加工した線材を850〜1050
℃の温度範囲に急速加熱と急冷により焼入れを実施す
る。850℃以上に加熱しないと未変態組織が残り所定
の強度が得られない。また、1050℃を超えて加熱す
るとγ粒が粗大化し耐遅れ破壊特性を低下させる。急速
加熱はγ粒を粗大化させないために実施し、急速冷却は
マルテンサイトを生成させるために行う。
Next, a method for producing a high-tensile steel material according to the present invention will be described. Generally, inclusions can be refined by casting a slab by a continuous billet casting method. Hot rolled or cold drawn slabs of 850 to 1050
Quenching is performed by rapid heating and cooling to a temperature range of ° C. Unless heated to 850 ° C. or higher, an untransformed structure remains and a predetermined strength cannot be obtained. On the other hand, when heating is performed at a temperature exceeding 1050 ° C., γ grains are coarsened and the delayed fracture resistance is reduced. The rapid heating is performed so as not to coarsen the γ grains, and the rapid cooling is performed so as to generate martensite.

【0024】焼戻し温度は350〜550℃の範囲とす
る。350℃未満では強度が高くなりすぎて遅れ破壊が
起こりやすくなる。また、550℃以上では強度が低下
し、PC鋼材としての所定の材質特性を確保できない。
組織と硬さを規定した理由を述べる。遅れ破壊試験時の
強度を確保するために鋼中心部の粒界フェライトまたは
パーライトの分率が5%以下とする必要がある。鋼中心
部の粒界フェライトまたはパーライトの分率が5%以上
と表層部の硬さを高くする必要があり結果として耐遅れ
破壊特性を低下させる。望ましくは焼戻しマルテンサイ
ト単層とする。
The tempering temperature is in the range of 350 to 550 ° C. If the temperature is lower than 350 ° C., the strength becomes too high, and delayed fracture easily occurs. On the other hand, if the temperature is 550 ° C. or higher, the strength decreases, and it is not possible to secure predetermined material properties as PC steel.
State the reason for defining the texture and hardness. In order to secure the strength during the delayed fracture test, the fraction of grain boundary ferrite or pearlite at the center of the steel must be 5% or less. It is necessary to increase the hardness of the surface layer when the fraction of grain boundary ferrite or pearlite in the center of the steel is 5% or more, and as a result, the delayed fracture resistance deteriorates. Desirably, it is a tempered martensite single layer.

【0025】表層の硬さと中心部の硬さの差が100Hv
以上となると中心部での強度が低下し見かけ上表層部へ
の付加加重が高くなる。また、表層の最高硬さが断面硬
さの平均値に50Hvをたした値より高くなると遅れ破壊
感受性が上昇する。本発明では硬さを均一にする手法に
ついては言及はしない。例えば、焼入れ性を向上させる
ために微量に合金元素を添加すればよい。ただし、本発
明では中心部のフェライトやパーライトの生成を抑制す
るための目的のみで添加し過量に添加する必要はない。
The difference between the hardness of the surface layer and the hardness of the central part is 100 Hv
If it becomes above, the intensity | strength in a center part will fall and the additional load to a surface layer part will increase apparently. When the maximum hardness of the surface layer is higher than a value obtained by adding 50 Hv to the average value of the cross-sectional hardness, the delayed fracture sensitivity increases. The present invention does not refer to a technique for making the hardness uniform. For example, a small amount of an alloy element may be added to improve hardenability. However, in the present invention, it is added only for the purpose of suppressing the formation of ferrite and pearlite in the central portion, and it is not necessary to add excessively.

【0026】図1は本発明と従来鋼のC断面の硬さ分布
を示したものである。前述したように、従来鋼では明ら
かに硬さの分布が均一でなく特に表層の高度分布が高く
なっており水素割れ感受性が上昇する。一方、本発明鋼
ではほぼ一定の硬さとなっている。
FIG. 1 shows the hardness distribution of the C section of the present invention and the conventional steel. As described above, in the conventional steel, the distribution of hardness is obviously not uniform, and especially the height distribution of the surface layer is high, and the hydrogen cracking sensitivity is increased. On the other hand, the steel of the present invention has a substantially constant hardness.

【0027】[0027]

【実施例】以下本発明の実施例について説明する。表1
に供試鋼の化学成分、製造条件と材質結果を示す。12
5mm角のビレット鋳造後熱間圧延した線材を焼き入れ焼
き戻しを実施した。また、比較鋼での従来法ではブルー
ム鋳造材を125mm角に機械加工後熱処理を実施した。
硬さ分布はC断面のビッカス硬度を測定した。
Embodiments of the present invention will be described below. Table 1
Table 3 shows the chemical composition, production conditions and material results of the test steel. 12
A 5 mm square billet was cast, and the hot rolled wire was quenched and tempered. In the conventional method using comparative steel, a bloom cast material was machined into a 125 mm square and then heat-treated.
For the hardness distribution, the Vickers hardness of the C section was measured.

【0028】鋼10は適切な鋼成分ではないので、機械
的性質または溶接性が確保できなかった。鋼10はAl
の添加量が多いため介在物の制御ができず耐遅れ破壊特
性を低下させた。鋼11〜12では適正な製造条件とな
っておらず材質特性が得られない。鋼11ではビレット
鋳造法を実施していないためγ粒が粗大化し耐遅れ破壊
特性を低下させた。鋼12では焼戻し温度が低いため組
織が硬化し耐遅れ破壊特性を低下させた。鋼13〜15
では適正な組織、硬さが確保されていないため材質特性
が得られない。鋼13では中心部のフェライト分率が高
いため、鋼14では表層の硬さと中心部の硬さの差が1
00Hv以上のため、鋼15では表層の最高硬さと断面硬
さの平均値との差が50Hv以上のため耐遅れ破壊特性が
低下した。
Since steel 10 is not an appropriate steel component, mechanical properties or weldability could not be ensured. Steel 10 is Al
The inclusion amount was too large to control inclusions, and the delayed fracture resistance was reduced. Steels 11 to 12 do not have proper production conditions, and cannot obtain material properties. In Steel 11, since the billet casting method was not performed, the gamma grains were coarsened and the delayed fracture resistance was reduced. In Steel 12, the tempering temperature was low, so the structure was hardened and the delayed fracture resistance was reduced. Steel 13-15
In this case, material properties cannot be obtained because proper structure and hardness are not secured. In steel 13, since the ferrite fraction in the center is high, in steel 14, the difference between the hardness of the surface layer and the hardness of the center is 1
Since steel H is at least 00 Hv, the difference between the maximum hardness of the surface layer and the average value of the cross-sectional hardness of steel 15 is 50 Hv or more, and the delayed fracture resistance deteriorated.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明によれば、耐遅れ破壊に優れた高
強度PC鋼線用鋼材を得ることができ工業的に非常に有
用である。
According to the present invention, a high-strength steel material for a PC steel wire excellent in delayed fracture resistance can be obtained, which is industrially very useful.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年1月20日(2000.1.2
0)
[Submission Date] January 20, 2000 (2000.1.2
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明鋼と従来鋼のC断面の硬さ分布
を示す図である。
FIG. 1 is a diagram showing the hardness distribution of the C section of the present invention steel and conventional steel.

フロントページの続き (72)発明者 杉丸 聡 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 大羽 浩 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 Fターム(参考) 4K043 AA02 AB00 AB01 AB02 AB04 AB07 AB10 AB13 AB15 AB18 AB21 AB22 AB25 AB26 AB27 AB29 AB30 AB33 BB01 BB02 BB06 BB08 DA01 DA04 EA04 FA03 FA12 FA13 Continued on the front page (72) Inventor Satoshi Sugimaru 1 Kimitsu, Kimitsu City, Chiba Prefecture Inside the Nippon Steel Corporation Kimitsu Works (72) Inventor Hiroshi Oba 1 Kimitsu, Kimitsu City, Chiba Prefecture Kimitsu Corporation F term in the steelworks (reference) 4K043 AA02 AB00 AB01 AB02 AB04 AB07 AB10 AB13 AB15 AB18 AB21 AB22 AB25 AB26 AB27 AB29 AB30 AB33 BB01 BB02 BB06 BB08 DA01 DA04 EA04 FA03 FA12 FA13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.1〜0.4%、 Si:0.1〜0.5%、 Mn:0.3〜1.0%、 P:0.03%以下、 S:0.02%以下、 Al:0.005%以下、 を含有し、残部が鉄及び不可避不純物からなり、線径が
9mm以上で、鋼中心部の粒界フェライトまたはパーライ
トの分率が5%以下の焼き戻しマルテンサイト組織を有
し、表層の硬さと中心部の硬さとの差が100Hv以下、
かつ、表層の最高硬さが断面硬さの平均値に50Hvを加
算した値より低い硬度を有することを特徴とする遅れ破
壊特性の優れた高張力鋼材。
1. Mass%, C: 0.1 to 0.4%, Si: 0.1 to 0.5%, Mn: 0.3 to 1.0%, P: 0.03% or less, S: 0.02% or less, Al: 0.005% or less, the balance being iron and unavoidable impurities, a wire diameter of 9 mm or more, and a fraction of grain boundary ferrite or pearlite at the center of the steel of 5%. % Or less, the difference between the hardness of the surface layer and the hardness of the central part is 100 Hv or less,
A high tensile strength steel excellent in delayed fracture characteristics, characterized in that the maximum hardness of the surface layer is lower than a value obtained by adding 50 Hv to the average value of the cross-sectional hardness.
【請求項2】 さらに鋼材成分として、質量%で、 Nb:0.005〜0.05%、 Ti:0.005〜0.05%、 V:0.002〜0.020%、 の1種または2種以上を含有したことを特徴とする請求
項1記載の遅れ破壊特性の優れた高張力鋼材。
2. As a steel component, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.05%, V: 0.002 to 0.020% by mass%. The high-tensile steel material having excellent delayed fracture characteristics according to claim 1, wherein the steel material contains two or more kinds.
【請求項3】 さらに鋼材成分として、質量%で、 Cu:0.02〜0.1%、 Ni:0.02〜0.1%、 Cr:0.02〜0.1%、 Mo:0.02〜0.10%、 B:0.0005〜0.005%、 の1種または2種以上を含有したことを特徴とする請求
項1あるいは2記載の遅れ破壊特性の優れた高張力鋼
材。
3. Further, as a steel material component, in mass%, Cu: 0.02 to 0.1%, Ni: 0.02 to 0.1%, Cr: 0.02 to 0.1%, Mo: 0 3. A high-tensile steel material having excellent delayed fracture characteristics according to claim 1 or 2, wherein the steel material contains one or more of 0.02 to 0.10% and B: 0.0005 to 0.005%. .
【請求項4】 さらに鋼材成分として、質量%で、 Ca:0.0005〜0.005%、 REM:0.0005〜0.005%、 Mg:0.0005〜0.007%、 の1種または2種以上を含有したことを特徴とする請求
項1乃至3記載の遅れ破壊特性の優れた高張力鋼材。
4. As a steel material component, one of the following mass%: Ca: 0.0005 to 0.005%, REM: 0.0005 to 0.005%, Mg: 0.0005 to 0.007% 4. A high-tensile steel material having excellent delayed fracture characteristics according to claim 1, wherein the steel material contains two or more kinds.
【請求項5】 ビレット連続鋳造方法で鋳造した、請求
項1乃至4のいずれかの項に記載の鋼材成分を有する鋳
片を、熱間圧延後冷間引き抜き加工した線径9mm以上の
鋼材を、850〜1050℃の温度範囲に加熱後焼き入
れし、次いで、350〜550℃の温度領域に急速加熱
した後に焼き戻すことを特徴とする遅れ破壊特性の優れ
た高張力鋼材の製造方法。
5. A steel piece having a wire diameter of 9 mm or more obtained by subjecting a slab having the steel material component according to any one of claims 1 to 4 to cold drawing after hot rolling after casting by a billet continuous casting method. And quenching after heating to a temperature range of 850 to 1050 ° C., then rapidly heating to a temperature range of 350 to 550 ° C., and then tempering the material.
JP35066499A 1999-12-09 1999-12-09 High tensile strength steel excellent in delayed fracture characteristic and producing method therefor Withdrawn JP2001164337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35066499A JP2001164337A (en) 1999-12-09 1999-12-09 High tensile strength steel excellent in delayed fracture characteristic and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35066499A JP2001164337A (en) 1999-12-09 1999-12-09 High tensile strength steel excellent in delayed fracture characteristic and producing method therefor

Publications (1)

Publication Number Publication Date
JP2001164337A true JP2001164337A (en) 2001-06-19

Family

ID=18412023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35066499A Withdrawn JP2001164337A (en) 1999-12-09 1999-12-09 High tensile strength steel excellent in delayed fracture characteristic and producing method therefor

Country Status (1)

Country Link
JP (1) JP2001164337A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004054A1 (en) * 2004-07-05 2006-01-12 Sumitomo(Sei) Steel Wire Corp. Annular concentrically twisted bead cord
CN1330785C (en) * 2005-12-27 2007-08-08 东北大学 Strength of extension 1000 MPa grade complex phase steel plate and mfg. method thereof
CN100348767C (en) * 2005-12-27 2007-11-14 东北大学 Strength of extension 750-795 MPa grade double-phase steel plate and mfg. method thereof
EP2733229A1 (en) * 2011-07-15 2014-05-21 Posco Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt
KR101403267B1 (en) * 2012-04-12 2014-06-02 주식회사 포스코 High strength wire rod having execellent drawability and steel wire and method for manufacturing thereof
KR101543844B1 (en) * 2013-07-31 2015-08-11 주식회사 포스코 High strength wire rod and method for manufacturing thereof
JP2015161018A (en) * 2014-02-28 2015-09-07 Jfeスチール株式会社 Reinforcement and manufacturing method therefor
CN105886948A (en) * 2015-01-26 2016-08-24 鞍钢股份有限公司 Production method for 35Si2Cr steel bar for high-speed railway ballastless track
KR101726086B1 (en) * 2015-12-22 2017-04-12 주식회사 포스코 Stell wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof
CN109963960A (en) * 2016-10-28 2019-07-02 日本制铁株式会社 Wire rod and its manufacturing method
CN110573638A (en) * 2017-03-28 2019-12-13 住友电气工业株式会社 Wire and spring

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004054A1 (en) * 2004-07-05 2006-01-12 Sumitomo(Sei) Steel Wire Corp. Annular concentrically twisted bead cord
US7735307B2 (en) 2004-07-05 2010-06-15 Sumitomo (Sei) Steel Wire Corp. Annular concentric-lay bead cord
CN1330785C (en) * 2005-12-27 2007-08-08 东北大学 Strength of extension 1000 MPa grade complex phase steel plate and mfg. method thereof
CN100348767C (en) * 2005-12-27 2007-11-14 东北大学 Strength of extension 750-795 MPa grade double-phase steel plate and mfg. method thereof
EP2733229A4 (en) * 2011-07-15 2015-04-08 Posco Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt
EP2733229A1 (en) * 2011-07-15 2014-05-21 Posco Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt
KR101403267B1 (en) * 2012-04-12 2014-06-02 주식회사 포스코 High strength wire rod having execellent drawability and steel wire and method for manufacturing thereof
KR101543844B1 (en) * 2013-07-31 2015-08-11 주식회사 포스코 High strength wire rod and method for manufacturing thereof
JP2015161018A (en) * 2014-02-28 2015-09-07 Jfeスチール株式会社 Reinforcement and manufacturing method therefor
CN105886948A (en) * 2015-01-26 2016-08-24 鞍钢股份有限公司 Production method for 35Si2Cr steel bar for high-speed railway ballastless track
KR101726086B1 (en) * 2015-12-22 2017-04-12 주식회사 포스코 Stell wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof
CN109963960A (en) * 2016-10-28 2019-07-02 日本制铁株式会社 Wire rod and its manufacturing method
CN110573638A (en) * 2017-03-28 2019-12-13 住友电气工业株式会社 Wire and spring

Similar Documents

Publication Publication Date Title
US7048811B2 (en) Electric resistance-welded steel pipe for hollow stabilizer
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
JP2001164337A (en) High tensile strength steel excellent in delayed fracture characteristic and producing method therefor
JP3374659B2 (en) Ultra-high tensile ERW steel pipe and method of manufacturing the same
JPH06306543A (en) High strength pc wire rod excellent in delayed fracture resistance and its production
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP2004250767A (en) Steel for machine structural having excellent cold workability, and production method therefor
JP5907063B2 (en) Steel for rebar and method for manufacturing the same
JP2007056283A (en) High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method
JP2001073081A (en) Low yield ratio high tensile strength steel rod and its production
JPH0987798A (en) High tensile strength hot rolled steel plate, having superfine grain and excellent in ductility, toughness, fatigue characteristic, and strength-ductility balance, and its production
JP3153071B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP3153072B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP2001073080A (en) High tensile strength steel excellent in delayed fracture characteristic and its production
JPH10298648A (en) Manufacture of high tensile strength steel product having high uniform elongation and low yield ratio
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JP5907062B2 (en) Steel for rebar and method for manufacturing the same
JPH10298664A (en) Manufacture of high tensile strength steel product having high uniform elongation and low yield ratio
JP3536752B2 (en) Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same
JP3217589B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JP7472826B2 (en) Electric resistance welded steel pipe and its manufacturing method
JP2001115231A (en) High tensile strength steel bar and producing method therefor
JPH0978194A (en) High strength pc steel bar excellent in delayed fracture characteristic and its production
JP4396007B2 (en) High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306