JPH10298648A - High uniform elongation Low yield ratio - Google Patents
High uniform elongation Low yield ratioInfo
- Publication number
- JPH10298648A JPH10298648A JP10645697A JP10645697A JPH10298648A JP H10298648 A JPH10298648 A JP H10298648A JP 10645697 A JP10645697 A JP 10645697A JP 10645697 A JP10645697 A JP 10645697A JP H10298648 A JPH10298648 A JP H10298648A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- uniform elongation
- steel
- less
- yield ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 47
- 239000010959 steel Substances 0.000 claims abstract description 47
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 20
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 18
- 238000005496 tempering Methods 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 239000002131 composite material Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 230000000717 retained effect Effects 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 23
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 4
- 238000010791 quenching Methods 0.000 abstract description 3
- 230000000171 quenching effect Effects 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract description 2
- 230000009466 transformation Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 16
- 239000011513 prestressed concrete Substances 0.000 description 16
- 239000004567 concrete Substances 0.000 description 13
- 230000003014 reinforcing effect Effects 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 238000005336 cracking Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】
【課題】 本発明はスポット溶接性に優れたPC鋼材の
製造方法を提供する。
【解決手段】 重量%で、C:0.1〜0.4%、S
i:0.5〜2.5%、Mn:0.3〜2.0%、P:
0.03%以下、S:0.02%以下を含有し、残部が
Feおよび不可避的不純物からなる線材を、オーステナ
イト領域に加熱し、この温度領域から300〜400℃
の温度領域に急冷し、この温度領域で5〜150秒間恒
温保持し、引き続き400〜550℃の温度領域に5〜
150秒間保持する焼戻を行った後、直ちに急冷または
放冷することを特徴とする焼戻ベイナイトまたは焼戻マ
ルテンサイトまたは該組織に残留オーステナイトを含有
する複合組織を有する高一様伸び低降伏比高張力鋼材の
製造方法。(57) Abstract: The present invention provides a method for producing a PC steel excellent in spot weldability. SOLUTION: In weight%, C: 0.1-0.4%, S
i: 0.5 to 2.5%, Mn: 0.3 to 2.0%, P:
A wire rod containing 0.03% or less, S: 0.02% or less, and the balance consisting of Fe and unavoidable impurities is heated to an austenite region, and from this temperature region to 300 to 400 ° C.
Rapidly cooled to a temperature range of 5 to 150 ° C., and kept at a constant temperature for 5 to 150 seconds.
A high uniform elongation and low yield ratio having tempered bainite or tempered martensite or a composite structure containing retained austenite in the structure, characterized by immediately quenching or cooling after tempering for 150 seconds. A method for manufacturing high-tensile steel.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、スポット溶接性に
優れた引張強さ1000MPa以上の強度レベルで高い
延性を有するPC(プレストレス・コンクリート)鋼材
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a PC (prestressed concrete) steel material having excellent spot weldability and having high ductility at a tensile strength of 1000 MPa or more.
【0002】[0002]
【従来の技術】コンクリートパイルの中でも剛性および
曲げ強さの向上、コンクリートのひび割れ防止の目的で
コンクリートに圧縮を与えて強化するものはPCパイル
と称され、以下の方法で製造されている。まず、円周上
に並列に配したPC鋼材に軟鋼線を螺旋状に巻き付けた
後(以後螺旋筋と称す)、PC鋼材と螺旋筋の交点を固
定して円筒状の籠片型補強体(以下補強体と略称)を製
造する。次いで、この補強体を型枠に導入し、補強体を
構成するPC鋼材の両端を固定して、引張強さの70%
前後の応力で緊張する。型枠内に注入したコンクリート
が固化した後に、PC鋼材の緊張力が除去され、同時に
コンクリートに圧縮力が付与されてPCパイルが製造さ
れる。この製造工程中、補強体の組立を自動化するため
に、溶接性の良好な低中炭素鋼の熱処理強化型PC鋼材
が使用され、PC鋼材と螺旋筋の固定はスポット溶接に
より行われる。2. Description of the Related Art Among concrete piles, those which compress and strengthen concrete for the purpose of improving rigidity and bending strength and preventing cracking of concrete are called PC piles and are manufactured by the following method. First, after a mild steel wire is spirally wound around a PC steel material arranged in parallel on a circumference (hereinafter referred to as a spiral), an intersection of the PC steel material and the spiral is fixed, and a cylindrical cage piece type reinforcing body ( (Hereinafter abbreviated as reinforcement). Next, this reinforcing body was introduced into a mold, and both ends of the PC steel material constituting the reinforcing body were fixed, and 70% of the tensile strength was obtained.
Tension due to front and rear stress. After the concrete poured into the form is solidified, the tension of the PC steel material is removed, and at the same time, a compressive force is applied to the concrete to produce a PC pile. During this manufacturing process, in order to automate the assembling of the reinforcing member, a heat-treated reinforced PC steel material of low-medium carbon steel having good weldability is used, and fixing of the helical muscle to the PC steel material is performed by spot welding.
【0003】近年、鋼構造物の巨大化にともない、その
部材に使用される鋼材はますます高強度化する傾向にあ
る。例えば、コンクリートパイルに主筋として使用され
るPC鋼棒は、JIS G3109に規定されるよう
に、引張強さ1420MPa以上とされている。一般
に、線材の強度と延性はその性質が相反するもので、高
張力鋼ほど伸びで代表される延性は低下する。特に、一
様伸びの値は極端に低下する。現在、多く使用さている
PC鋼棒は、熱間圧延材を焼入焼戻することによって所
定の強度、延性が付与されている。しかしながら、この
ような焼戻マルテンサイト組織で高強度化を図ると、一
様伸びは約3%程度になる。一様伸びが低値の場合、コ
ンクリート構造物に地震などの大きな衝撃荷重が加わる
とPC鋼棒が破断し、もはや鉄筋としての役割を果たさ
ない。[0003] In recent years, with the increase in the size of steel structures, the steel materials used for the members tend to have higher strength. For example, a PC steel rod used as a main reinforcing bar in a concrete pile has a tensile strength of 1420 MPa or more as specified in JIS G3109. Generally, the strength and ductility of a wire are opposite to each other, and the ductility represented by elongation decreases as the strength of a high-strength steel increases. In particular, the value of uniform elongation drops extremely. At present, PC steel rods, which are widely used, are given predetermined strength and ductility by quenching and tempering a hot-rolled material. However, when the tempered martensite structure is used to increase the strength, the uniform elongation is about 3%. When the uniform elongation is low, when a large impact load such as an earthquake is applied to the concrete structure, the PC steel bar breaks and no longer functions as a reinforcing bar.
【0004】特開平8−158010号公報では、高S
i−Al系でフェライトを含有する組織で高一様伸び化
を図っている。しかしながら、高Si−Al系では熱処
理時に通電性を低下させるスケールが多量に生成し、ス
ポット溶接性が低下する。また、特開昭57−1206
22号公報では、ベイナイトを生成させて高張力鋼の高
一様伸び化を図っている。しかしながら、近年コンクリ
ート構造物の耐震性を確保するために、高一様伸びと同
様に低降伏比(低YR)が要求される傾向にあるが、特
開昭57−120622号公報では低降伏比に関する検
討は実施していない。Japanese Patent Application Laid-Open No. 8-158010 discloses a high S
High uniform elongation is achieved with a ferrite-containing structure in the i-Al system. However, in the case of a high Si-Al system, a large amount of scale that reduces the electrical conductivity during heat treatment is generated, and spot weldability is reduced. Also, Japanese Patent Application Laid-Open No. 57-1206
In Japanese Patent Publication No. 22, bainite is produced to achieve high uniform elongation of high-tensile steel. However, in recent years, in order to secure the earthquake resistance of concrete structures, a low yield ratio (low YR) as well as a high uniform elongation tends to be required, but Japanese Patent Application Laid-Open No. 57-120622 discloses a low yield ratio. No study has been conducted.
【0005】このため、スポット溶接性に優れ、高一様
伸びでかつ低降伏比の高張力鋼材がコンクリート構造物
の耐震性確保の観点から求められている。[0005] Therefore, a high-strength steel material having excellent spot weldability, high uniform elongation, and low yield ratio is required from the viewpoint of ensuring the earthquake resistance of concrete structures.
【0006】[0006]
【発明が解決しようとする課題】本発明は、コンクリー
トポール、パイルなどのコンクリート構造物に使用され
るスポット溶接性に優れたPC鋼材の製造方法を提供す
ることを目的とするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a PC steel material having excellent spot weldability used for concrete structures such as concrete poles and piles.
【0007】[0007]
【課題を解決するための手段】コンクリートポール、パ
イルなどのコンクリート構造物に使用されるPC鋼材の
場合には、一般に約1300MPa以上の強度が要求さ
れている。このような高張力鋼で高一様伸びとスポット
溶接性の両特性を満足させるために、本発明者らは、一
様伸び特性および降伏比におよぼす製造条件の影響の詳
細な検討を実施した。その結果、高張力鋼に、微細なオ
ーステナイトを300〜400℃の温度領域で恒温保持
してマルテンサイトまたはベイナイトを生成させること
により高張力化が図れ、またベイナイトの生成により高
延性化が図れることを見出した。また、図1に示すよう
に、恒温変態時間を短くすると低降伏比化が図れること
を見出した。これは、恒温変態時間を短くするとマルテ
ンサイト分率が上昇し、降伏が起こりやすくるためであ
る。SUMMARY OF THE INVENTION In the case of PC steel used for concrete structures such as concrete poles and piles, a strength of about 1300 MPa or more is generally required. In order to satisfy both characteristics of high uniform elongation and spot weldability in such a high-tensile steel, the present inventors conducted detailed examination of the effects of manufacturing conditions on uniform elongation characteristics and yield ratio. . As a result, high tensile strength can be achieved by generating fine martensite or bainite by maintaining fine austenite at a constant temperature of 300 to 400 ° C. in high-tensile steel, and high ductility can be achieved by forming bainite. Was found. Further, as shown in FIG. 1, it has been found that a lower yield ratio can be achieved by shortening the isothermal transformation time. This is because if the isothermal transformation time is shortened, the martensite fraction increases, and yielding easily occurs.
【0008】また、300〜400℃の恒温変態で一様
伸びに有効なベイナイトと低降伏比化のためのマルテン
サイトを安定して生成させ、引き続き400〜550℃
の温度域で焼戻すことにより、初期に硬化し過ぎた主と
してマルテンサイトの焼戻により強度の最適化とともに
高一様伸び化が図れることを見出した。本発明は、上記
の知見に基づいてなされたものであり、その要旨とする
ところは下記のとおりである。Further, bainite effective for uniform elongation and martensite for lowering the yield ratio are stably formed by isothermal transformation at 300 to 400 ° C., and subsequently 400 to 550 ° C.
It has been found that tempering in the temperature range described above can optimize strength and achieve high uniform elongation mainly by tempering martensite that has been excessively hardened in the early stage. The present invention has been made based on the above findings, and the gist thereof is as follows.
【0009】(1)重量%で、C:0.1〜0.40
%、Si:0.5〜2.5%、Mn:0.3〜2.0
%、P:0.03%以下、S:0.02%以下を含有
し、残部がFeおよび不可避的不純物からなる線材を、
オーステナイト領域に加熱し、この温度領域から300
〜400℃の温度領域に急冷し、この温度領域で5〜1
50秒間恒温保持し、引き続き400〜550℃の温度
領域に5〜150秒間保持する焼戻を行った後、直ちに
急冷または放冷することを特徴とする焼戻ベイナイトま
たは焼戻マルテンサイトまたは該組織に残留オーステナ
イトを含有する複合組織を有する高一様伸び低降伏比高
張力鋼材の製造方法。(1) C: 0.1 to 0.40% by weight
%, Si: 0.5 to 2.5%, Mn: 0.3 to 2.0
%, P: 0.03% or less, S: 0.02% or less, the balance being Fe and unavoidable impurities.
Heat to austenite range, and from this temperature range 300
Quenched to a temperature range of ~ 400 ° C,
Tempered bainite or tempered martensite or a structure characterized by being quenched or immediately cooled after tempering for 50 seconds at a constant temperature and subsequently for 5 to 150 seconds in a temperature range of 400 to 550 ° C. For producing a high-tensile-strength, low-yield-ratio, high-tensile-strength steel material having a composite structure containing residual austenite.
【0010】(2)さらに、線材の化学成分として、重
量%で、Nb:0.005〜0.5%、Ti:0.00
5〜0.5%、Al:0.10%以下、V:0.005
〜0.060%、Cu:0.05〜1.0%、Ni:
0.05〜1.0%、Cr:0.05〜1.0%、M
o:0.05〜0.35%、B:0.0005〜0.0
05%の1種または2種以上を含有することを特徴とす
る請求項1記載の高一様伸び低降伏比高張力鋼材の製造
方法。(2) Further, as chemical components of the wire rod, Nb: 0.005 to 0.5% and Ti: 0.00% by weight.
5 to 0.5%, Al: 0.10% or less, V: 0.005
0.060%, Cu: 0.05 to 1.0%, Ni:
0.05-1.0%, Cr: 0.05-1.0%, M
o: 0.05-0.35%, B: 0.0005-0.0
The method for producing a high-tensile steel material having a high uniform elongation and a low yield ratio according to claim 1, wherein one or more kinds of the steels are contained at a content of 05%.
【0011】[0011]
【作用】以下、本発明について詳細に説明する。まず、
本発明の化学成分の限定理由を述べる。 C:Cはマルテンサイトまたはベイナイトの強度を高め
るために添加するが、0.1%未満ではその効果は少な
い。一方、Cを過量に添加するとスポット溶接部の硬さ
が高くなり、溶接割れ感受性が上昇するため、その上限
を0.4%とする。Hereinafter, the present invention will be described in detail. First,
The reasons for limiting the chemical components of the present invention will be described. C: C is added to increase the strength of martensite or bainite, but its effect is small if less than 0.1%. On the other hand, if C is added in an excessive amount, the hardness of the spot weld increases, and the susceptibility to weld cracking increases. Therefore, the upper limit is set to 0.4%.
【0012】Si:Siは強度およびリラクゼーション
特性確保のために必要な元素であるが、0.5%未満で
はその効果がない。一方、Si量が2.5%超になると
スポット溶接に有害なスケールが多量に生成するため、
上限を2.5%とした。 Mn:Mnは一様伸びと焼入性向上のために必要である
が、0.3%未満ではその効果はない。一方、Mnを
2.0%超添加しても強度改善効果は飽和し、また中心
偏析部にミクロマルテンサイトを生成して延伸性を低下
させる。したがってMn量は0.3〜2.0の範囲とす
る。Si: Si is an element necessary for securing strength and relaxation properties, but if less than 0.5%, the effect is not obtained. On the other hand, if the Si content exceeds 2.5%, a large amount of scale harmful to spot welding is generated.
The upper limit was set to 2.5%. Mn: Mn is required for uniform elongation and hardenability improvement, but if less than 0.3%, there is no effect. On the other hand, even if Mn is added in an amount of more than 2.0%, the strength improving effect is saturated, and micro-martensite is generated in the central segregation portion to lower the stretchability. Therefore, the Mn content is in the range of 0.3 to 2.0.
【0013】P:Pは粒界に偏析して粒界脆化を起こし
やすくするため、0.03%以下にする必要がある。不
純物元素であるPは極力低減することが望ましい。 S:SもPと同様に粒界に偏析して粒界脆化を起こしや
すくするため、0.02%以下にする必要がある。不純
物元素であるSは極力低減することが望ましい。P: P must be not more than 0.03% in order to segregate at the grain boundaries and easily cause grain boundary embrittlement. It is desirable that P, which is an impurity element, be reduced as much as possible. S: S is also required to be 0.02% or less because S is also segregated at the grain boundary similarly to P and easily causes grain boundary embrittlement. It is desirable that S, which is an impurity element, be reduced as much as possible.
【0014】本発明鋼材は、上記元素を含有し、残部が
Feおよび不可避的不純物からなるものであるが、さら
に、特性向上を図るために、下記の元素の1種または2
種以上を含有することができる。 Nb:NbはNb析出物のピニング効果によりオーステ
ナイト粒を微細化して延性を向上させる。そのためには
0.005%以上の添加が必要である。しかしながら、
0.05%超添加するとスポット溶接部の硬さを上昇さ
せ、溶接割れ感受性を上昇させる。このためNbの適正
範囲を0.005〜0.05%とした。The steel material of the present invention contains the above-mentioned elements, with the balance being Fe and unavoidable impurities. In order to further improve the properties, one or more of the following elements are used.
It can contain more than one species. Nb: Nb refines austenite grains by the pinning effect of Nb precipitates and improves ductility. For that purpose, 0.005% or more must be added. However,
Addition of more than 0.05% increases the hardness of the spot weld and increases the susceptibility to weld cracking. Therefore, the appropriate range of Nb is set to 0.005 to 0.05%.
【0015】Ti:TiはTi析出物のピニング効果に
よりNbと同様に組織を微細化する。そのためには0.
005%以上の添加が必要である。しかし、0.05%
超添加すると粗大なTiNが多量に析出するため材質特
性を劣化させる。このため、Tiの上限を0.05%と
した。 Al:Alは脱酸元素として鋼に添加されるが、過量に
添加すると粗大なアルミナ系酸化物の生成して延性を低
下させるため、その上限を0.10%とした。Ti: Ti refines the structure similarly to Nb due to the pinning effect of Ti precipitates. For that, 0.
005% or more must be added. However, 0.05%
If added excessively, coarse TiN precipitates in large quantities, deteriorating the material properties. Therefore, the upper limit of Ti is set to 0.05%. Al: Al is added to steel as a deoxidizing element, but if added in excessive amounts, coarse alumina-based oxides are formed and ductility is reduced, so the upper limit was made 0.10%.
【0016】V:Vは炭窒化物を析出させ、γ粒を微細
化して強度、延性を向上させる。そのためには0.00
5%以上の添加が必要であり、下限値を0.005%と
した。しかし、多量の添加では効果が飽和するため、上
限値を0.060%とした。 Cu:Cuは0.05%未満では焼入性の向上が十分で
ないため、0.05%を下限値とした。しかし、1.0
%を超えると熱間割れを引き起こすため、上限値を1.
0%とした。V: V precipitates carbonitride and refines γ grains to improve strength and ductility. For that, 0.00
It is necessary to add 5% or more, and the lower limit was made 0.005%. However, the effect is saturated with a large amount of addition, so the upper limit was made 0.060%. Cu: If Cu is less than 0.05%, hardenability is not sufficiently improved, so 0.05% was made the lower limit. However, 1.0
%, Hot cracking is caused.
0%.
【0017】Ni:Niは0.05%未満では焼入性の
向上が十分でないため、0.05%を下限値とした。し
かし、1.0%を超えると効果は飽和するため、上限値
を1.0%とした。 Cr:Crは固溶強化、焼入性向上により鋼の強度を上
昇させるが、0.05%未満では効果が不十分であるた
め、0.05%を下限とした。一方、1.0%を超える
と効果は飽和するため、上限値を1.0%とした。Ni: If Ni is less than 0.05%, the hardenability is not sufficiently improved, so 0.05% was made the lower limit. However, if the content exceeds 1.0%, the effect is saturated, so the upper limit is set to 1.0%. Cr: Cr increases the strength of the steel by solid solution strengthening and hardenability improvement. However, if the content is less than 0.05%, the effect is insufficient, so the lower limit is made 0.05%. On the other hand, if it exceeds 1.0%, the effect is saturated, so the upper limit is set to 1.0%.
【0018】Mo:Moはリラクゼーション特性を向上
させるために有効な元素である。しかしながら、少なく
とも0.05%添加しないとその効果は認められない。
また、0.35%超添加するとスポット溶接部の割れ感
受性が上昇する。このため、Moの成分範囲を0.05
〜0.35%とした。 B:Bは0.0005%未満では焼入性の向上が十分で
ないため、0.0005%を下限値とした。しかし、
0.005%を超えると効果は飽和するため、上限値を
0.005%とした。Mo: Mo is an element effective for improving relaxation characteristics. However, the effect is not recognized unless at least 0.05% is added.
Further, when the addition exceeds 0.35%, the crack susceptibility of the spot weld increases. Therefore, the Mo component range is set to 0.05.
-0.35%. B: If B is less than 0.0005%, the hardenability is not sufficiently improved, so 0.0005% was made the lower limit. But,
If the content exceeds 0.005%, the effect is saturated, so the upper limit was made 0.005%.
【0019】次に、熱処理条件を限定した理由を述べ
る。400℃超の温度で恒温変態させると一部に疑似パ
ーライトが生成し、所定の強度が得られず、また安定な
ベイナイト変態が進行しない。一方、300℃未満の温
度域ではベイナイト変態が殆ど起こらず、高延性化が図
れない。前述したように、高一様伸びにするためにはベ
イナイトの生成率を上昇させる必要があり、また低降伏
比化のためにはマルテンサイト分率を上昇させる必要が
あるため、所望の強度に応じて恒温変態温度を変える必
要がある。本発明においては、組織の分率のバランスに
ついては言及しないが、通常の強度のPC鋼材として使
用する場合には、望ましくは350℃以下がよい。Next, the reasons for limiting the heat treatment conditions will be described. When subjected to isothermal transformation at a temperature higher than 400 ° C., pseudo-pearlite is partially generated, a predetermined strength cannot be obtained, and stable bainite transformation does not proceed. On the other hand, in a temperature range lower than 300 ° C., bainite transformation hardly occurs, and high ductility cannot be achieved. As described above, it is necessary to increase the generation rate of bainite in order to achieve high uniform elongation, and it is necessary to increase the martensite fraction in order to reduce the yield ratio. It is necessary to change the isothermal transformation temperature accordingly. In the present invention, the balance of the fractions of the structure is not mentioned, but when it is used as a normal strength PC steel, the temperature is desirably 350 ° C. or less.
【0020】また、ベイナイト変態を終了させると恒温
変態時のマルテンサイト分率が低下するため、低降伏比
化が図れない。このため、恒温変態時間を150秒以下
とする必要がある。一方、恒温変態時間を5秒未満とす
るとベイナイト変態が殆ど起こらず、一様伸びが低下す
る。引き続き連続的に400〜550℃の温度域に焼戻
すことにより、主として強度の調整を図る。焼戻温度が
550℃を超えると強度が著しく低下する。また、40
0℃未満では焼戻としての効果が得られず、一様伸びの
向上が図れない。このため、焼戻温度は400〜550
℃とした。焼戻時間は5秒未満では効果がなく、また1
50秒を超えても強度に関する効果はほぼ飽和するた
め、5〜150秒とした。Further, when the bainite transformation is terminated, the martensite fraction at the time of constant temperature transformation is reduced, so that a low yield ratio cannot be achieved. For this reason, the constant temperature transformation time needs to be 150 seconds or less. On the other hand, when the isothermal transformation time is less than 5 seconds, bainite transformation hardly occurs, and uniform elongation decreases. Continuously tempering to a temperature range of 400 to 550 ° C. continuously to mainly adjust the strength. If the tempering temperature exceeds 550 ° C., the strength is significantly reduced. Also, 40
If the temperature is lower than 0 ° C., the effect of tempering cannot be obtained, and the uniform elongation cannot be improved. Therefore, the tempering temperature is 400 to 550.
° C. If the tempering time is less than 5 seconds, there is no effect.
Even if the time exceeds 50 seconds, the effect on the strength is almost saturated.
【0021】次に、組織を規定した理由について述べ
る。強度確保のためにベイナイトおよびマルテンサイト
の複合組織とし、延性を確保するためにはベイナイト組
織とする必要がある。このため、恒温変態時にベイナイ
トとマルテンサイトを生成させる。所望の強度を確保す
るために、焼戻ベイナイトと焼戻マルテンサイトの複合
組織とする。すなわち、高一様伸びの確保の観点からは
ベイナイトの生成を増加させる必要があるが、マルテン
サイトを焼戻すことにより一様伸びの低下は抑えられ
る。また、低降伏比化のためにマルテンサイトを生成さ
せる。Next, the reason for defining the organization will be described. It is necessary to form a composite structure of bainite and martensite to ensure strength, and to form a bainite structure to ensure ductility. For this reason, bainite and martensite are generated during the isothermal transformation. In order to secure a desired strength, a composite structure of tempered bainite and tempered martensite is used. That is, from the viewpoint of ensuring high uniform elongation, it is necessary to increase the generation of bainite, but by tempering martensite, a decrease in uniform elongation can be suppressed. In addition, martensite is generated for lowering the yield ratio.
【0022】なお、本発明においてはSi量が高いた
め、残留オーステナイトが少量生成するが、材質特性を
劣化させるものではない。このため、焼戻処理後急冷ま
たは放冷しても材質特性は劣化しない。したがって、必
要に応じて急冷または放冷を選択する。In the present invention, since the amount of Si is high, a small amount of retained austenite is generated, but does not deteriorate the material properties. For this reason, even if it is quenched or left to cool after the tempering process, the material properties do not deteriorate. Therefore, quenching or cooling is selected as needed.
【0023】[0023]
〔実施例〕以下、本発明の実施例について説明する。表
1、表2(表1のつづき)の化学成分の供試鋼を使い、
表3に示す熱処理を行った。これによって得られた鋼材
の機械的性質およびスポット溶接性の結果を表4に示
す。また、引張試験の一様伸びの評価方法はGL(評価
部)を30dとし、破断位置およびその両隣を除いた長
さから算出された一様伸びの平均値を示した。Embodiment An embodiment of the present invention will be described below. Using test steels with chemical components shown in Tables 1 and 2 (continued from Table 1),
The heat treatment shown in Table 3 was performed. Table 4 shows the results of the mechanical properties and the spot weldability of the steel material obtained in this manner. Further, the method of evaluating the uniform elongation in the tensile test was such that the GL (evaluation part) was 30d, and the average value of the uniform elongation calculated from the breaking position and the length excluding both sides thereof was shown.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】[0027]
【表4】 [Table 4]
【0028】本発明鋼の鋼1〜10は材質特性を満足し
た。鋼11〜14は適切な鋼成分ではないので、良好な
機械的性質または溶接性が確保できなかった。鋼11は
C量が低いため強度不足となった。鋼12はC量が高く
スポット溶接性が低下した。鋼13はSi量が低くリラ
クゼーション特性が低下した。鋼14はSiが過量に添
加されているためスポット溶接性が低下した。The steels 1 to 10 of the present invention satisfied the material characteristics. Since steels 11 to 14 are not appropriate steel components, good mechanical properties or weldability could not be secured. Steel 11 had insufficient strength due to low C content. Steel 12 had a high C content and reduced spot weldability. Steel 13 had a low Si content and reduced relaxation characteristics. In the steel 14, the spot weldability was reduced due to excessive addition of Si.
【0029】鋼15〜21は適正な製造条件になってお
らず、良好な材質特性が得られなかった。鋼15は恒温
変態時間が長いためマルテンサイト分率が減少して低降
伏比化が図れなかった。また、鋼16は恒温変態時間を
短くしたためベイナイトが生成せず一様伸びが低下し
た。鋼17は恒温変態温度が高くパーライトが生成して
強度の低下を招いた。鋼18は恒温変態温度が低くベイ
ナイト量が減少して一様伸びが低下した。鋼19は恒温
変態後の焼戻温度が高いため強度が低下した。[0029] Steels 15 to 21 were not under appropriate production conditions, and good material properties could not be obtained. Since steel 15 had a long isothermal transformation time, the martensite fraction was reduced, and a low yield ratio could not be achieved. In steel 16, bainite was not generated because the isothermal transformation time was shortened, and uniform elongation was reduced. Steel 17 had a high isothermal transformation temperature and generated pearlite, resulting in a decrease in strength. Steel 18 had a low isothermal transformation temperature, a reduced bainite content, and reduced uniform elongation. Steel 19 had a high tempering temperature after the isothermal transformation, and thus had a reduced strength.
【0030】[0030]
【発明の効果】本発明により、溶接性に優れた高強度P
C鋼線用鋼材を得ることができ、工業的に非常に有用で
ある。According to the present invention, high strength P excellent in weldability is obtained.
A steel material for C steel wire can be obtained, which is industrially very useful.
【図1】恒温変態時間と降伏比の関係を示す図である。FIG. 1 is a diagram showing a relationship between a constant temperature transformation time and a yield ratio.
Claims (2)
材を、オーステナイト領域に加熱し、この温度領域から
300〜400℃の温度領域に急冷し、この温度領域で
5〜150秒間恒温保持し、引き続き400〜550℃
の温度領域に5〜150秒間保持する焼戻を行った後、
直ちに急冷または放冷することを特徴とする焼戻ベイナ
イトまたは焼戻マルテンサイトまたは該組織に残留オー
ステナイトを含有する複合組織を有する高一様伸び低降
伏比高張力鋼材の製造方法。C .: 0.1 to 0.40%, Si: 0.5 to 2.5%, Mn: 0.3 to 2.0%, P: 0.03% or less by weight% S: 0.02% or less, and the balance consisting of Fe and unavoidable impurities is heated to an austenite region, rapidly cooled from this temperature region to a temperature region of 300 to 400 ° C. Hold at constant temperature for 150 seconds, then 400-550 ° C
After performing tempering for 5 to 150 seconds in the temperature range of
A method for producing a high-tensile-strength, low-yield-ratio, high-strength steel material having a tempered bainite or tempered martensite or a composite structure containing retained austenite in the structure, which is immediately quenched or left to cool.
で、 Nb:0.005〜0.5%、 Ti:0.005〜0.5%、 Al:0.10%以下、 V:0.005〜0.060%、 Cu:0.05〜1.0%、 Ni:0.05〜1.0%、 Cr:0.05〜1.0%、 Mo:0.05〜0.35%、 B:0.0005〜0.005% の1種または2種以上を含有することを特徴とする請求
項1記載の高一様伸び低降伏比高張力鋼材の製造方法。2. The composition according to claim 1, further comprising:
Nb: 0.005 to 0.5%, Ti: 0.005 to 0.5%, Al: 0.10% or less, V: 0.005 to 0.060%, Cu: 0.05 to 1 0.0%, Ni: 0.05 to 1.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 0.35%, B: 0.0005 to 0.005% The method for producing a high-tensile-strength steel material having a high uniform elongation and a low yield ratio according to claim 1 or 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10645697A JPH10298648A (en) | 1997-04-23 | 1997-04-23 | High uniform elongation Low yield ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10645697A JPH10298648A (en) | 1997-04-23 | 1997-04-23 | High uniform elongation Low yield ratio |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10298648A true JPH10298648A (en) | 1998-11-10 |
Family
ID=14434103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10645697A Pending JPH10298648A (en) | 1997-04-23 | 1997-04-23 | High uniform elongation Low yield ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10298648A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100516520B1 (en) * | 2001-12-27 | 2005-09-26 | 주식회사 포스코 | Method for manufacturing high strength working product having low yield ratio |
WO2007079876A1 (en) * | 2006-01-10 | 2007-07-19 | Sms Demag Ag | Method and device adjusting targeted combinations of properties of polyphase steel |
EP1832667A1 (en) * | 2006-03-07 | 2007-09-12 | ARCELOR France | Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets. |
KR100987347B1 (en) * | 2008-06-23 | 2010-10-12 | 동국제강주식회사 | Manufacturing method of high strength resistive steel |
KR101253790B1 (en) | 2005-12-27 | 2013-04-12 | 주식회사 포스코 | High-strength steel part having excellent resistance for delayed fracture and method for producing the same |
CN103834848A (en) * | 2014-03-18 | 2014-06-04 | 中天钢铁集团有限公司 | Steel for boron-containing prestressed steel wires and steel strands and smelting process thereof |
KR20200076540A (en) * | 2018-12-19 | 2020-06-29 | 주식회사 포스코 | Steel wire rod for cold forging with improved impact toughness, processed good using the same, and methods for manufacturing thereof |
-
1997
- 1997-04-23 JP JP10645697A patent/JPH10298648A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100516520B1 (en) * | 2001-12-27 | 2005-09-26 | 주식회사 포스코 | Method for manufacturing high strength working product having low yield ratio |
KR101253790B1 (en) | 2005-12-27 | 2013-04-12 | 주식회사 포스코 | High-strength steel part having excellent resistance for delayed fracture and method for producing the same |
WO2007079876A1 (en) * | 2006-01-10 | 2007-07-19 | Sms Demag Ag | Method and device adjusting targeted combinations of properties of polyphase steel |
EP1832667A1 (en) * | 2006-03-07 | 2007-09-12 | ARCELOR France | Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets. |
WO2007101921A1 (en) * | 2006-03-07 | 2007-09-13 | Arcelormittal France | Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced |
US9856548B2 (en) | 2006-03-07 | 2018-01-02 | Arcelormittal France | Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced |
US10370746B2 (en) | 2006-03-07 | 2019-08-06 | Arcelormittal | Process for manufacturing steel sheet |
KR100987347B1 (en) * | 2008-06-23 | 2010-10-12 | 동국제강주식회사 | Manufacturing method of high strength resistive steel |
CN103834848A (en) * | 2014-03-18 | 2014-06-04 | 中天钢铁集团有限公司 | Steel for boron-containing prestressed steel wires and steel strands and smelting process thereof |
KR20200076540A (en) * | 2018-12-19 | 2020-06-29 | 주식회사 포스코 | Steel wire rod for cold forging with improved impact toughness, processed good using the same, and methods for manufacturing thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10298648A (en) | High uniform elongation Low yield ratio | |
JP2001164337A (en) | High tensile strength steel excellent in delayed fracture characteristics and method of manufacturing the same | |
JP2001073081A (en) | Low Yield Ratio High Tensile Steel Bar and Manufacturing Method | |
JP4146205B2 (en) | PC steel wire having good delayed fracture resistance, its manufacturing method, and PC stranded wire | |
JPH10298664A (en) | High uniform elongation Low yield ratio | |
JP4477762B2 (en) | High strength rolled PC steel bar and method for manufacturing the same | |
JP3887461B2 (en) | Steel for non-tempered bolts | |
JP3457498B2 (en) | High-strength PC steel bar and method of manufacturing the same | |
JPH06336648A (en) | High strength PC bar wire excellent in delayed fracture resistance and its manufacturing method | |
JP4352590B2 (en) | Steel bars for reinforced concrete with excellent fatigue resistance of resistance welds | |
JP2001073080A (en) | High tensile strength steel excellent in delayed fracture characteristics and method of manufacturing the same | |
JPH1053814A (en) | High strength hot rolled steel material excellent in weldability, and high strength steel wire and high strength bar steel using the same | |
JP2006104550A (en) | High strength PC steel bar with excellent delayed fracture resistance and method for improving delayed fracture resistance | |
JP2000026937A (en) | High strength pc steel bar and its production | |
JPH0570890A (en) | Steel for high strength bolt excellent in delayed fracture resistance | |
JP3217589B2 (en) | High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same | |
JP4477763B2 (en) | High strength rolled PC steel bar and method for manufacturing the same | |
JPH0860291A (en) | Mechanical structural steel with excellent delayed fracture resistance | |
JP2003268493A (en) | Pc steel bar excellent in uniform elongation and pc steel bar of pc pile | |
JPH10298713A (en) | Hardened and tempered steel wire with excellent delayed fracture resistance of spot welds | |
JP3457494B2 (en) | High-strength PC steel bar and method of manufacturing the same | |
JP4486236B2 (en) | High strength rolled PC steel bar and method for manufacturing the same | |
JPH09279303A (en) | High-strength PC steel rod with excellent delayed fracture properties and method for producing the same | |
JPH0978194A (en) | High-strength PC steel rod with excellent delayed fracture properties and method for producing the same | |
JPH10298715A (en) | Steel wire rod with excellent delayed fracture resistance of spot welds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040203 |