JP3374659B2 - Ultra-high tensile ERW steel pipe and method of manufacturing the same - Google Patents

Ultra-high tensile ERW steel pipe and method of manufacturing the same

Info

Publication number
JP3374659B2
JP3374659B2 JP14602996A JP14602996A JP3374659B2 JP 3374659 B2 JP3374659 B2 JP 3374659B2 JP 14602996 A JP14602996 A JP 14602996A JP 14602996 A JP14602996 A JP 14602996A JP 3374659 B2 JP3374659 B2 JP 3374659B2
Authority
JP
Japan
Prior art keywords
steel pipe
strength
less
temperature
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14602996A
Other languages
Japanese (ja)
Other versions
JPH09104921A (en
Inventor
俊介 豊田
晴夫 三辻
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP14602996A priority Critical patent/JP3374659B2/en
Publication of JPH09104921A publication Critical patent/JPH09104921A/en
Application granted granted Critical
Publication of JP3374659B2 publication Critical patent/JP3374659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、ドアインパクトビ
ームなどの自動車用部材、さらには機械構造用部材、土
木建築用部材に用いられる超高張力電縫鋼管およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automobile member such as a door impact beam, an ultrahigh-strength electric resistance welded steel pipe used as a member for mechanical structure, a member for civil engineering and a method for manufacturing the same.

【0002】[0002]

【従来の技術】自動車などの車両ドア内部には、安全性
の観点からドアインパクトビームと呼ばれる補強材が設
けられている。従来のドアインパクトビームには、高張
力冷延鋼板のプレス成型品が用いられることが多かった
が、近年、軽量化のために、引張強度が980N/mm
2 以上の著しく強度の高い高張力電縫鋼管が採用される
ようになってきている。
2. Description of the Related Art A reinforcing material called a door impact beam is provided inside a vehicle door of an automobile or the like from the viewpoint of safety. Press molding of high-strength cold-rolled steel sheet was often used for the conventional door impact beam, but in recent years, in order to reduce the weight, the tensile strength is 980 N / mm.
High-strength ERW steel pipes with extremely high strength of 2 or more have been adopted.

【0003】これまで、超高張力鋼管に関しては、特開
平1-205032号、特開平4-131327号、特開平4-187319号、
特開平6-57375 号、特開平6-88129 号、特開平6-179913
号の各公報に開示されている、所定の化学成分を有する
鋼を引張強度980N/mm2 以上の高張力鋼板とした
後、電縫溶接し高強度電縫鋼管を得る方法が提案されて
いる。
Up to now, regarding ultra-high-strength steel pipes, JP-A 1-205032, JP-A 4-131327, JP-A 4-187319,
JP-A-6-57375, JP-A-6-88129, JP-A6-179913
A method for obtaining a high-strength electric resistance welded steel pipe is proposed, in which steel having a predetermined chemical composition is made into a high-strength steel sheet having a tensile strength of 980 N / mm 2 or more and then electric resistance welding is performed, which is disclosed in each of the publications. .

【0004】また、特開平3-122219号、特開平4-63227
号の各公報に開示されている、所定の化学成分を有する
鋼管に焼入れ処理を行い、引張強度1180N/mm2
以上の高張力電縫鋼管を得る方法が提案されている。
Further, JP-A-3-122219 and JP-A-4-63227.
The steel pipe having a predetermined chemical composition disclosed in each of the publications has a tensile strength of 1180 N / mm 2
A method for obtaining the above high-strength electric resistance welded steel pipe has been proposed.

【0005】[0005]

【解決しようとする課題】上記特開平1-205032号、特開
平4-131327号、特開平4-187319号、特開平6-57375 号、
特開平6-88129 号、特開平6-179913号の各公報などに示
された方法は、造管に伴い残留歪みが存在するため、そ
の実用に際しては水素遅れ割れに対する配慮が必要であ
る。
[Problems to be Solved] JP-A 1-205032, JP-A 4-131327, JP-A 4-187319, JP-A 6-57375,
In the methods disclosed in JP-A-6-88129 and JP-A-6-179913, there is residual strain associated with pipe making. Therefore, it is necessary to consider hydrogen delayed cracking in practical use.

【0006】しかし、これまでに示された方法では、水
素遅れ割れに対する配慮がなされていないか、あるいは
なされていても十分でなく、したがって超高張力鋼管の
需要拡大が制限されている。
However, in the methods presented so far, hydrogen delayed cracking is not taken into consideration, or even if it is not taken into consideration, the expansion of demand for ultra high strength steel pipes is limited.

【0007】一方、特開平3-122219号、特開平4-63227
号の各公報に示された方法は、引張の残留歪みはないも
のの、その使用中に腐食が進むと管体強度が低下するこ
とが問題である。
On the other hand, JP-A-3-122219 and JP-A-4-63227
Although the method disclosed in each of the publications has no residual tensile strain, there is a problem that the strength of the tubular body is deteriorated if corrosion progresses during its use.

【0008】本発明はかかる事情に鑑みてなされたもの
であって、引張強度が高く、耐水素遅れ割れ特性に優れ
た、またはこれに加えて耐食性にも優れた超高張力電縫
鋼管およびその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is an ultra-high-strength electric resistance welded steel pipe having a high tensile strength and an excellent hydrogen-delayed cracking resistance, or in addition to this, an excellent corrosion resistance. It is intended to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために多くの実験的検討を行った結果、鋼成
分の調整、および鋼板の熱処理条件および造管条件を適
正化して組織を調整することにより耐水素遅れ割れ特性
に優れた、またはこれに加えて耐食性にも優れた超高張
力電縫鋼管を得ることが可能となるという知見を得た。
Means for Solving the Problems As a result of many experimental studies to achieve the above-mentioned object, the inventors have adjusted the steel composition and optimized the heat treatment conditions and pipe forming conditions of the steel sheet. It was found that it is possible to obtain an ultra-high-strength electric resistance welded steel pipe which is excellent in hydrogen delayed cracking properties or, in addition to this, excellent in corrosion resistance by adjusting the structure.

【0010】本発明はこのような知見に基づいてなされ
たものであり、
The present invention has been made based on these findings,

【0011】重量%で、C:0.10〜0.19%、S
i:0.01〜0.5%、Mn:0.8〜2.2%、A
l:0.01〜0.06%、Cr:0.05〜0.6
%、、P:0.02%以下、S:0.003%以下、
N:0.005%以下、残部Fe及び不可避的不純物か
らなる鋼スラブに対し、前記鋼のAr3 変態点の温度を
TAr3 としたとき、仕上げ温度Tfが(TAr3 +3
0)〜(TAr3 +100)℃の温度範囲になるように
仕上げ温度Tfを制御して熱間圧延を施し、その熱間圧
延の際に、Tf〜(Tf+30)℃の温度範囲で30%
以上の圧下率を与え、熱間圧延後直ちに60〜200℃
/secの冷却速度で150〜250℃の温度範囲の温
度Tcまで冷却した後、150℃以上Tc以下の温度範
囲に2秒以上滞留させ、150℃未満の温度で巻取って
熱延鋼板とし、この熱延鋼板を以下の(1)式を満たす
幅絞り率Qで造管することを特徴とする超高張力電縫鋼
管の製造方法を提供する。
% By weight, C: 0.10 to 0.19%, S
i: 0.01 to 0.5%, Mn: 0.8 to 2.2%, A
1: 0.01 to 0.06%, Cr: 0.05 to 0.6
%, P: 0.02% or less, S: 0.003% or less,
N: 0.005% or less, the balance Fe and unavoidable impurities
When the temperature of the Ar 3 transformation point of the steel is TAr 3 , the finishing temperature Tf is (TAr 3 +3
0) to (TAr 3 +100) ° C. The finishing temperature Tf is controlled so as to be in the temperature range, and hot rolling is performed. At the time of the hot rolling, 30% in the temperature range of Tf to (Tf + 30) ° C.
Immediately after hot rolling with the above reduction ratio, 60 to 200 ° C
After cooling to a temperature Tc in the temperature range of 150 to 250 ° C. at a cooling rate of / sec, it is retained in a temperature range of 150 ° C. or more and Tc or less for 2 seconds or more, and wound at a temperature of less than 150 ° C. to obtain a hot rolled steel sheet, Provided is a method for producing an ultra-high-strength electric resistance welded steel pipe, which is characterized in that the hot-rolled steel plate is produced at a width reduction ratio Q satisfying the following formula (1).

【0012】 1000≦Q/(t/ D)2 ≦3000……(1) ただし、t(mm):鋼板の板厚、D(mm):電縫鋼管の外
径、Q(%)は幅絞り率で、以下の式(2)で定義され
る。 Q=[{鋼板の幅−π( D−t)} /π(D−t)]×100 ……(2)
1000 ≦ Q / (t / D) 2 ≦ 3000 (1) where t (mm) is the thickness of the steel plate, D (mm) is the outer diameter of the electric resistance welded steel pipe, and Q (%) is the width The aperture ratio is defined by the following equation (2). Q = [{width of steel sheet−π (D−t)} / π (D−t)] × 100 (2)

【0013】[0013]

【発明の実施の形態】本発明の超高張力電縫鋼管は、鋼
の成分組成および組織を制御することによりはじめて達
成されるものである。本発明の第1実施形態および第2
実施形態はそのために特定の成分組成の鋼板の熱処理条
件および造管条件等を規定するものであり、第3実施形
態は鋼の成分組成および組織自体を規定するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The ultrahigh-strength electric resistance welded steel pipe of the present invention can be achieved only by controlling the composition and structure of the steel. First Embodiment and Second Embodiment of the Present Invention
Therefore, the embodiment defines heat treatment conditions and pipe forming conditions of a steel sheet having a specific composition, and the third embodiment defines the composition of steel and the structure itself.

【0014】以下、各実施形態についてて詳細に説明す
る。 (1)第1実施形態 (化学組成)引張強度が980N/mm2 以上で、しか
も優れた耐水素遅れ割れ特性を得るために、C:0.1
0〜0.19%、Si:0.01〜0.5%、Mn:
0.8〜2.2%、Al:0.01〜0.06%、N
b:0.005〜0.03%、B:0.0005〜0.
0030%を含み、さらにP:0.02%以下、S:
0.003%以下、N:0.005%以下、Ti:0.
015%以下に制限した組成に規定する。また、Cu:
0.05〜0.50%が選択成分として添加される。そ
の場合に、Niを添加することがあるが、Ni:0.1
0%以下とする。
Hereinafter, each embodiment will be described in detail. (1) First Embodiment (Chemical composition) C: 0.1 in order to obtain a tensile strength of 980 N / mm 2 or more and excellent hydrogen delayed cracking resistance.
0 to 0.19%, Si: 0.01 to 0.5%, Mn:
0.8-2.2%, Al: 0.01-0.06%, N
b: 0.005-0.03%, B: 0.0005-0.
Including 0030%, P: 0.02% or less, S:
0.003% or less, N: 0.005% or less, Ti: 0.
The composition is limited to 015% or less. Also, Cu:
0.05-0.50% is added as a selective ingredient. In that case, Ni may be added, but Ni: 0.1
It is 0% or less.

【0015】以下、各元素の限定理由について説明す
る。 C: Cは所望のマルテンサイトを生成させ、目標とす
る強度を確保するために必須な元素である。しかし、含
有量が0.10%未満であると目標とする980N/m
2 以上の強度が得られず、一方、含有量が0.19%
を超えると、引張強度が高くなりすぎるか、あるいは焼
戻し時に析出する炭化物サイズが大きくなり、いずれに
せよ耐水素遅れ割れ特性が劣化する。したがってCの含
有量を0.10〜0.19%とする。
The reasons for limiting each element will be described below. C: C is an essential element for generating desired martensite and ensuring a target strength. However, if the content is less than 0.10%, the target is 980 N / m.
A strength of m 2 or more cannot be obtained, while the content is 0.19%
If it exceeds, the tensile strength becomes too high, or the size of carbides precipitated during tempering becomes large, and the hydrogen delayed cracking resistance deteriorates in any case. Therefore, the content of C is set to 0.10 to 0.19%.

【0016】Si: Siは電縫溶接部の健全性を確保
するために添加され、その効果はその含有量が0.01
〜0.5%で発揮されるため、Siの含有量を0.01
〜0.5%とする。
Si: Si is added to secure the soundness of the electric resistance welded portion, and its effect is that the content is 0.01.
~ 0.5%, so the Si content is 0.01
~ 0.5%.

【0017】Mn: Mnはオーステナイトの焼入れ性
を向上させて所望のマルテンサイトを生成させ、目標と
する強度を確保するために必須な元素である。しかし、
含有量が0.8%未満であると目標とする980N/m
2 以上の強度が得られず、一方、含有量が2.2%を
超えると耐水素遅れ割れ特性が劣化する。したがって、
Mnの含有量を0.8〜2.2%とする。
Mn: Mn is an essential element for improving the hardenability of austenite to generate desired martensite and to secure a target strength. But,
Target content of less than 0.8% 980 N / m
A strength of m 2 or more cannot be obtained, and on the other hand, if the content exceeds 2.2%, the hydrogen delayed cracking resistance deteriorates. Therefore,
The Mn content is 0.8 to 2.2%.

【0018】Al: Alは脱酸元素として添加され、
また鋼中の不純物として存在するNをAlNとして固定
し、耐水素遅れ割れ特性を向上させる。しかし、その添
加効果は0.01%未満では少なく、一方0.06%を
超えると介在物が増加し、耐水素遅れ割れ特性が劣化す
る。したがってAlの含有量を0.01〜0.06%と
する。
Al: Al is added as a deoxidizing element,
Further, N existing as an impurity in the steel is fixed as AlN to improve hydrogen delayed cracking resistance. However, the effect of addition is small if it is less than 0.01%, while if it exceeds 0.06%, inclusions increase and the hydrogen delayed cracking resistance deteriorates. Therefore, the content of Al is set to 0.01 to 0.06%.

【0019】Nb: Nbは連続焼鈍炉における加熱時
のオーステナイト粒成長を抑制し、マルテンサイト組織
を微細化し、耐水素遅れ割れ特性を向上させる元素であ
る。その添加効果は0.005%以上で認められ、一
方、0.02%を超えて添加しても添加効果が飽和す
る。したがって、Nbの含有量を0.005〜0.02
%とする。
Nb: Nb is an element that suppresses austenite grain growth during heating in a continuous annealing furnace, refines the martensite structure, and improves hydrogen delayed cracking resistance. The effect of addition is recognized at 0.005% or more, while the effect of addition is saturated even if added over 0.02%. Therefore, the content of Nb is 0.005 to 0.02.
%.

【0020】B: Bは所望のマルテンサイトを生成さ
せ、目標とする強度を確保するために必要な元素であ
る。しかし、添加量が0.0005%未満であると目標
とする980N/mm2 以上の強度が得られず、一方、
添加量が0.0030%を超えても添加効果が飽和す
る。したがって、Bの含有量を0.0005〜0.00
30%とする。
B: B is an element necessary for forming a desired martensite and securing a target strength. However, if the addition amount is less than 0.0005%, the target strength of 980 N / mm 2 or more cannot be obtained, while
Even if the added amount exceeds 0.0030%, the effect of addition is saturated. Therefore, the content of B is 0.0005 to 0.00
30%.

【0021】P: Pは耐遅れ破壊特性を劣化させるた
め、0.02%以下に規制することが必要である。 S: Sは介在物として存在し、耐水素遅れ割れ特性を
劣化させるため、0.003%以下に規制することが必
要である。
P: P deteriorates the delayed fracture resistance, so it is necessary to regulate P to 0.02% or less. S: S is present as inclusions and deteriorates the hydrogen delayed cracking resistance, so it is necessary to regulate S to 0.003% or less.

【0022】N: Nが0.005%を超えて含まれる
と耐水素遅れ割れ特性が低下するため、0.005%以
下に規制することが必要がある。 Ti: Tiは粗大な窒化物として析出すると、耐水素
遅れ割れ特性を低下させるので、添加しないことが望ま
しい。しかし、固溶NをTiNとして固定し、Bの焼入
れ性を確保するためにやむなく添加する場合には、その
添加量を0.015%以下とする必要がある。
N: If N is contained in excess of 0.005%, hydrogen delayed cracking resistance is deteriorated, so it is necessary to regulate the content to 0.005% or less. Ti: When Ti is deposited as a coarse nitride, it deteriorates hydrogen delayed cracking characteristics, so it is preferable not to add Ti. However, when solid solution N is fixed as TiN and it is unavoidably added to secure the hardenability of B, the addition amount must be 0.015% or less.

【0023】Cu: Cuは鋼管の腐食の進行を抑制
し、かつ鋼管中への水素の侵入を抑制し、耐水素遅れ割
れ特性を向上させる元素である。その添加効果は0.0
5%以上で認められ、一方0.50%を超えて添加して
も添加効果が飽和する。したがって、Cuを添加する場
合にはその含有量を0.05〜0.50%とする。
Cu: Cu is an element that suppresses the progress of corrosion of the steel pipe, suppresses the intrusion of hydrogen into the steel pipe, and improves the hydrogen delayed cracking property. The effect of addition is 0.0
It is observed at 5% or more, while the addition effect is saturated even if it is added over 0.50%. Therefore, when Cu is added, its content is set to 0.05 to 0.50%.

【0024】図1にCu添加量と割れ発生限界付加歪み
(Δε)の変化量との関係を示す。この図から、Cu添
加によって割れ発生限界付加歪み(Δε)が増大し、水
素遅れ割れが抑制されることが理解される。
FIG. 1 shows the relationship between the amount of Cu added and the amount of change in the crack addition limit additional strain (Δε). From this figure, it is understood that the addition of Cu increases the crack generation limit additional strain (Δε) and suppresses hydrogen delayed cracking.

【0025】Ni: Niは鋳造偏析によって局所的な
腐食を助長し、耐水素遅れ割れ特性を低下させるため添
加しないことが望ましい。しかし、熱延時のCu疵を回
避するためにやむなく添加する場合には、含有量を耐水
素遅れ割れ特性の低下が著しくない0.10%以下とす
る。
Ni: Ni is preferably not added because it promotes local corrosion due to casting segregation and deteriorates hydrogen delayed cracking resistance. However, when it is unavoidably added in order to avoid Cu defects during hot rolling, the content is set to 0.10% or less at which the hydrogen-delayed cracking resistance does not significantly decrease.

【0026】図2にNi添加量と割れ発生限界付加歪み
(Δε)の変化量との関係を示す。この図から、Ni添
加によって割れ発生限界付加歪み(Δε)が減少し、水
素遅れ割れが助長されることが理解される。
FIG. 2 shows the relationship between the amount of Ni added and the amount of change in the crack addition limit additional strain (Δε). From this figure, it is understood that the crack addition limit additional strain (Δε) is reduced by the addition of Ni and hydrogen delayed cracking is promoted.

【0027】(製造条件)上記化学組成の鋼スラブを1
150〜1300℃で均熱した後、このスラブに対して
Ar3 点以上を仕上温度とする熱間圧延を施し、500
〜650℃で巻取って熱延鋼帯とし、この熱延鋼板を酸
洗冷圧後、連続焼鈍炉で800〜900℃に均熱加熱後
急冷し、さらに150〜250℃で焼戻し処理を行い、
得られた鋼板を以下の(1)式を満たす幅絞り率Qで造
管し、80〜100%焼戻しマルテンサイト+残部フェ
ライト組織とする。
(Production conditions) 1 steel slab having the above chemical composition
After soaking at 150 to 1300 ° C., the slab is hot-rolled at a finishing temperature of Ar 3 points or more, and then 500
The hot-rolled steel strip is wound at ~ 650 ° C, and the hot-rolled steel sheet is pickled, cold-pressed, uniformly heated to 800-900 ° C in a continuous annealing furnace, then rapidly cooled, and further tempered at 150-250 ° C. ,
The obtained steel sheet is formed into a pipe with a width reduction ratio Q satisfying the following formula (1) to obtain 80 to 100% tempered martensite + the balance ferrite structure.

【0028】A.熱間圧延条件 a.スラブ加熱温度 スラブ加熱温度はNbを固溶させるために1150℃以
上である必要がある。スラブ加熱温度が1150℃に満
たないと、連続焼鈍炉における加熱時にNbが十分なso
lute drug 効果を発揮しないため、マルテンサイト組織
が微細とはならず、Nb添加による耐水素遅れ割れ特性
の向上効果が得られない。一方、操業性の観点からスラ
ブ加熱温度の上限を1300℃とする。
A. Hot rolling conditions a. Slab heating temperature The slab heating temperature needs to be 1150 ° C or higher in order to form a solid solution with Nb. If the slab heating temperature is less than 1150 ° C, Nb will be sufficient when heating in a continuous annealing furnace.
Since the lute drug effect is not exerted, the martensite structure does not become fine, and the effect of improving the hydrogen delayed cracking resistance property due to the addition of Nb cannot be obtained. On the other hand, from the viewpoint of workability, the upper limit of the slab heating temperature is 1300 ° C.

【0029】b.仕上圧延温度 仕上圧延温度はAr3 点以上である必要がある。仕上圧
延温度がAr3 点以下であると、フェライト変態部での
Nb炭窒化物の歪誘起析出により、連続焼鈍炉における加
熱時にNbが十分なsolute drug 効果を発揮しないた
め、マルテンサイト組織が微細とはならず、Nb添加に
よる耐水素遅れ割れ特性の向上効果が得られない。
B. Finishing rolling temperature The finishing rolling temperature must be at least Ar 3 point. If the finish rolling temperature is below the Ar 3 point, the ferrite transformation part
Due to the strain-induced precipitation of Nb carbonitride, Nb does not exert a sufficient solute drug effect during heating in a continuous annealing furnace, so the martensite structure does not become fine, and the effect of improving hydrogen-delayed cracking resistance by adding Nb is I can't get it.

【0030】c.巻取温度 巻取温度は500〜650℃とする。巻取温度が650
℃を超えるとNb炭化物が粗大化し、連続焼鈍炉におけ
る加熱時に再固溶せず、十分なsolute drug 効果を発揮
しないため、マルテンサイト組織が微細とはならず、N
b添加による耐水素遅れ割れ特性の向上効果が得られな
い。一方、巻取温度が500℃未満であると熱延鋼帯が
硬質化し、操業上問題となる。
C. Winding temperature The winding temperature is 500 to 650 ° C. Winding temperature is 650
When the temperature exceeds ℃, Nb carbides become coarse, do not re-dissolve during heating in a continuous annealing furnace, and do not exert a sufficient solute drug effect, so the martensite structure does not become fine and N
The effect of improving the delayed hydrogen cracking resistance by adding b cannot be obtained. On the other hand, if the winding temperature is lower than 500 ° C, the hot-rolled steel strip becomes hard and becomes a problem in operation.

【0031】B.連続焼鈍炉での熱処理条件 a.加熱温度 連続焼鈍炉における加熱温度は800〜900℃とす
る。800℃未満では急冷後に十分な量のマルテンサイ
ト量が得られず、目標とする強度が得られない。一方、
900℃を越えると加熱時のオーステナイト粒粗大化に
より、微細なマルテンサイト組織が得られず、耐水素遅
れ割れ特性が低下する。
B. Heat treatment conditions in continuous annealing furnace a. Heating temperature The heating temperature in the continuous annealing furnace is 800 to 900 ° C. If it is less than 800 ° C, a sufficient amount of martensite cannot be obtained after quenching, and the target strength cannot be obtained. on the other hand,
If it exceeds 900 ° C., a fine martensite structure cannot be obtained due to coarsening of austenite grains during heating, and hydrogen delayed cracking resistance deteriorates.

【0032】b.焼戻し熱処理条件 加熱−急冷により得られた80〜100%マルテンサイ
ト+残部フェライト組織とされた鋼帯は、150〜25
0℃の温度範囲で焼戻し処理を行う。焼戻し温度150
℃未満ではマルテンサイト変態歪が残存し、造管後の耐
水素割れ性が低下する。一方、焼戻し温度が250℃を
超えると、焼戻しに伴い析出するセメンタイト相が粗大
となり、耐遅れ破壊特性が低下する。
B. Tempering heat treatment conditions Steel strips having 80 to 100% martensite + balance ferrite structure obtained by heating-quenching are 150 to 25
Tempering is performed in the temperature range of 0 ° C. Tempering temperature 150
If it is less than ℃, martensitic transformation strain remains, and the hydrogen cracking resistance after pipe forming decreases. On the other hand, if the tempering temperature exceeds 250 ° C., the cementite phase that precipitates with tempering becomes coarse and the delayed fracture resistance deteriorates.

【0033】C.造管条件 電縫溶接−サイジングの造管工程における幅絞りは、鋼
管の耐水素遅れ割れ特性を良好にせしめるための重要な
要件であり、このためには幅絞り率Qを(1)式で示さ
れる範囲内に制御した上で造管を行う。
C. Pipe-making conditions Width reduction in the electric-resistance welding-sizing pipe-making process is an important requirement for improving the hydrogen delayed cracking resistance of steel pipes. For this purpose, the width reduction ratio Q can be calculated by the formula (1). Pipe forming is carried out with control within the range shown.

【0034】 1000≦Q/(t/ D)2 ≦3000……(1) ただし、t(mm):鋼板の板厚、D(mm):電縫鋼管の外
径、Q(%)は幅絞り率で、以下の式(2)で定義され
る。 Q=[{鋼板の幅−π( D−t)} /π(D−t)]×100 ……(2) 図3にQ/(t/ D)2 と水素遅れ割れ発生限界付加歪
みΔεc の関係を示す。本発明者らは造管条件と耐水素
遅れ割れ特性に関する多くの実験的検討を行った結果、
図3に示すように、鋼管の水素遅れ割れ発生限界付加歪
みは幅絞り率Qが1000(t/ D)2 〜3000(t
/ D)2 の間でピークを持ち、幅絞り率をこの範囲に制
御することで優れた耐水素遅れ割れ特性を有する鋼管が
得られることを見出した。この適正幅絞り率は製品( 板
厚/ 外径) 比により異なり、優れた耐水素遅れ割れ特性
を有する鋼管を得るためには( 板厚/ 外径) 比ごとに異
なる幅絞り率をとる必要がある。
1000 ≦ Q / (t / D) 2 ≦ 3000 (1) where t (mm) is the thickness of the steel plate, D (mm) is the outer diameter of the electric resistance welded steel pipe, and Q (%) is the width The aperture ratio is defined by the following equation (2). Q = [{width of steel sheet −π (D−t)} / π (D−t)) × 100 (2) In FIG. 3, Q / (t / D) 2 and hydrogen delayed cracking limit additional strain Δε The relationship of c is shown. As a result of many experimental studies conducted by the present inventors on pipe forming conditions and hydrogen delayed cracking resistance,
As shown in FIG. 3, the hydrogen delay cracking limit additional strain of the steel pipe has a width drawing ratio Q of 1000 (t / D) 2 to 3000 (t).
It has been found that a steel pipe having a peak between / D) 2 and controlling the width reduction ratio in this range can provide a steel pipe having excellent hydrogen delayed cracking resistance. This appropriate width reduction ratio depends on the product (plate thickness / outer diameter) ratio, and in order to obtain a steel pipe with excellent hydrogen delayed cracking resistance, it is necessary to take a different width reduction ratio for each (plate thickness / outer diameter) ratio. There is.

【0035】鋼管の耐水素遅れ割れ特性が、幅絞り率Q
=1000(t/ D)2 〜3000(t/ D)2 の間で
ピークを持つ理由は次のように考えられる。すなわち、
幅絞り率が1000(t/ D)2 に満たない場合には、
鋼管の最大残留歪みが増大し、鋼管の耐水素遅れ割れ特
性が劣化し、逆に、幅絞り率が3000( t/ D)2
越える場合には、造管にともない造管圧延集合組織が形
成され、鋼管の耐水素遅れ割れ感受性が高まり鋼管の耐
水素遅れ割れ特性が劣化する。
The resistance to hydrogen delayed cracking of the steel pipe depends on the width drawing ratio Q.
The reason why it has a peak between 1000 (t / D) 2 and 3000 (t / D) 2 is considered as follows. That is,
If the width reduction ratio is less than 1000 (t / D) 2 ,
If the maximum residual strain of the steel pipe increases and the hydrogen delayed cracking resistance of the steel pipe deteriorates, and conversely, if the width reduction ratio exceeds 3000 (t / D) 2 , the pipe-forming rolling texture will become As a result, the steel pipe becomes more susceptible to hydrogen delayed cracking and the hydrogen pipe delayed cracking resistance deteriorates.

【0036】なお、水素遅れ割れ発生限界付加歪Δεc
は、電縫鋼管より幅20mmのC−リング試験片を切出
し、切出し前の外径までボルト締めを行い鋼管の残留歪
み相当の歪みを加えた後、さらに以下の(3)式で計算
される付加歪み(Δε)を加えて0.1N塩酸中に20
0時間浸漬し割れ発生有無を調べた際における、割れが
発生する限界の付加歪みを指す。この値を耐水素遅れ割
れ特性の指標とする。すなわち、この値が高いほど耐水
素遅れ割れ特性にとっては好ましい。
The critical additional strain Δε c for hydrogen delayed cracking
Is calculated by cutting out a C-ring test piece having a width of 20 mm from the electric resistance welded steel tube, bolting it to the outer diameter before cutting out, applying a strain equivalent to the residual strain of the steel pipe, and further calculating by the following formula (3). 20% in 0.1N hydrochloric acid by adding additional strain (Δε)
It refers to the additional strain at the limit of cracking when it is dipped for 0 hour and checked for cracking. This value is used as an index of hydrogen delayed cracking resistance. That is, the higher this value is, the more preferable it is for the delayed hydrogen cracking resistance.

【0037】 Δε=(4・106 ・t・δ)/(π・D・(D−t))……(3) ここで、tは板厚、Dは切出し前の鋼管の外径、δはD
−(付加歪み付加後の外径)である。
Δε = (4 · 10 6 · t · δ) / (π · D · (D−t)) (3) where t is the plate thickness, D is the outer diameter of the steel pipe before cutting, δ is D
-(Outer diameter after addition of additional strain).

【0038】以上のような方法によって80〜100%
焼戻しマルテンサイト+残部フェライト組織を形成する
ことにより、耐水素遅れ割れ特性に優れた引張強度98
0N/mm2 以上の電縫鋼管が製造される。
80% to 100% by the above method
By forming tempered martensite + balance ferrite structure, the tensile strength is 98 which is excellent in hydrogen delayed cracking resistance.
ERW steel pipe of 0 N / mm 2 or more is manufactured.

【0039】(2)第2実施形態 (化学組成)引張強度が980N/mm2 以上で、しか
も優れた耐水素遅れ割れ特性を得るために、重量%で、
C:0.10〜0.19%、Si:0.01〜0.5
%、Mn:0.8〜2.2%、Al:0.01〜0.0
6%、Cr:0.05〜0.6%、を含み、P:0.0
2%以下、S:0.003%以下、N:0.005%以
下に制限した組成に規定する。また、Nb:0.005
〜0.03%、V:0.005〜0.03%のうち少な
くとも1種、B:0.0005〜0.0030%、C
u:0.05〜0.50%が選択成分として添加され
る。また、Cuを添加した場合に、Niを添加すること
があるが、Ni:0.30%以下とする。
(2) Second Embodiment (Chemical composition) In order to obtain excellent hydrogen delayed cracking characteristics with a tensile strength of 980 N / mm 2 or more, in a weight percentage,
C: 0.10 to 0.19%, Si: 0.01 to 0.5
%, Mn: 0.8 to 2.2%, Al: 0.01 to 0.0
6%, Cr: 0.05-0.6%, P: 0.0
The composition is limited to 2% or less, S: 0.003% or less, and N: 0.005% or less. Also, Nb: 0.005
-0.03%, V: 0.005-0.03%, at least one kind, B: 0.0005-0.0030%, C
u: 0.05 to 0.50% is added as a selective component. Further, Ni may be added when Cu is added, but Ni: 0.30% or less.

【0040】以下、各元素の限定理由について説明す
る。C、Si、Mn、Alの限定理由は上記第1実施形
態と同様である。 Cr: Mnとの相互作用により鋼の焼入性を上げ、目
標とする強度を確保するための元素である。その含有量
が0.05%未満であるとその効果が乏しく、一方0.
6%を超えると耐水素遅れ割れ特性が劣化する。したが
って、Crの含有量を0.05〜0.6%とする。
The reasons for limiting each element will be described below. The reason for limiting C, Si, Mn, and Al is the same as in the first embodiment. Cr: An element for enhancing the hardenability of steel by the interaction with Mn and ensuring the target strength. If its content is less than 0.05%, its effect is poor, while 0.
If it exceeds 6%, the hydrogen delayed cracking resistance is deteriorated. Therefore, the content of Cr is set to 0.05 to 0.6%.

【0041】P、S、Nについては、第1実施形態と同
様の理由で上記範囲に制限される。 Nb、V: Nb,Vはいずれも変態前のオーステナイ
ト粒を微細化し、変態後のマルテンサイトパケットを微
細化することができるので、耐水素遅れ割れ特性の向上
に好ましい元素である。しかし、それぞれ0.005%
未満ではその効果は少なく、一方0.03%を超えて添
加すると、耐水素遅れ割れ特性がかえって劣化する。し
たがって、Nb、Vの含有量をそれぞれ0.005〜
0.03%とする。
P, S and N are limited to the above range for the same reason as in the first embodiment. Nb and V: Nb and V are both preferable elements for improving hydrogen-delayed cracking resistance because they can refine austenite grains before transformation and refine martensite packets after transformation. However, 0.005% each
If it is less than 0.03%, the effect is small. On the other hand, if it exceeds 0.03%, the hydrogen-delayed cracking resistance is rather deteriorated. Therefore, the contents of Nb and V are each 0.005
It is set to 0.03%.

【0042】B: Bは所望のマルテンサイトを生成さ
せ、目標とする強度を確保するために必要に応じて添加
される。しかし、添加量が0.0005%未満であると
目標とする980N/mm2 以上の強度が得られず、一
方添加量が0.0030%を超えても添加効果が飽和す
る。したがって、Bの含有量を添加する場合には0.0
005〜0.0030%とする。
B: B is added as necessary in order to form a desired martensite and to secure a target strength. However, if the added amount is less than 0.0005%, the target strength of 980 N / mm 2 or more cannot be obtained, while if the added amount exceeds 0.0030%, the effect of addition is saturated. Therefore, when adding the content of B, 0.0
It is 005 to 0.0030%.

【0043】Cuについは、第1実施形態と同様の理由
で添加する場合には0.05〜0.50%の範囲とす
る。Cu量を増加すると、場合によってはCu疵と呼ば
れる表面欠陥が発生することがあり、これはNi添加に
よって防止することができるが、Niは耐水素遅れ割れ
特性にとって有害な元素であるため、その添加量を0.
3%以下に制限されることが好ましい。
When Cu is added for the same reason as in the first embodiment, the range is 0.05 to 0.50%. Increasing the amount of Cu may cause surface defects called Cu defects in some cases, which can be prevented by adding Ni. However, since Ni is an element harmful to hydrogen delayed cracking characteristics, Add an amount of 0.
It is preferably limited to 3% or less.

【0044】(製造条件)上記組成の鋼スラブに対し、
その鋼のAr3 変態点の温度をTAr3 としたとき、仕
上げ温度Tfが(TAr3 +30)〜(TAr3 +10
0)℃の温度範囲になるように仕上げ温度Tfを制御し
て熱間圧延を施し、その熱間圧延の際に、Tf〜(Tf
+30)℃の温度範囲で30%以上の圧下率を与え、熱
間圧延後直ちに60〜200℃/secの冷却速度で1
50〜250℃の温度範囲の温度Tcまで冷却した後、
150℃以上Tc以下の温度範囲に2秒以上滞留させ、
150℃未満の温度で巻取って熱延鋼板とし、この熱延
鋼板を上記(1)式を満たす幅絞り率Qで造管する。
(Manufacturing conditions) For the steel slab having the above composition,
When the temperature of the Ar 3 transformation point of the steel is TAr 3 , the finishing temperature Tf is (TAr 3 +30) to (TAr 3 +10).
The finishing temperature Tf is controlled so that it falls within the temperature range of 0) ° C., hot rolling is performed, and during the hot rolling, Tf to (Tf
In the temperature range of +30) ° C., a reduction rate of 30% or more is applied, and immediately after hot rolling, at a cooling rate of 60 to 200 ° C./sec, 1
After cooling to a temperature Tc in the temperature range of 50 to 250 ° C.,
Let it stay in the temperature range of 150 ° C or higher and Tc or lower for 2 seconds or longer,
The hot-rolled steel sheet is wound at a temperature of less than 150 ° C., and the hot-rolled steel sheet is pipe-formed at a width reduction ratio Q satisfying the above formula (1).

【0045】A.熱延条件 a.仕上温度 仕上げ温度Tfは(TAr3 +30)〜(TAr3 +1
00)℃の温度範囲とする。仕上温度が(TAr3 +3
0)℃未満であると、980N/mm2 以上の強度を得
るためのマルテンサイトの体積率が得られない。一方、
(TAr3 +100)℃を超えると、マルテンサイトパ
ケットが粗大化し、耐水素遅れ割れ特性が低下する。
A. Hot rolling conditions a. Finishing temperature Finishing temperature Tf is (TAr 3 +30) to (TAr 3 +1)
The temperature range is 00) ° C. The finishing temperature is (TAr 3 +3
If it is less than 0) ° C., the volume ratio of martensite for obtaining the strength of 980 N / mm 2 or more cannot be obtained. on the other hand,
If it exceeds (TAr 3 +100) ° C., the martensite packet becomes coarse and the hydrogen delayed cracking resistance deteriorates.

【0046】b.圧下条件 マルテンサイトを微細にし、耐水素遅れ割れ特性を良好
にするためには、熱間圧延終了直前における強圧下が必
要である。このため、Tf〜(Tf+30)℃の温度範
囲で30%以上の圧下率を与えて熱間圧延を行う。
B. Rolling condition In order to make martensite fine and to improve hydrogen delayed cracking resistance, strong rolling just before the end of hot rolling is necessary. Therefore, hot rolling is performed in a temperature range of Tf to (Tf + 30) ° C. with a reduction rate of 30% or more.

【0047】B.熱間圧延後の冷却条件 熱間圧延後直ちに60〜200℃/secの冷却速度で
150〜250℃の温度範囲のTcまで急冷する。これ
により980N/mm2 以上の強度を得るためのマルテ
ンサイト体積率を確保することができる。冷却速度が6
0℃/sec未満であると所望の体積率のマルテンサイ
トを得ることができない。また冷却速度が200℃/s
ecを超えると操業上のトラブルを生じる。冷却停止温
度については250℃よりも高いと所望の体積率のマル
テンサイトが得られない。
B. Cooling condition after hot rolling Immediately after hot rolling, the material is rapidly cooled to Tc in a temperature range of 150 to 250 ° C at a cooling rate of 60 to 200 ° C / sec. As a result, the martensite volume ratio for obtaining the strength of 980 N / mm 2 or more can be secured. Cooling rate is 6
If it is less than 0 ° C./sec, martensite having a desired volume ratio cannot be obtained. The cooling rate is 200 ℃ / s
If it exceeds ec, operational troubles occur. If the cooling stop temperature is higher than 250 ° C, martensite having a desired volume ratio cannot be obtained.

【0048】このように急冷した後は、150℃以上T
c以下の温度範囲に2秒以上滞留させる。これにより、
硬質な焼戻しマルテンサイトが生成される。図4に急冷
された鋼板を150〜250℃の温度範囲で保持したと
きの保持時間と水素遅れ割れ発生限界付加歪みΔεとの
関係を示す。この図から、2秒以上の保持によって安定
して2000μmに近い高い水素遅れ割れ発生限界付加
歪みΔεc が得られることがわかる。2秒未満では焼入
れ歪みが残存するため、1900μm以上の高いΔεc
を安定して得ることができない。
After quenching in this way, the temperature of 150 ° C. or higher T
Let it stay in the temperature range of c or lower for 2 seconds or more. This allows
Hard tempered martensite is produced. FIG. 4 shows the relationship between the holding time when the quenched steel plate is held in the temperature range of 150 to 250 ° C. and the hydrogen delayed cracking limit additional strain Δε. From this figure, it is understood that a high hydrogen delayed cracking limit additional strain Δε c close to 2000 μm can be stably obtained by holding for 2 seconds or more. If it is less than 2 seconds, quenching strain remains, so high Δε c of 1900 μm or more
Can't get stable.

【0049】C.巻取温度 巻取は150℃未満の温度で行う。この温度が150℃
以上では、硬質な焼戻しマルテンサイト相とならず、9
80N/mm2 以上の強度が得られない。
C. Winding temperature Winding is performed at a temperature lower than 150 ° C. This temperature is 150 ℃
With the above, a hard tempered martensite phase is not formed, and 9
A strength of 80 N / mm 2 or more cannot be obtained.

【0050】D.造管条件 以上のような条件で製造された熱延鋼板を用いて超高張
力電縫鋼管に造管するが、その際に、上記第1実施形態
と同様、上記(1)式を満たす必要がある。
D. Pipe-making conditions A hot-rolled steel sheet manufactured under the above conditions is used to make an ultra-high-strength electric resistance welded steel pipe. At that time, the above formula (1) must be satisfied, as in the first embodiment. There is.

【0051】(3)第3実施形態 (化学組成および組織)引張強度が980N/mm2
上で、しかも優れた耐水素遅れ割れ性および耐食性を得
るために、C:0.13〜0.19%、Mn:1.0〜
2.0%、Cu:0.05〜0.50%を含有する組成
を有し、焼入れ熱処理によって得られた80〜100%
のマルテンサイトあるいは焼戻しマルテンサイト組織と
する。また、Ni、Moを添加する場合にはNi:0.
1%以下、Mo:0.3%以下に制限される。
(3) Third Embodiment (Chemical composition and structure) In order to obtain excellent hydrogen delayed cracking resistance and corrosion resistance with a tensile strength of 980 N / mm 2 or more, C: 0.13 to 0.19. %, Mn: 1.0-
80% to 100% obtained by quenching heat treatment, having a composition containing 2.0% and Cu: 0.05 to 0.50%
Of martensite or tempered martensite. When Ni and Mo are added, Ni: 0.
It is limited to 1% or less and Mo: 0.3% or less.

【0052】以下、各元素の限定理由について説明す
る。 C: Cは所望のマルテンサイトを生成させ、目標とす
る強度を確保するために必須な元素である。しかし、含
有量が0.13%未満であると目標とする1180N/
mm2 以上の強度が得られず、一方、含有量が0.19
%を超えると、水素遅れ割れ、あるいは腐食による管体
強度低下が助長され、耐久性が劣化する。したがってC
の含有量を0.13〜0.19%とする。
The reasons for limiting each element will be described below. C: C is an essential element for generating desired martensite and ensuring a target strength. However, if the content is less than 0.13%, the target is 1180 N /
A strength of mm 2 or more cannot be obtained, while the content is 0.19
If it exceeds%, the strength of the pipe body is deteriorated due to hydrogen delayed cracking or corrosion, and the durability is deteriorated. Therefore C
Content of 0.13 to 0.19%.

【0053】Mn: Mnは所望のマルテンサイトを生
成させ、目標とする強度を確保するために必須な元素で
ある。しかし、含有量が1.0%未満であると目標とす
る1180N/mm2 以上の強度が得られず、一方、含
有量が2.0%を超える耐水素遅れ割れ、あるいは腐食
特性が劣化する。したがって、Mnの含有量を1.0〜
2.0%とする。
Mn: Mn is an essential element for forming a desired martensite and securing a target strength. However, if the content is less than 1.0%, the target strength of 1180 N / mm 2 or more cannot be obtained, while on the other hand, hydrogen resistance delayed cracking with the content exceeding 2.0% or the corrosion characteristics deteriorate. . Therefore, the Mn content is 1.0 to
2.0%.

【0054】Cu: Cuは鋼管の水素遅れ割れ感受性
を低め、さらに腐食による管体強度低下の進行を抑制
し、超高張力電縫鋼管の耐久性を向上させる元素であ
る。その添加効果は0.05%以上で認められ、一方
0.50%を超えて添加しても添加効果が飽和する。し
たがって、Cuを添加する場合にはその含有量を0.0
5〜0.50%とする。
Cu: Cu is an element that lowers the hydrogen delayed cracking susceptibility of the steel pipe, further suppresses the progress of deterioration of the strength of the pipe body due to corrosion, and improves the durability of the ultra-high-strength electric resistance welded steel pipe. The effect of addition is recognized at 0.05% or more, while the effect of addition is saturated even if added over 0.50%. Therefore, when Cu is added, its content should be 0.0
5 to 0.50%.

【0055】図5にCu添加量と腐食試験後の残留強度
率との関係を示す。この図からCu添加によって残留強
度率が増大し、鋼管の耐久性が増加することが理解され
る。なお、残留強度率は以下の式で表わすことができ
る。
FIG. 5 shows the relationship between the added amount of Cu and the residual strength rate after the corrosion test. From this figure, it is understood that the addition of Cu increases the residual strength rate and increases the durability of the steel pipe. The residual strength rate can be expressed by the following formula.

【0056】残留強度率(%)={浸漬試験後のTS
(N/mm2 )/浸漬試験前のTS(N/mm2 )}×
100 ここで、 浸漬試験前のTS(N/mm2 )=浸漬試験前の引張破
断荷重(N)/浸漬試験前の管断面積(mm2 ) 浸漬試験後のTS(N/mm2 )=浸漬試験後の引張破
断荷重(N)/浸漬試験前の管断面積(mm2 ) である。
Residual strength rate (%) = {TS after immersion test
(N / mm 2 ) / TS before immersion test (N / mm 2 )} ×
100 TS before immersion test (N / mm 2 ) = Tensile breaking load before immersion test (N) / Pipe cross-sectional area before immersion test (mm 2 ) TS after immersion test (N / mm 2 ) = It is the tensile breaking load (N) after the immersion test / tube cross-sectional area (mm 2 ) before the immersion test.

【0057】Ni: Niは鋳造偏析によって局所的な
腐食を助長し、耐水素遅れ割れ特性を低下させるため添
加しないことが望ましい。しかし、熱延時のCu疵を回
避するためにやむなく添加する場合には、含有量を残留
強度率の低下が著しくない0.10%以下とする。
Ni: Ni is preferably not added because it promotes local corrosion due to cast segregation and deteriorates hydrogen delayed cracking resistance. However, when it is unavoidably added to avoid Cu defects during hot rolling, the content is set to 0.10% or less at which the reduction of the residual strength rate is not remarkable.

【0058】Mo: Moは鋳造偏析によって局所的な
腐食を助長し、耐水素遅れ割れ特性を低下させるため添
加しないことが望ましい。しかし、焼入れ性を確保する
ためにやむなく添加する場合には、含有量を残留強度率
の低下が著しくない0.30%以下とする。
Mo: Mo is desirable not to be added because it promotes local corrosion due to casting segregation and deteriorates hydrogen delayed cracking resistance. However, when it is unavoidably added in order to secure the hardenability, the content is set to 0.30% or less at which the reduction of the residual strength rate is not remarkable.

【0059】図6にNi添加量と腐食試験後の残留強度
との関係を示し、図7にMo添加量と腐食試験後の残留
強度率との関係を示す。これらの図から0.1%以下の
Niおよび0.3%以下のMoの添加によって残留強度
率が減少し、鋼管の耐久性が低下することが理解され
る。
FIG. 6 shows the relationship between the added amount of Ni and the residual strength after the corrosion test, and FIG. 7 shows the relationship between the added amount of Mo and the residual strength rate after the corrosion test. From these figures, it is understood that the addition of 0.1% or less of Ni and 0.3% or less of Mo reduces the residual strength ratio and reduces the durability of the steel pipe.

【0060】これら以外の元素は、鋼管の耐久性、すな
わち耐水素遅れ割れ性および耐食性に対し、特に大きな
影響を及ぼさず、したがってSi、P、Al、Nb、
B、Ti、Crなどの合金添加元素を他の目的に従って
通常量適宜添加することは許容される。
Elements other than these do not particularly affect the durability of the steel pipe, that is, the hydrogen delayed cracking resistance and the corrosion resistance, and therefore Si, P, Al, Nb,
It is permissible to appropriately add alloying addition elements such as B, Ti and Cr in usual amounts according to other purposes.

【0061】以上の組成を有する鋼を焼入れ熱処理して
80〜100%のマルテンサイトあるいは焼戻しマルテ
ンサイト組織とする。以上のような組成および組織とす
ることにより、引張強度980N/mm2 以上で、耐久
性、すなわち耐水素遅れ割れ性および耐食性に優れた超
高張力電縫鋼管が得られる。
The steel having the above composition is quenched and heat treated to obtain a martensite or tempered martensite structure of 80 to 100%. With the composition and structure as described above, an ultrahigh-strength electric resistance welded steel pipe having a tensile strength of 980 N / mm 2 or more and excellent durability, that is, hydrogen delayed cracking resistance and corrosion resistance can be obtained.

【0062】(製造条件)この第3実施形態に係る電縫
鋼管を製造するに際しては、焼入れ熱処理によって80
〜100%のマルテンサイトあるいは焼戻しマルテンサ
イト組織が得られれば、その製造方法は限定されず、上
記第1実施形態、第2実施形態の製造条件で製造するこ
ともできる。
(Manufacturing Conditions) When manufacturing the electric resistance welded steel pipe according to the third embodiment, a quenching heat treatment is applied to obtain 80
As long as a martensite or tempered martensite structure of ˜100% is obtained, the manufacturing method thereof is not limited, and the manufacturing conditions of the first and second embodiments can be used.

【0063】[0063]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表1に示すA〜Fの6種の鋼を溶製し、表
2に示すように本発明で規定した熱延条件、連続焼鈍炉
における熱処理条件、造管条件にて31.8mmφ×
1.6mmtの電縫鋼管を作製した。
EXAMPLES Examples of the present invention will be described below. (Example 1) Six kinds of steels A to F shown in Table 1 were melted, and as shown in Table 2, hot rolling conditions, heat treatment conditions in a continuous annealing furnace, and pipe forming conditions specified in the present invention were used. 0.8 mmφ x
A 1.6 mmt electric resistance welded steel pipe was produced.

【0064】これらの鋼管の引張強度、三点曲げ最大荷
重を測定するとともに、耐水素遅れ割れ試験を実施し
た。三点曲げ試験は押し金具半径=152mm、支持ス
パン=600mmで行った。耐水素遅れ割れ試験は、鋼
管より幅20mmのC−リング試験片を切出し、切出し
前の外径までボルト締めを行い鋼管の残留歪み相当の歪
みを加えた後、さらに上記(3)式で計算される付加歪
み(Δε)を加えて0.1N塩酸中に200 時間浸漬し割
れ発生有無を調べ、割れ発生限界付加歪みを耐水素遅れ
割れ特性の指標とした。結果を表3に示す。
The tensile strength and the maximum load of three-point bending of these steel pipes were measured, and a hydrogen resistance delayed cracking test was carried out. The three-point bending test was conducted with a pressing metal fitting radius of 152 mm and a supporting span of 600 mm. In the hydrogen-resistant delayed cracking test, a C-ring test piece with a width of 20 mm is cut out from a steel pipe, bolted to the outer diameter before cutting, a strain equivalent to the residual strain of the steel pipe is added, and then calculated by the above formula (3). The additional strain (Δε) to be added was added and the sample was dipped in 0.1N hydrochloric acid for 200 hours to check for cracks. The critical strain for crack initiation was used as an index for hydrogen delayed cracking resistance. The results are shown in Table 3.

【0065】[0065]

【表1】 [Table 1]

【0066】[0066]

【表2】 [Table 2]

【0067】[0067]

【表3】 [Table 3]

【0068】表3から理解されるように、本発明で規定
する組成を満足する鋼A〜Eは比較鋼Fに比べ、割れ発
生限界歪みが高く、優れた耐水素遅れ割れ特性を示すこ
とが確認された。
As can be understood from Table 3, Steels A to E satisfying the composition specified in the present invention have higher critical strain for crack initiation and higher hydrogen delayed cracking resistance than Comparative Steel F. confirmed.

【0069】(実施例2)前記した鋼A〜Eを用いて表
4に示すような熱延条件、連続焼鈍炉における熱処理条
件、造管条件、( 板厚/ 外径) 比を種々変化させて電縫
鋼管に造管した。これらの機械特性、耐水素遅れ割れ試
験結果を表5に示す。
(Example 2) Using the above-mentioned steels A to E, various hot rolling conditions, heat treatment conditions in a continuous annealing furnace, pipe forming conditions and (sheet thickness / outer diameter) ratio as shown in Table 4 were changed. Made into ERW steel pipe. Table 5 shows the mechanical properties and the results of hydrogen delayed cracking test.

【0070】[0070]

【表4】 [Table 4]

【0071】[0071]

【表5】 [Table 5]

【0072】表5から理解されるように、熱延条件、連
続焼鈍炉における熱処理条件、造管条件が本発明で規定
した条件を満たしている実施例の電縫鋼管は、引張強度
が980N/mm2 以上でかつ割れ発生限界歪みが高
く、優れた耐水素遅れ割れ特性を有することが確認され
た。
As can be seen from Table 5, the electric resistance welded steel pipes of the examples in which the hot rolling conditions, the heat treatment conditions in the continuous annealing furnace, and the pipe forming conditions satisfy the conditions specified in the present invention have a tensile strength of 980 N / It was confirmed that the crack resistance was higher than that of mm 2 and the crack initiation critical strain was high, and that it had excellent hydrogen delayed cracking resistance.

【0073】(実施例3)表6に示すG〜Lの6種の鋼
を溶製し、表7に示すように本発明で規定した熱延条件
および造管条件にて34.8mmφ×2.3mmtの電
縫鋼管を作製した。そして、これら鋼管の引張強度およ
び耐水素割れ特性の指標である水素遅れ割れ発生限界付
加歪みΔεc を測定した。結果を表8に示す。
Example 3 Six kinds of steels G to L shown in Table 6 were melted, and as shown in Table 7, 34.8 mmφ × 2 under the hot rolling conditions and pipe forming conditions specified in the present invention. A 3 mmt electric resistance welded steel pipe was produced. Then, the hydrogen delayed crack initiation limit additional strain Δε c , which is an index of the tensile strength and hydrogen cracking resistance of these steel pipes, was measured. The results are shown in Table 8.

【0074】[0074]

【表6】 [Table 6]

【0075】[0075]

【表7】 [Table 7]

【0076】[0076]

【表8】 [Table 8]

【0077】表8に示すように、本発明で規定する組成
を満足する鋼G〜Jは、いずれも980N/mm2 以上
の強度を示し、かつ1900μm以上の高い水素遅れ割
れ発生限界付加歪みΔεc が安定して得られた。また、
組織的には表7に示すように100%焼戻しマルテンサ
イトであった。一方、C量が本発明で規定する範囲を外
れる鋼Lは、強度上の問題はないが、水素遅れ割れ発生
限界付加歪みΔεc が著しく低く、耐水素遅れ割れ特性
が劣ることが確認された。
As shown in Table 8, all of the steels G to J satisfying the composition specified in the present invention have a strength of 980 N / mm 2 or more and a high hydrogen delayed cracking limit additional strain Δε of 1900 μm or more. c was stably obtained. Also,
Structurally, it was 100% tempered martensite as shown in Table 7. On the other hand, steel L whose C content is out of the range defined by the present invention has no problem in strength, but it is confirmed that the hydrogen delayed cracking limit critical additional strain Δε c is extremely low and the hydrogen delayed cracking resistance is inferior. .

【0078】(実施例4)表6の鋼G〜Lを用いて表9
に示すように熱延条件および造管条件を種々変化させて
電縫鋼板を作製し、これら鋼管の引張強度および耐水素
割れ特性の指標である水素遅れ割れ発生限界付加歪みΔ
εc を測定した。結果を表10に示す。
(Example 4) Steels G to L in Table 6 are used in Table 9
As shown in Fig. 4, electric resistance welded steel sheets were produced by variously changing hot rolling conditions and pipe forming conditions, and hydrogen delayed cracking limit additional strain Δ which is an index of tensile strength and hydrogen cracking resistance of these steel pipes was obtained.
ε c was measured. The results are shown in Table 10.

【0079】[0079]

【表9】 [Table 9]

【0080】[0080]

【表10】 [Table 10]

【0081】表10に示すように、熱延条件、造管条件
が本発明の範囲内にある電縫鋼管は、引張強度が980
N/mm2 で、かつ1900μm以上の高い水素割れ発
生限界歪みΔεc が安定して得られる。また、組織的に
は表9に示すように80%以上の焼戻しマルテンサイト
とフェライトからなる複合組織であった。一方、熱処理
条件、造管条件が本発明の範囲外の試料では、引張強度
が不足したり、水素遅れ割れ発生限界付加歪みΔεc
950μmと低く、かつ安定したΔεc の値が得られな
かった。
As shown in Table 10, the electric resistance welded steel pipe whose hot rolling condition and pipe forming condition are within the scope of the present invention has a tensile strength of 980.
A high hydrogen cracking limit strain Δε c of N / mm 2 and 1900 μm or more can be stably obtained. Further, as shown in Table 9, the structure was a composite structure composed of 80% or more of tempered martensite and ferrite. On the other hand, in the case where the heat treatment condition and the pipe forming condition were out of the range of the present invention, the tensile strength was insufficient, the hydrogen delay cracking limit critical additional strain Δε c was as low as 950 μm, and a stable Δε c value could not be obtained. It was

【0082】(実施例5)表11に示すM〜Sの7種の
鋼を溶製し、表12に示す方法で31.8mmφ×1.
6mmtの電縫鋼管を作製した。これらの鋼管を0.1
N塩酸中に200時間浸漬し、浸漬前後で引張試験を行
い残留強度率を求め、耐久性の指標とした。なお、残留
強度率(%)は前述した方法で求めた。その結果を表1
3に示す。
(Embodiment 5) Seven kinds of steels M to S shown in Table 11 were melted and manufactured by the method shown in Table 12 to obtain 31.8 mmφ × 1.
A 6 mmt electric resistance welded steel pipe was produced. These steel pipes 0.1
It was immersed in N hydrochloric acid for 200 hours, a tensile test was performed before and after the immersion, and the residual strength ratio was determined and used as an index of durability. The residual strength rate (%) was determined by the method described above. The results are shown in Table 1.
3 shows.

【0083】[0083]

【表11】 [Table 11]

【0084】[0084]

【表12】 [Table 12]

【0085】[0085]

【表13】 [Table 13]

【0086】表13から明らかなように、鋼組成と組織
とにおいて本発明で規定された条件を満たしている発明
例の電縫鋼管は引張強度が1180N/mm2 以上でか
つ残留強度率が高く、優れた耐久性を有することが確認
された。
As is clear from Table 13, the electric resistance welded steel pipes of the invention examples satisfying the conditions defined in the present invention in the steel composition and structure have a tensile strength of 1180 N / mm 2 or more and a high residual strength ratio. It was confirmed that it has excellent durability.

【0087】[0087]

【発明の効果】以上説明したように、本発明によれば、
ドアインパクトビームなどの自動車部品、機械構造用部
材、土木建築用部材に用いられる引張強度980N/m
2 以上の耐水素遅れ割れ特性に優れた構造用超高張力
電縫鋼管を、低コストで製造することができる。
As described above, according to the present invention,
Tensile strength 980 N / m used for automobile parts such as door impact beam, mechanical structural members, civil engineering and building materials
A structural ultrahigh-strength electric resistance welded steel pipe excellent in hydrogen-delayed cracking resistance of m 2 or more can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu添加量と割れ発生限界付加歪み変化量との
関係を示す図。
FIG. 1 is a diagram showing a relationship between a Cu addition amount and a crack generation limit additional strain change amount.

【図2】Ni添加量と割れ発生限界付加歪み変化量との
関係を示す図。
FIG. 2 is a diagram showing the relationship between the amount of Ni added and the amount of change in additional strain that causes cracking.

【図3】Q/(t/ D)2 と水素遅れ割れ発生限界付加
歪みとの関係を示す図。
FIG. 3 is a diagram showing the relationship between Q / (t / D) 2 and hydrogen delay cracking limit additional strain.

【図4】150〜250℃の温度範囲における保持時間
と水素遅れ割れ発生限界付加歪みΔεc との関係を示す
図。
FIG. 4 is a diagram showing a relationship between a holding time in a temperature range of 150 to 250 ° C. and a hydrogen delayed cracking limit additional strain Δε c .

【図5】Cu添加量と腐食試験後の残留強度率の関係を
示す図。
FIG. 5 is a diagram showing a relationship between a Cu addition amount and a residual strength rate after a corrosion test.

【図6】Ni添加量と腐食試験後の残留強度率の関係を
示す図。
FIG. 6 is a diagram showing the relationship between the amount of Ni added and the residual strength rate after a corrosion test.

【図7】Mo添加量と腐食試験後の残留強度率の関係を
示す図。
FIG. 7 is a diagram showing the relationship between the amount of Mo added and the residual strength rate after a corrosion test.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 8/00-8/10 C22C 38/00-38/60

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.10〜0.19%、
Si:0.01〜0.5%、Mn:0.8〜2.2%、
Al:0.01〜0.06%、Cr:0.05〜0.6
%、P:0.02%以下、S:0.003%以下、N:
0.005%以下、残部Fe及び不可避的不純物からな
鋼スラブに対し、前記鋼のAr3 変態点の温度をTA
3 としたとき、仕上げ温度Tfが(TAr3 +30)
〜(TAr3 +100)℃の温度範囲になるように仕上
げ温度Tfを制御して熱間圧延を施し、その熱間圧延の
際に、Tf〜(Tf+30)℃の温度範囲で30%以上
の圧下率を与え、熱間圧延後直ちに60〜200℃/s
ecの冷却速度で150〜250℃の温度範囲の温度T
cまで冷却した後、150℃以上Tc以下の温度範囲に
2秒以上滞留させ、150℃未満の温度で巻取って熱延
鋼板とし、この熱延鋼板を以下の(1)式を満たす幅絞
り率Qで造管することを特徴とする超高張力電縫鋼管の
製造方法。 1000≦Q/(t/ D)2 ≦3000……(1) ただし、t(mm):鋼板の板厚、D(mm):電縫鋼管の外
径、Q(%)は幅絞り率で、以下の式(2)で定義され
る。 Q=[{鋼板の幅−π( D−t)} /π(D−t)]×100 ……(2)
1. C: 0.10 to 0.19% by weight,
Si: 0.01 to 0.5%, Mn: 0.8 to 2.2%,
Al: 0.01 to 0.06%, Cr: 0.05 to 0.6
%, P: 0.02% or less, S: 0.003% or less, N:
0.005% or less, consisting of balance Fe and unavoidable impurities
To steel slab, the temperature of the Ar 3 transformation point of the steel TA that
When r 3 is set, the finishing temperature Tf is (TAr 3 +30)
To (TAr 3 +100) ° C., the finishing temperature Tf is controlled to carry out hot rolling, and during the hot rolling, reduction of 30% or more in the temperature range of Tf to (Tf + 30) ° C. Rate, 60 ~ 200 ℃ / s immediately after hot rolling
temperature T in the temperature range of 150 to 250 ° C. at a cooling rate of ec
After cooling to c, it is retained in a temperature range of 150 ° C. or higher and Tc or lower for 2 seconds or longer, and wound at a temperature of lower than 150 ° C. to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet satisfies the formula (1) below. A method for manufacturing an ultra-high-strength electric resistance welded steel pipe, which is characterized in that the pipe is produced at a rate Q. 1000 ≦ Q / (t / D) 2 ≦ 3000 (1) where t (mm) is the thickness of the steel plate, D (mm) is the outer diameter of the electric resistance welded steel pipe, and Q (%) is the width reduction ratio. , Is defined by the following equation (2). Q = [{width of steel sheet−π (D−t)} / π (D−t)] × 100 (2)
【請求項2】 さらに、重量%で、Nb:0.005〜
0.03%、V:0.005〜0.03%のうち少なく
とも1種を含有することを特徴とする請求項1に記載の
超高張力電縫鋼管の製造方法。
2. Nb: 0.005 by weight%
At least 1 sort (s) is contained among 0.03% and V: 0.005-0.03%, The manufacturing method of the ultrahigh-strength electric resistance welded steel pipe of Claim 1 characterized by the above-mentioned.
【請求項3】 さらに、重量%で、B:0.0005〜
0.0030%を含有することを特徴とする請求項1ま
たは請求項2に記載の超高張力電縫鋼管の製造方法。
3. Further, B: 0.0005 to 5% by weight.
The composition according to claim 1, which contains 0.0030%.
Alternatively, the method for manufacturing an ultra-high-strength electric resistance welded steel pipe according to claim 2 .
【請求項4】 さらに、重量%で、Cu:0.05〜
0.50%を含有することを特徴とする請求項1ないし
請求項3のいずれか1項に記載の超高張力電縫鋼管の製
造方法。
4. Further, in weight%, Cu: 0.05-.
0.50% is contained, It is characterized by the above-mentioned.
The method for manufacturing an ultra-high tensile electric resistance welded steel pipe according to claim 3 .
【請求項5】 さらに、重量%で、Ni:0.3%以下
であることを特徴とする請求項4に記載の超高張力電縫
鋼管の製造方法。
5. The method for producing an ultra-high-strength electric resistance welded steel pipe according to claim 4 , further comprising Ni: 0.3% by weight or less.
JP14602996A 1995-06-09 1996-06-07 Ultra-high tensile ERW steel pipe and method of manufacturing the same Expired - Fee Related JP3374659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14602996A JP3374659B2 (en) 1995-06-09 1996-06-07 Ultra-high tensile ERW steel pipe and method of manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-143207 1995-06-09
JP14320795 1995-06-09
JP7-201172 1995-08-07
JP20117295 1995-08-07
JP14602996A JP3374659B2 (en) 1995-06-09 1996-06-07 Ultra-high tensile ERW steel pipe and method of manufacturing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002267058A Division JP3849625B2 (en) 1995-06-09 2002-09-12 Manufacturing method of ultra-high strength ERW steel pipe
JP2002267059A Division JP4192537B2 (en) 1995-06-09 2002-09-12 Ultra-high tensile ERW steel pipe

Publications (2)

Publication Number Publication Date
JPH09104921A JPH09104921A (en) 1997-04-22
JP3374659B2 true JP3374659B2 (en) 2003-02-10

Family

ID=27318589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14602996A Expired - Fee Related JP3374659B2 (en) 1995-06-09 1996-06-07 Ultra-high tensile ERW steel pipe and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3374659B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747578B2 (en) 2003-12-12 2014-06-10 Jfe Steel Corporation Steel for structural part of automobile and method for producing the same
WO2016177763A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
EP4015660A4 (en) * 2019-10-31 2022-11-09 JFE Steel Corporation Steel sheet, member, method for producing said steel sheet and method for producing said member

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608739B2 (en) * 2000-06-14 2011-01-12 Jfeスチール株式会社 Manufacturing method of steel pipe for automobile door reinforcement
US20020033591A1 (en) * 2000-09-01 2002-03-21 Trw Inc. Method of producing a cold temperature high toughness structural steel tubing
US7481897B2 (en) * 2000-09-01 2009-01-27 Trw Automotive U.S. Llc Method of producing a cold temperature high toughness structural steel
US20090044882A1 (en) * 2005-06-10 2009-02-19 Hitoshi Asahi Oil well pipe for expandable tubular applications excellent in post-expansion toughness and method of manufacturing the same
CN101514433A (en) * 2007-03-16 2009-08-26 株式会社神户制钢所 Automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact property and method of manufacturing the same
JP5704721B2 (en) * 2011-08-10 2015-04-22 株式会社神戸製鋼所 High strength steel plate with excellent seam weldability
JP5776472B2 (en) * 2011-09-28 2015-09-09 Jfeスチール株式会社 Hollow member for vehicle reinforcement
CN103639650B (en) * 2013-11-21 2016-01-06 江苏天舜金属材料集团有限公司 A kind of high surrender degree is without the manufacture method of bonding prestress rod iron
US20160369367A1 (en) * 2014-01-14 2016-12-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet and process for producing same
KR101714930B1 (en) * 2015-12-23 2017-03-10 주식회사 포스코 Ultra high strength steel sheet having excellent hole expansion ratio, and method for manufacturing the same
CN109465609A (en) * 2018-12-29 2019-03-15 无锡苏嘉法斯特汽车零配件有限公司 A kind of preparation method of automobile abnormal shape door anti-collision joist welded still pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747578B2 (en) 2003-12-12 2014-06-10 Jfe Steel Corporation Steel for structural part of automobile and method for producing the same
WO2016177763A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
WO2016177420A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
EP4015660A4 (en) * 2019-10-31 2022-11-09 JFE Steel Corporation Steel sheet, member, method for producing said steel sheet and method for producing said member

Also Published As

Publication number Publication date
JPH09104921A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
JP5609383B2 (en) High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
CA1221895A (en) Method of manufacturing high tensile strength steel plates
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP3344308B2 (en) Ultra-high-strength steel sheet for linepipe and its manufacturing method
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP3374659B2 (en) Ultra-high tensile ERW steel pipe and method of manufacturing the same
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
WO2018050637A1 (en) Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method
CN111655892B (en) Hot-rolled steel sheet for continuous pipe and method for producing same
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
KR20210014055A (en) High strength steel sheet and manufacturing method thereof
RU2711696C1 (en) Method of producing cold-rolled steel strip from high-strength manganese steel with trip-properties
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3307164B2 (en) Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking
JP3849625B2 (en) Manufacturing method of ultra-high strength ERW steel pipe
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
JPH05195150A (en) Hot rolled high-strength steel sheet excellent in workability and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees