JP3731103B2 - High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof - Google Patents

High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof Download PDF

Info

Publication number
JP3731103B2
JP3731103B2 JP34522197A JP34522197A JP3731103B2 JP 3731103 B2 JP3731103 B2 JP 3731103B2 JP 34522197 A JP34522197 A JP 34522197A JP 34522197 A JP34522197 A JP 34522197A JP 3731103 B2 JP3731103 B2 JP 3731103B2
Authority
JP
Japan
Prior art keywords
steel pipe
hydraulic bulge
less
bulge formability
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34522197A
Other languages
Japanese (ja)
Other versions
JPH11172376A (en
Inventor
俊介 豊田
俊明 占部
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34522197A priority Critical patent/JP3731103B2/en
Publication of JPH11172376A publication Critical patent/JPH11172376A/en
Application granted granted Critical
Publication of JP3731103B2 publication Critical patent/JP3731103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば、サスペンションアームなどの自動車足廻り部品、シャシー、ボディなどの自動車構造部品に使用される、液圧バルジ成形性に優れた電縫鋼管およびその製造方法に関するものである。
【0002】
【従来の技術】
電縫鋼管に優れた加工成形性を付与する手段に関し、従来から種々の研究がなされており、例えば、特開昭60−17053号公報には、所定の化学成分組成を有する鋼を、特定の組織とすることによって、電縫溶接後の伸び、偏平性、拡管性、および、溶接ビード部の切削性を向上させることが開示されている。
【0003】
また、特開昭60−21357号公報には、電縫溶接鋼管の材質を所定の化学成分組成とすることによって、偏平性、拡管性および溶接ビード部の切削性を向上させることが開示されている。
【0004】
【発明が解決しようとする課題】
電縫鋼管の成形方法として、液圧バルジ成形は有力な加工手段であるが、電縫鋼管に液圧バルジ成形によって大きな張出しを施す場合、または、曲げ加工後に張出しを施す場合に、上記特開昭60−17053号公報および特開昭60−21357号公報に記載されているような従来技術によって製造された電縫鋼管では、成形加工時に破断が生ずるおそれがあり、破断の発生を防止するためには、中間焼鈍が必要になる。
【0005】
従って、この発明の目的は、上述した問題を解決し、サスペンションアームなどの自動車足廻り部品、シャシー、ボディなどの自動車構造部品の素材に要求される、液圧バルジ成形性に優れた電縫鋼管およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
この発明は、上述した問題を解決するためになされたものであって、請求項1に記載の液圧バルジ成形性に優れた高強度電縫鋼管は、C:0.01〜0.1wt.%、Si:0.002〜1.0wt.%、Mn:0.2〜2.0wt.%、Al:0.01〜0.10wt.%、N:0.0006〜0.006wt.%、S:0.015wt.%以下、および、残り:Feおよび不可避不純物からなる化学成分組成を有し、1〜20%のマルテンサイト組織と、80%以上のフェライト組織とからなり、そして、前記マルテンサイト組織の平均粒径が5μm以下であることに特徴を有するものである。
【0007】
請求項2に記載の液圧バルジ成形性に優れた高強度電縫鋼管は、請求項1に記載の化学成分組成に加え、更に、Ti:0.002〜0.07wt.%、Nb:0.002〜0.07wt.%、V:0.002〜0.07wt.%、B:0.0003〜0.003wt.%、P:0.01〜0.10wt.%、Cu:0.01〜0.5wt.%、Ni:0.01〜0.5wt.%、Cr:0.01〜0.5wt.%、Mo:0.01〜0.20wt.%、および、Ca:0.0003〜0.003wt.%、からなる群から選んだ少なくとも1つの元素を含有していることに特徴を有するものである。
【0008】
請求項3に記載の液圧バルジ成形性に優れた高強度電縫鋼管の製造方法は、請求項1または2に記載の化学成分組成を有する鋼スラブを、仕上圧延終了温度700℃以上、巻取り温度200℃以下の条件で熱間圧延し、得られた熱延鋼帯を酸洗した後、幅絞り率1〜10%で電縫鋼管に造管することによって、1〜20%のマルテンサイト組織と、80%以上のフェライト組織とからなり、前記マルテンサイト組織の平均粒径が5μm以下である電縫鋼管を製造することに特徴を有するものである。
【0009】
また、請求項4に記載の液圧バルジ成形性に優れた高強度電縫鋼管の製造方法は、請求項1または2に記載の化学成分組成を有する熱延鋼帯を酸洗し次いで電縫鋼管に造管した後、720〜780℃の温度で加熱し、次いで、30℃/S以上の冷却速度で200℃以下まで冷却することによって、1〜20%のマルテンサイト組織と、80%以上のフェライト組織とからなり、前記マルテンサイト組織の平均粒径が5μm以下である電縫鋼管を製造することに特徴を有するものである。
【0010】
【発明の実施の形態】
次に、この発明の電縫鋼管の化学成分組成を上述のように限定した理由について述べる。
【0011】
C:Cは、所定量のマルテンサイトを生成させ、目標とする組織を確保するために必須の元素であって、その含有量は0.01〜0.1wt.%の範囲内に限定すべきである。上記範囲の量のCを含有させることによって、造管歪による延性の低下が少ない液圧バルジ成形性に優れた電縫鋼管が得られる。C量が0.01wt.%未満または0.1wt.%超では、造管歪による延性の低下が大になり、液圧バルジ成形性が劣化する。
【0012】
Si:Siは、フェライトの生成を促進し、所望のフェライト量を確保するために有用な元素であり、その含有量は、0.002〜1.0wt.%の範囲内に限定すべきである。Si量が0.002wt.%未満では、所望の効果が得られず、一方、1.0wt.%を超えると、電縫溶接部の液圧バルジ成形性が劣化する。
【0013】
Mn:Mnは、所望量のマルテンサイトを生成させ、目標とする組織を確保するために必須の元素であって、その含有量は、0.2〜2.0wt.%の範囲内に限定すべきであり、上記範囲のMnを含有させることによって微細なマルテンサイト組織が得られる。Mn量が0.2wt.%未満ではパーライト変態が生じ、一方、2.0wt.%を超えるとフェライト変態が抑制され、いずれも所望の組織が得られず、造管による液圧バルジ成形性の低下が大になる。
【0014】
Al:Alは、脱酸元素として添加されるが、その含有量は0.01〜0.10wt.%の範囲内に限定すべきである。Al含有量が0.01wt.%未満では、所望の効果が得られず、一方、0.10wt.%を超えると介在物の増大により、液圧バルジ成形性が劣化する。
【0015】
N:N含有量は0.0006〜0.006wt.%の範囲内に限定すべきである。N含有量が0.006wt.%を超えると液圧バルジ成形性が劣化する。N含有量の下限は、製鋼上の制約から0.0006wt.%とする。
【0016】
S:S含有量は0.015wt.%以下とすべきである。S含有量が0.015wt.%を超えると液圧バルジ成形性が劣化する。
Ti、Nb、V、B、P、Cu、Ni、Cr、Moのうちの少なくとも1種:Ti、Nb、V、B、P、Cu、Ni、CrおよびMoは、強度を向上させる作用を有しており、目標とする強度を得るために、必要に応じてその少なくとも1種を含有させる。
【0017】
Ti、NbおよびVの含有量は0.002〜0.07wt.%の範囲内に、B含有量は0.0003〜0.003wt.%の範囲内に、P含有量は0.01〜0.10wt.%の範囲内に、Cu、NiおよびCrの含有量は0.01〜0.5wt.%の範囲内にそしてMo含有量は0.01〜0.20wt.%の範囲内にそれぞれ限定すべきである。上記各元素の含有量がその上限を超えると液圧バルジ性が劣化する。一方、上記各元素の含有量がその下限未満では、所望の添加効果が得られない。
【0018】
Ca:Caは、硫化物の形態を制御し、Sによる液圧バルジ性の低下を抑制する作用を有している。従って必要に応じ、0.0003〜0.003wt.%の範囲内の量を添加する。Ca含有量が0.003wt.%を超えると介在物の増大によって液圧バルジ成形性が劣化する。一方、0.0003wt.%未満では、所望の効果が得られない。
【0019】
この発明の高強度電縫鋼管は、次のようにして製造される。上記化学成分組成を有する鋼スラブを、仕上圧延終了温度700℃以上、巻取り温度200℃以下の条件で熱間圧延し、得られた熱延鋼帯を酸洗した後、幅絞り率1〜10%で電縫鋼管に造管することによって、1〜20%のマルテンサイト組織と、80%以上のフェライト組織とからなり、前記マルテンサイト組織の平均粒径が5μm以下である電縫鋼管を製造することができる。
【0020】
電縫鋼管の素材である鋼スラブは、連続鋳造後、一旦A3 変態点以下まで冷却した後、再加熱してもよく、または、鋼スラブを連続鋳造後、連続的に熱間圧延して熱延鋼帯としてもよい。
【0021】
熱間圧延時の仕上圧延終了温度は700℃以上とすることが必要である。仕上圧延終了温度が700℃未満では、所望量のフェライトが得られず、液圧バルジ成形性が劣化する。熱間圧延時の巻取り温度は200℃以下とすることが必要である。巻取り温度が200℃を超えると、所望量のマルテンサイトが得られず、強度と液圧バルジ成形性バランスが劣化する。
【0022】
電縫鋼管のバルジ成形性は、鋼成分、鋼帯のミクロ組織に加えて、成形による歪量の影響を受ける。そこで、電縫鋼管の成形時における下記(1) 式で求められる幅絞り率は、1〜10%の範囲内とすることが必要である。
【0023】

Figure 0003731103
成形時の幅絞り率が10%を超えると、液圧バルジ成形性の低下が著しくなる。一方、幅絞り率が1%未満であると、周方向の液圧バルジ成形性が不均一になって、相対的に成形性が低い部位に歪が集中する結果、液圧バルジ成形性が低下する。
【0024】
図1は、幅絞り率と液圧バルジ成形性との関係を示すグラフである。液圧バルジ成形性は、60.5mmφ×2.6mmtの電縫鋼管に対し、変形部長さを121mmとし、両端が閉塞された管内に液体を圧入し、管体に対しその内側から液圧を付与したときの、管体破断時における周長増加率によって評価した。なお、その際の管体の応力比(軸方向応力/円周方向応力)が0となる条件とした。更に、曲げ半径200mmRで90°の曲げ加工を施した曲げ管に対しても、軸圧縮なしの条件によって評価した。
【0025】
図1から明らかなように、幅絞り率を1〜10%の範囲内とすることによって、曲げ管の場合には15%以上の高い周長増加率が得られ、また、直管の場合(軸圧縮なし)には25%以上の高い周長増加率が得られ、これによって、液圧バルジ成形性に優れていることがわかる。
【0026】
また、造管歪みによる液圧バルジ成形性の劣化を回避するために、熱延鋼帯を電縫鋼管に造管した後、熱処理を施すことによって、1〜20%のマルテンサイトと80%以上のフェライトとからなる組織とすることができる。
【0027】
この場合、再加熱温度を720〜780℃の範囲内とすることが必要である。再加熱温度が720℃未満または780℃を超えると、フェライト量を80%以上とすることができない。また、200℃以下までの冷却速度が30℃/S以上でないと、1〜20%のマルテンサイト組織とすることができない。
【0028】
図2は、マルテンサイト分率と液圧バルジ成形性との関係を示すグラフである。図面から明らかなように、マルテンサイト分率を1〜20%の範囲内とすることによって、○印の直管(軸圧縮なし)、●印の直管(軸圧縮あり)および△印の曲げ管(軸圧縮なし)の何れの場合も、強度−周長増加率バランスの優れた値が得られる。
【0029】
上述した成分組成を有し、上記条件によって製造された、1〜20%のマルテンサイト組織と80%以上のフェライト組織とからなり、前記マルテンサイト組織の平均粒径が5μm以下である組織を有する熱延鋼帯を、1〜10%の幅絞り率で造管した電縫鋼管は、造形歪による液圧バルジ成形性の低下量が少なく、且つ、造管後に優れた液圧バルジ成形性を有している。その理由は、次のように考えられる。
【0030】
無加工の熱延鋼帯は、フェライト分率が高いものほど液圧バルジ成形性が高い。しかしながら、プレーンなフェライト組織の場合は、造管後の加工硬化に伴う液圧バルジ成形性の低下が著しい。その原因は、加工時に活動する転位がすべり面に沿って均一にすべり加工硬化を引き起こすためであると考えられる。これに対し、20%以下のマルテンサイト組織が含まれていると、転位のすべりが不均一に生じ、ある程度加工が進行しても可動転位密度が高く、従って、液圧バルジ成形性の低下が抑制されるものと考えられる。
【0031】
【実施例】
次に、この発明を実施例により説明する。
〔実施例1〕
表1に示す本発明の範囲内の化学成分組成を有する8種類の鋼A〜Hを溶製して鋼スラブとなし、得られた鋼スラブを表2に示す本発明の範囲内の熱延条件で熱間圧延して熱延鋼帯となし、次いで、前記熱延鋼帯を本発明の範囲内の造管条件によって造管し、60.5mmφ×2.6mmtの寸法の本発明の電縫鋼管の供試体(以下、本発明供試体という)No. 1〜8を調製した。
【0032】
比較のために、同じく表1に示す、少なくとも1つの元素が本発明の範囲外の化学成分組成を有する比較用鋼IおよびJを溶製して鋼スラブとなし、得られた鋼スラブを、表2に示す本発明の範囲内の熱延条件によって熱間圧延となし、次いで、前記熱延鋼帯を本発明の範囲内の造管条件によって造管し、上記と同じ寸法の電縫鋼管の供試体(以下、比較用供試体という)No. 9、10を調製した。
【0033】
【表1】
Figure 0003731103
【0034】
【表2】
Figure 0003731103
【0035】
このようにして得られた本発明供試体および比較用供試体の各々に対し、変形部長さを121mmとし、管の内側から液圧を付与して、破断時における周長増加率によりバルジ成形性を評価し、表2に併せて示した。また、曲げ半径200mmRで90°に曲げ加工を施した曲げ管に対しても、軸圧縮なしの条件によってバルジ成形性を評価し、同じく表2に併せて示した。
【0036】
表1および表2から明らかなように、本発明の範囲内の化学成分組成を有する本発明供試体No. 1〜8は、本発明の範囲外の化学成分組成を有する比較用供試体No. 9、10に比べて、直管の場合も曲げ管の場合も周長増加率が高く、優れた液圧バルジ成形性を有していた。
【0037】
〔実施例2〕
次に、本発明の範囲内の化学成分組成を有する6種類の鋼スラブA〜Fを溶製し、得られた鋼スラブに対し、表3に示すように、本発明の範囲内または範囲外の熱延条件および造管条件によって熱延および造管し、60.5mmφ×2.6mmtの寸法の電縫鋼管の供試体No. 11〜28を調製した。
【0038】
【表3】
Figure 0003731103
【0039】
表3から明らかなように、巻取り温度が本発明の範囲を超えて高く、マルテンサイト分率が0で且つフェライト分率が本発明の範囲を外れて低い比較用供試体No. 13、仕上圧延温度およびフェライト分率が本発明の範囲を外れて低い比較用供試体No. 14、幅絞り率が本発明の範囲を超えて多い比較用供試体No. 16、幅絞り率が本発明の範囲を外れて少ない比較用供試体No. 17、マルテンサイト分率が本発明の範囲を超えて多く且つフェライト分率が本発明の範囲を外れて少ない比較用供試体No. 24およびマルテンサイト粒径が本発明の範囲を超えて大きい比較用供試体No. 25は、何れも周長増加率が低く、液圧バルジ成形性が劣っていた。
【0040】
これに対し、仕上圧延温度、巻取り温度、幅絞り率、マルテンサイト分率、マルテンサイト粒径およびフェライト分率が、何れも本発明の範囲内である本発明供試体No. 11、12、15、18〜23、および、No. 26〜28は、直管の場合も曲げ管の場合も周長増加率が高く、優れた液圧バルジ成形性を有していた。
【0041】
【発明の効果】
以上述べたように、この発明によれば、サスペンションアームなどの自動車足廻り部品、シャシー、ボディなどの自動車構造部品の素材に要求される、液圧バルジ成形性に優れた電縫鋼管が得られる、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】幅絞り率と周長増加率即ち液圧バルジ成形性との関係を示すグラフである。
【図2】マルテンサイト分率と周長増加率即ち液圧バルジ成形性との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric-welded steel pipe having excellent hydraulic bulge formability and a method for producing the same, used for example in automobile undercarriage parts such as suspension arms and automobile structural parts such as chassis and body.
[0002]
[Prior art]
Various studies have been made on the means for imparting excellent workability to an electric resistance welded steel pipe. For example, JP-A-60-17053 discloses a steel having a predetermined chemical composition as a specific component. It has been disclosed to improve the elongation, flatness, tube expandability, and machinability of the weld bead portion after electro-welding by using a structure.
[0003]
Japanese Patent Application Laid-Open No. 60-21357 discloses that flatness, pipe expandability and machinability of the weld bead portion are improved by making the material of the electric resistance welded steel pipe a predetermined chemical composition. Yes.
[0004]
[Problems to be solved by the invention]
As a method for forming an electric resistance steel pipe, hydraulic bulge forming is an effective processing means. However, when a large overhang is applied to an electric resistance steel pipe by hydraulic bulge forming, or when an overhang is applied after bending, the above-mentioned JP In an electric resistance steel pipe manufactured by a conventional technique as described in Japanese Patent Application Laid-Open No. 60-17053 and Japanese Patent Application Laid-Open No. 60-21357, there is a risk of breakage during forming, so that the occurrence of breakage is prevented. Requires intermediate annealing.
[0005]
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide an electric resistance welded steel pipe excellent in hydraulic bulge formability, which is required for materials for automobile suspension parts such as suspension arms and automobile structural parts such as chassis and body. And providing a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
This invention was made in order to solve the above-mentioned problem, Comprising: The high intensity | strength ERW steel pipe excellent in the hydraulic bulge formability of Claim 1 is C: 0.01-0.1wt. %, Si: 0.002-1.0 wt.%, Mn: 0.2-2.0 wt.%, Al: 0.01-0.10 wt.%, N: 0.0006-0.006 wt.%, S: 0.015 wt.% Or less, and the remainder: Fe and a chemical composition composed of unavoidable impurities, consisting of 1-20% martensite structure and 80% or more ferrite structure, and the martens It is characterized in that the average particle size of the site structure is 5 μm or less.
[0007]
The high-strength electric resistance welded steel pipe excellent in hydraulic bulge formability according to claim 2 includes, in addition to the chemical component composition according to claim 1, Ti: 0.002 to 0.07 wt.%, Nb: 0. 0.002 to 0.07 wt.%, V: 0.002 to 0.07 wt.%, B: 0.0003 to 0.003 wt.%, P: 0.01 to 0.10 wt.%, Cu: 0.01 -0.5 wt.%, Ni: 0.01-0.5 wt.%, Cr: 0.01-0.5 wt.%, Mo: 0.01-0.20 wt.%, And Ca: 0.0003 It is characterized by containing at least one element selected from the group consisting of ˜0.003 wt.%.
[0008]
According to a third aspect of the present invention, there is provided a method for producing a high-strength electric resistance welded steel pipe excellent in hydraulic bulge formability, wherein a steel slab having a chemical composition according to the first or second aspect is wound at a finish rolling end temperature of 700 ° C. or higher. After hot rolling at a temperature of 200 ° C. or less and pickling the obtained hot-rolled steel strip, it is formed into an electric-welded steel pipe with a width drawing ratio of 1 to 10%. It is characterized by producing an electric-welded steel pipe comprising a site structure and a ferrite structure of 80% or more, and having an average particle diameter of the martensite structure of 5 μm or less.
[0009]
According to a fourth aspect of the present invention, there is provided a method for producing a high-strength electric resistance welded steel pipe excellent in hydraulic bulge formability, wherein the hot-rolled steel strip having the chemical component composition according to the first or second aspect is pickled and then electro-sewn. After forming into a steel pipe, it is heated at a temperature of 720 to 780 ° C., and then cooled to 200 ° C. or lower at a cooling rate of 30 ° C./S or higher, and a martensite structure of 1 to 20% and 80% or higher This is characterized in that an electric resistance welded steel pipe having an average grain size of the martensite structure of 5 μm or less is manufactured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the chemical component composition of the electric resistance welded steel pipe of the present invention is limited as described above will be described.
[0011]
C: C is an essential element for generating a predetermined amount of martensite and securing a target structure, and its content should be limited to a range of 0.01 to 0.1 wt. It is. By containing C in the above-mentioned range, an electric resistance welded steel pipe excellent in hydraulic bulge formability with little reduction in ductility due to pipe-forming strain can be obtained. When the amount of C is less than 0.01 wt.% Or more than 0.1 wt.%, The ductility is greatly reduced due to pipe-forming strain, and the hydraulic bulge formability deteriorates.
[0012]
Si: Si is an element useful for accelerating the formation of ferrite and ensuring a desired amount of ferrite, and its content should be limited to a range of 0.002 to 1.0 wt.%. . If the amount of Si is less than 0.002 wt.%, The desired effect cannot be obtained. On the other hand, if it exceeds 1.0 wt.%, The hydraulic bulge formability of the ERW weld is deteriorated.
[0013]
Mn: Mn is an essential element for generating a desired amount of martensite and securing a target structure, and its content is limited to a range of 0.2 to 2.0 wt.%. Therefore, a fine martensite structure can be obtained by containing Mn within the above range. If the amount of Mn is less than 0.2 wt.%, Pearlite transformation occurs. On the other hand, if it exceeds 2.0 wt.%, Ferrite transformation is suppressed, and none of the desired structures can be obtained. The decline is significant.
[0014]
Al: Al is added as a deoxidizing element, but its content should be limited to the range of 0.01 to 0.10 wt.%. If the Al content is less than 0.01 wt.%, The desired effect cannot be obtained. On the other hand, if it exceeds 0.10 wt.%, The hydraulic bulge formability deteriorates due to an increase in inclusions.
[0015]
N: N content should be limited to the range of 0.0006 to 0.006 wt.%. When the N content exceeds 0.006 wt.%, The hydraulic bulge formability deteriorates. The lower limit of the N content is set to 0.0006 wt.% Due to steelmaking restrictions.
[0016]
S: S content should be 0.015 wt.% Or less. If the S content exceeds 0.015 wt.%, The hydraulic bulge formability deteriorates.
At least one of Ti, Nb, V, B, P, Cu, Ni, Cr, and Mo: Ti, Nb, V, B, P, Cu, Ni, Cr, and Mo have an action of improving strength. In order to obtain the target strength, at least one of them is contained as necessary.
[0017]
The content of Ti, Nb and V is in the range of 0.002 to 0.07 wt.%, The B content is in the range of 0.0003 to 0.003 wt.%, And the P content is 0.01 to 0. Within the range of 10 wt.%, The Cu, Ni and Cr contents are within the range of 0.01 to 0.5 wt.% And the Mo content is within the range of 0.01 to 0.20 wt.%, Respectively. Should be limited. When the content of each element exceeds the upper limit, the hydraulic bulge property deteriorates. On the other hand, if the content of each element is less than the lower limit, the desired addition effect cannot be obtained.
[0018]
Ca: Ca has an action of controlling the form of the sulfide and suppressing a decrease in hydraulic bulge property due to S. Therefore, if necessary, an amount in the range of 0.0003 to 0.003 wt.% Is added. If the Ca content exceeds 0.003 wt.%, The hydraulic bulge formability deteriorates due to the increase in inclusions. On the other hand, if it is less than 0.0003 wt.%, A desired effect cannot be obtained.
[0019]
The high strength electric resistance welded steel pipe of the present invention is manufactured as follows. A steel slab having the above chemical composition is hot-rolled under conditions of a finish rolling finish temperature of 700 ° C. or more and a coiling temperature of 200 ° C. or less, and after pickling the obtained hot-rolled steel strip, a width drawing ratio of 1 to By forming the ERW steel pipe at 10%, an ERW steel pipe having a martensite structure of 1 to 20% and a ferrite structure of 80% or more, and having an average particle diameter of the martensite structure of 5 μm or less. Can be manufactured.
[0020]
Steel slab which is a material of the electric resistance welded steel pipe, after the continuous casting, after once cooled to below A 3 transformation point may be reheated, or after continuous casting a steel slab, and continuously hot rolling It is good also as a hot-rolled steel strip.
[0021]
The finish rolling finish temperature at the time of hot rolling needs to be 700 ° C. or higher. When the finish rolling finish temperature is less than 700 ° C., a desired amount of ferrite cannot be obtained, and the hydraulic bulge formability deteriorates. The coiling temperature at the time of hot rolling needs to be 200 ° C. or less. When the winding temperature exceeds 200 ° C., a desired amount of martensite cannot be obtained, and the balance between strength and hydraulic bulge formability deteriorates.
[0022]
The bulge formability of an electric resistance welded pipe is affected by the amount of strain due to forming, in addition to the steel composition and the microstructure of the steel strip. Therefore, the width drawing ratio obtained by the following equation (1) at the time of forming the ERW steel pipe needs to be in the range of 1 to 10%.
[0023]
Figure 0003731103
When the width drawing ratio at the time of molding exceeds 10%, the hydraulic bulge formability is significantly lowered. On the other hand, if the width drawing ratio is less than 1%, the hydraulic bulge formability in the circumferential direction becomes non-uniform, and as a result of strain concentration at a relatively low formability, the hydraulic bulge formability is reduced. To do.
[0024]
FIG. 1 is a graph showing the relationship between the width drawing ratio and the hydraulic bulge formability. The hydraulic bulge formability is 60.5mmφ × 2.6mmt ERW steel pipe with a deformed part length of 121mm, the liquid is pressed into the pipe closed at both ends, and the hydraulic pressure is applied to the pipe body from the inside. Evaluation was made based on the rate of increase in peripheral length when the tube was broken. In this case, the stress ratio (axial stress / circumferential stress) of the tubular body was set to 0. Furthermore, a bending tube subjected to a bending process of 90 ° with a bending radius of 200 mmR was also evaluated under conditions without axial compression.
[0025]
As is clear from FIG. 1, by setting the width drawing ratio within the range of 1 to 10%, a high peripheral length increase rate of 15% or more is obtained in the case of a bent pipe, and in the case of a straight pipe ( A high circumferential length increase rate of 25% or more is obtained in the case of (without axial compression), which indicates that the hydraulic bulge formability is excellent.
[0026]
Moreover, in order to avoid the deterioration of the hydraulic bulge formability due to pipe-forming distortion, after forming a hot-rolled steel strip into an ERW steel pipe, heat treatment is carried out, so that 1 to 20% martensite and 80% or more are applied. It can be set as the structure | tissue which consists of this ferrite.
[0027]
In this case, it is necessary to set the reheating temperature within the range of 720 to 780 ° C. If the reheating temperature is less than 720 ° C or exceeds 780 ° C, the ferrite content cannot be 80% or more. Moreover, unless the cooling rate to 200 degrees C or less is 30 degrees C / S or more, it cannot be set as a 1-20% martensitic structure.
[0028]
FIG. 2 is a graph showing the relationship between martensite fraction and hydraulic bulge formability. As is apparent from the drawing, by setting the martensite fraction within the range of 1 to 20%, straight pipes marked with ○ (without axial compression), straight pipes marked with ● (with axial compression), and bending of Δ marks In any case of the tube (without axial compression), an excellent value of strength-periphery increase rate balance can be obtained.
[0029]
It has the above-described component composition, and is manufactured according to the above conditions, and is composed of 1 to 20% martensite structure and 80% or more ferrite structure, and the martensite structure has a structure having an average particle size of 5 μm or less. ERW steel pipes made from hot-rolled steel strips with a width drawing ratio of 1 to 10% have a small amount of decrease in hydraulic bulge formability due to molding distortion, and have excellent hydraulic bulge formability after pipe making. Have. The reason is considered as follows.
[0030]
The unprocessed hot-rolled steel strip has a higher hydraulic bulge formability as the ferrite fraction is higher. However, in the case of a plain ferrite structure, the decrease in hydraulic bulge formability accompanying work hardening after pipe making is significant. The cause is considered to be that dislocations active during processing cause slip work hardening uniformly along the slip surface. On the other hand, when a martensite structure of 20% or less is included, dislocation slip occurs non-uniformly, and even if the processing proceeds to some extent, the movable dislocation density is high, and therefore the hydraulic bulge formability is reduced. It is considered to be suppressed.
[0031]
【Example】
Next, the present invention will be described with reference to examples.
[Example 1]
Eight types of steels A to H having the chemical composition within the scope of the present invention shown in Table 1 are melted to form a steel slab, and the obtained steel slab is hot rolled within the scope of the present invention shown in Table 2. A hot rolled steel strip is formed by hot rolling under conditions, and the hot rolled steel strip is then piped according to the pipe making conditions within the scope of the present invention, and the electric wire according to the present invention having a size of 60.5 mmφ × 2.6 mmt is formed. Specimens (hereinafter referred to as the present invention specimens) Nos. 1 to 8 of the sewn steel pipe were prepared.
[0032]
For comparison, the steel slab obtained by melting the comparative steels I and J, in which at least one element has a chemical composition outside the scope of the present invention, also shown in Table 1 as a steel slab, Hot rolling is performed according to the hot rolling conditions within the range of the present invention shown in Table 2, and then the hot rolled steel strip is piped according to the pipe forming conditions within the range of the present invention. No. 9 and 10 (hereinafter referred to as comparative specimens) were prepared.
[0033]
[Table 1]
Figure 0003731103
[0034]
[Table 2]
Figure 0003731103
[0035]
With respect to each of the specimen of the present invention and the comparative specimen thus obtained, the deformed portion length was set to 121 mm, the hydraulic pressure was applied from the inside of the pipe, and the bulge formability was determined by the peripheral length increase rate at the time of fracture. Was also shown in Table 2. In addition, bulge formability was also evaluated for a bending tube bent at 90 ° with a bending radius of 200 mmR under the condition of no axial compression.
[0036]
As is apparent from Tables 1 and 2, Specimens No. 1 to 8 of the present invention having chemical composition within the scope of the present invention are Comparative Specimens No. 1 to 8 having chemical composition outside the scope of the present invention. Compared to 9 and 10, both the straight pipe and the bent pipe had a higher peripheral length increase rate and had excellent hydraulic bulge formability.
[0037]
[Example 2]
Next, six types of steel slabs A to F having a chemical composition within the scope of the present invention were melted, and the obtained steel slabs were within the scope of the present invention or outside the scope as shown in Table 3. Samples Nos. 11 to 28 of ERW steel pipes having a size of 60.5 mmφ × 2.6 mmt were prepared according to the hot rolling conditions and the pipe making conditions.
[0038]
[Table 3]
Figure 0003731103
[0039]
As is apparent from Table 3, comparative specimen No. 13, whose winding temperature is higher than the range of the present invention, the martensite fraction is 0, and the ferrite fraction is out of the range of the present invention is low. Comparative specimen No. 14 in which the rolling temperature and the ferrite fraction are out of the range of the present invention are low, comparative specimen No. 16 in which the width drawing ratio exceeds the range of the present invention, and the width drawing ratio is of the present invention. Comparative specimen No. 17 with a small amount outside the range, comparative specimen No. 24 with a large martensite fraction exceeding the range of the present invention and a small ferrite fraction outside the range of the present invention, and martensite grains The comparative specimen No. 25 having a diameter exceeding the range of the present invention had a low perimeter increase rate and was inferior in hydraulic bulge formability.
[0040]
In contrast, finish rolling temperature, winding temperature, width drawing ratio, martensite fraction, martensite grain size and ferrite fraction are all within the scope of the present invention specimen Nos. 11, 12, Nos. 15, 18 to 23 and Nos. 26 to 28 had a high rate of increase in peripheral length both in the case of a straight pipe and in the case of a bent pipe, and had excellent hydraulic bulge formability.
[0041]
【The invention's effect】
As described above, according to the present invention, an electric resistance welded steel pipe excellent in hydraulic bulge formability, which is required for materials for automobile suspension parts such as suspension arms and automobile structural parts such as chassis and body, can be obtained. Industrially useful effects are brought about.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a width drawing ratio and a peripheral length increase rate, that is, a hydraulic bulge formability.
FIG. 2 is a graph showing the relationship between the martensite fraction and the peripheral increase rate, ie, hydraulic bulge formability.

Claims (4)

C :0.01 〜0.1wt.%、
Si:0.002〜1.0wt.%、
Mn:0.2 〜2.0wt.%、
Al:0.01 〜0.10wt.%
N :0.0006〜0.006wt.%
S :0.015wt.%以下、および、
残り:Feおよび不可避不純物
からなる化学成分組成を有し、1〜20%のマルテンサイト組織と、80%以上のフェライト組織とからなり、そして、前記マルテンサイト組織の平均粒径が5μm以下であることを特徴とする液圧バルジ成形性に優れた高強度電縫鋼管。
C: 0.01 to 0.1 wt.%,
Si: 0.002 to 1.0 wt.%,
Mn: 0.2 to 2.0 wt.%,
Al: 0.01 to 0.10 wt.%
N: 0.0006 to 0.006 wt.%
S: 0.015 wt.% Or less, and
Remaining: having a chemical composition composed of Fe and inevitable impurities, consisting of 1 to 20% martensite structure and 80% or more ferrite structure, and the average particle size of the martensite structure being 5 μm or less A high-strength ERW steel pipe with excellent hydraulic bulge formability.
請求項1に記載の化学成分組成に加え、更に、
Ti:0.002〜0.07wt.%、
Nb:0.002〜0.07wt.%、
V :0.002〜0.07wt.%、
B :0.0003〜0.003wt.%
P :0.01 〜0.10wt.%
Cu:0.01 〜0.5wt.%
Ni:0.01 〜0.5wt.%
Cr:0.01 〜0.5wt.%、
Mo:0.01 〜0.20wt.%、および、
Ca:0.0003〜0.003wt.%、
からなる群から選んだ少なくとも1つの元素を含有する、請求項1に記載の高強度電縫鋼管。
In addition to the chemical component composition of claim 1,
Ti: 0.002 to 0.07 wt.%,
Nb: 0.002 to 0.07 wt.%,
V: 0.002-0.07 wt.%,
B: 0.0003 to 0.003 wt.%
P: 0.01 to 0.10 wt.%
Cu: 0.01 to 0.5 wt.%
Ni: 0.01 to 0.5 wt.%
Cr: 0.01 to 0.5 wt.%,
Mo: 0.01-0.20 wt.%, And
Ca: 0.0003 to 0.003 wt.%,
The high-strength ERW steel pipe according to claim 1, comprising at least one element selected from the group consisting of:
請求項1または2に記載の化学成分組成を有する鋼スラブを、仕上圧延終了温度700℃以上、巻取り温度200℃以下の条件で熱間圧延し、得られた熱延鋼帯を酸洗した後、幅絞り率1〜10%で電縫鋼管に造管することによって、1〜20%のマルテンサイト組織と、80%以上のフェライト組織とからなり、前記マルテンサイト組織の平均粒径が5μm以下である電縫鋼管を製造することを特徴とする、液圧バルジ成形性に優れた高強度電縫鋼管の製造方法。A steel slab having the chemical component composition according to claim 1 or 2 is hot-rolled under a finish rolling finish temperature of 700 ° C or higher and a winding temperature of 200 ° C or lower, and the resulting hot-rolled steel strip is pickled. Thereafter, by forming into an electric resistance steel pipe with a width drawing ratio of 1 to 10%, it is composed of 1 to 20% martensite structure and 80% or more ferrite structure, and the average particle diameter of the martensite structure is 5 μm. A method for producing a high-strength ERW steel pipe excellent in hydraulic bulge formability, comprising producing an ERW steel pipe as described below. 請求項1または2に記載の化学成分組成を有する熱延鋼帯を酸洗し次いで電縫鋼管に造管した後、720〜780℃の温度で加熱し、次いで、30℃/S以上の冷却速度で200℃以下まで冷却することによって、1〜20%のマルテンサイト組織と、80%以上のフェライト組織とからなり、前記マルテンサイト組織の平均粒径が5μm以下である電縫鋼管を製造することを特徴とする、液圧バルジ成形性に優れた高強度電縫鋼管の製造方法。The hot-rolled steel strip having the chemical composition according to claim 1 or 2 is pickled and then formed into an electric-welded steel pipe, then heated at a temperature of 720 to 780 ° C, and then cooled at 30 ° C / S or more. By cooling to 200 ° C. or less at a speed, an electric resistance welded steel pipe consisting of 1 to 20% martensite structure and 80% or more ferrite structure, and having an average particle diameter of the martensite structure of 5 μm or less is manufactured. The manufacturing method of the high intensity | strength ERW steel pipe excellent in the hydraulic bulge formability characterized by the above-mentioned.
JP34522197A 1997-12-15 1997-12-15 High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof Expired - Fee Related JP3731103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34522197A JP3731103B2 (en) 1997-12-15 1997-12-15 High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34522197A JP3731103B2 (en) 1997-12-15 1997-12-15 High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11172376A JPH11172376A (en) 1999-06-29
JP3731103B2 true JP3731103B2 (en) 2006-01-05

Family

ID=18375124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34522197A Expired - Fee Related JP3731103B2 (en) 1997-12-15 1997-12-15 High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3731103B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866725B2 (en) * 2000-02-28 2005-03-15 Nippon Steel Corporation Steel pipe excellent in formability and method of producing the same
DE60204082T2 (en) * 2001-05-31 2005-11-17 Jfe Steel Corp. Welded steel tube with excellent internal high-pressure formability and process for its production
MXPA02005390A (en) 2001-05-31 2002-12-09 Kawasaki Steel Co Welded steel pipe having excellent hydroformability and method for making the same.
US6682829B2 (en) 2001-05-31 2004-01-27 Jfe Steel Corporation Welded steel pipe having excellent hydroformability and method for making the same
CN101942978B (en) * 2010-08-12 2012-01-11 中国石油天然气集团公司 Preparation method of continuous expansion pipe with high strength and high plastic elasticity
CN102220547B (en) * 2011-06-10 2013-01-09 马鞍山钢铁股份有限公司 Steel strips used for CT80-grade continuous oil pipe and preparation method thereof
KR102018770B1 (en) * 2019-01-14 2019-09-04 주식회사 톱스톡 A sash manufacturing apparatus having bending prevention function and manufacturing method of sash using the same

Also Published As

Publication number Publication date
JPH11172376A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP4957854B1 (en) High-strength ERW steel pipe and manufacturing method thereof
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP2001020039A (en) High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production
JP3731103B2 (en) High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JPH07316650A (en) Production of high strength hot rolled steel plate with low yield ratio
JP6384635B1 (en) Hot rolled steel sheet for coiled tubing
JPS58123858A (en) Steel for electric welded steel pipe for hollow stabilizer
JP3533844B2 (en) ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof
JP3925291B2 (en) High-tensile welded steel pipe excellent in workability and material uniformity of welds, its manufacturing method, and steel strip for welded steel pipe material
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
JP3563988B2 (en) High-strength steel pipe with excellent hydraulic formability
JPH07268467A (en) Production of hot coil for steel tube having high toughness and sour resistance
WO1994028187A1 (en) High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
JP3779811B2 (en) ERW steel pipe with excellent workability and its manufacturing method
CN115053007B (en) Cold-rolled steel sheet for flux-cored wire and method for producing same
WO2019132362A1 (en) Cold-rolled steel sheet for flux-cored wire and method for producing same
JPH0649591A (en) High strength hot rolled steel plate excellent in workability and its production
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JP3263348B2 (en) Method of manufacturing non-heat treated high workability electric resistance welded steel pipe
JP2000073123A (en) Production of titanium-containing ferritic stainless steel sheet excellent in workability
JPH0688129A (en) Production of high strength steel pipe as welded low in residual stress
JPH09256103A (en) Hot rolled steel plate capable of providing steel plate member of low yield ratio after hot forming, and the hot rolled steel plate member
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees