JPH042720A - Production of high strength steel wire for use in sour environment - Google Patents

Production of high strength steel wire for use in sour environment

Info

Publication number
JPH042720A
JPH042720A JP10409090A JP10409090A JPH042720A JP H042720 A JPH042720 A JP H042720A JP 10409090 A JP10409090 A JP 10409090A JP 10409090 A JP10409090 A JP 10409090A JP H042720 A JPH042720 A JP H042720A
Authority
JP
Japan
Prior art keywords
steel wire
wire
steel
sour environment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10409090A
Other languages
Japanese (ja)
Other versions
JP2840977B2 (en
Inventor
Yukio Ochiai
落合 征雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10409090A priority Critical patent/JP2840977B2/en
Publication of JPH042720A publication Critical patent/JPH042720A/en
Application granted granted Critical
Publication of JP2840977B2 publication Critical patent/JP2840977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength steel wire for use in sour environment excellent in SSC resistance by subjecting a steel having a specific composition consisting of C, Si, Mn, P, S, and Fe to specific cold working and spheroidizing annealing and then applying specific tensile strain to the above. CONSTITUTION:A steel which has a composition consisting of 0.40-0.70% C, 0.10-1% Si, 0.20-1% Mn, <=0.025% P, <=0.010% S, and the balance Fe with inevitable impurities and further containing, if necessary, 0.008-0.050% Al is formed into a wire rod. This wire rod is formed into uniform pearlite structure by means of patenting treatment and then cold-worked at 25-75% reduction of area. The resulting steel wire is subjected to spheroidizing annealing at 500-620 deg.C so as to be formed into spheroidal cementite structure. Subsequently, 0.2-2% tensile strain is applied to this steel wire by means of heat stretching at 250-400 deg.C. By this method, the high strength steel wire for use in sour environment having about 70-80kgf/mm<2> tensile strength and excellent in HIC resistance and SSC resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は引張強さ70kgf/−以上の高強度鋼線の製
造方法に関し、さらに詳しくは、サワー環境(Sour
 environments 、湿潤硫化水素環境)で
使用される高強度鋼線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing high-strength steel wire having a tensile strength of 70 kgf/- or more.
The present invention relates to a method for manufacturing high-strength steel wire used in a wet hydrogen sulfide environment.

〔従来の技術〕[Conventional technology]

従来、たとえば、ガス、原油等の高圧流体輸送用フレキ
シブルパイプの鎧装線などは、C0,2%以下の低炭素
鋼線材を伸線後、異形引抜き、ローラーダイス加工、圧
延等の異形加工により所定の断面形状の異形鋼線(平圧
線や溝形線)となし、そのまま、ないしは、500℃未
満の低温焼鈍を行なったのち、非サワー環境の使用に供
せられていた。
Conventionally, for example, armored wires for flexible pipes for transporting high-pressure fluids such as gas and crude oil have been produced by drawing low carbon steel wire rods with a carbon content of 0.2% or less, and then drawing them into irregular shapes, roller die processing, rolling, etc. They are made into deformed steel wires (flat pressure wires or groove wires) with a predetermined cross-sectional shape and used as is or after being annealed at a low temperature of less than 500° C. and then used in a non-sour environment.

しかし、最近の深井戸化に伴って、油井を取り巻く環境
が変化し、原油やガスの輸送環境も厳しくなってきた。
However, with the recent development of deeper wells, the environment surrounding oil wells has changed, and the environment for transporting crude oil and gas has become harsher.

すなわち、硫化水素を伴ったサワ−環境が多くなってき
た。このため、異形鋼線に要求される特性の中でも、使
用環境から鋼線中に侵入する水素に対する安定性、すな
わち、水素誘起割れ(Hydrogen Induce
d Cracking 、以下、HICという)および
硫化物応力腐食割れ(SulfideStress C
orrosion Cracking 、以下、SSC
という)の発生しないことが特に要求されるようになっ
た。ちなみに、HICは、無負荷状態の鋼線に水素が侵
入することに伴って発生する割れであり、一方、SSC
は、高負荷状態の鋼線に水素が侵入し、これが原因とな
って起こる割れである。
In other words, sour environments with hydrogen sulfide are becoming more common. Therefore, among the properties required for deformed steel wires, stability against hydrogen penetrating into the steel wires from the usage environment, that is, hydrogen induced cracking.
d Cracking (hereinafter referred to as HIC) and Sulfide Stress Corrosion Cracking (hereinafter referred to as HIC) and Sulfide Stress Corrosion Cracking (hereinafter referred to as HIC)
error cracking, hereinafter referred to as SSC
There is now a special requirement that no such occurrences occur. Incidentally, HIC is a crack that occurs when hydrogen enters a steel wire under no load, while SSC
This is a crack that occurs when hydrogen enters the steel wire under high load.

このような動向に対して、本発明者らは、引張強さ50
kgf/−以上の鋼線を対象として二つの技術を提案し
ている。その一つは、すでに特開平1−279710号
公報に「耐水素誘起割れ特性に優れた高強度鋼線の製造
法」 (以下、従来法1という)として開示されている
ように、0.40〜0.70%のCを含む高炭素鋼線材
をパテンティング後、断面減少率25〜75%の冷間加
工を行ったのち、500〜700℃で球状化焼鈍する方
法である。
In response to this trend, the present inventors have developed a tensile strength of 50
Two technologies are proposed for steel wires of kgf/- or more. One of them is as already disclosed in Japanese Patent Application Laid-open No. 1-279710 as "Production method of high strength steel wire with excellent hydrogen-induced cracking resistance" (hereinafter referred to as conventional method 1). This is a method of patenting a high carbon steel wire containing ~0.70% C, cold working with a reduction in area of 25% to 75%, and then annealing it to form a spheroid at 500 to 700°C.

他の一つは、「サワー環境用高強度鋼線の製造方法」 
(以下、従来法2という)として平成2年3月30日に
特許出願しているもので、従来法1で製造された鋼線に
、0.2〜2%の引張りひずみを付与したのち、250
〜400℃でブルーイングする方法である。
The other one is ``Method for manufacturing high-strength steel wire for sour environments.''
(hereinafter referred to as conventional method 2), a patent application was filed on March 30, 1990. After applying a tensile strain of 0.2 to 2% to the steel wire manufactured by conventional method 1, 250
This is a method of blueing at ~400°C.

従来法1に従って製造された鋼線は、耐HIC特性は優
れている。しかし、実際の使用環境においては、鋼線に
は強い引張応力が作用していることから、耐HIC特性
以外に、耐SSC特性にも優れていることが重要である
。このような観点にたって、従来法1の耐SSC特性を
改善したものが従来法2である。しかし、鋼線をより高
負荷状態で、しかもサワー環境でより安定して使用でき
るようにするためには、鋼線の強度を高め、かつ、耐S
SC特性をさらに向上させる必要がある。
The steel wire manufactured according to Conventional Method 1 has excellent HIC resistance. However, in actual use environments, steel wires are subjected to strong tensile stress, so it is important that they have excellent SSC resistance as well as HIC resistance. From this point of view, Conventional Method 2 improves the SSC resistance characteristics of Conventional Method 1. However, in order to enable steel wire to be used more stably under higher loads and in sour environments, it is necessary to increase the strength of the steel wire and make it resistant to S.
It is necessary to further improve the SC characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、強度および耐SSC特性が従来法で製
造されたものに比べてより一段と優れたサワー環境用高
強度鋼線の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a high-strength steel wire for use in sour environments, which has superior strength and SSC resistance properties compared to those produced by conventional methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨とするところは下記のとおりである。 The gist of the present invention is as follows.

(1)C: 0.40〜0.70%、 Si : 0.
10〜1%。
(1) C: 0.40-0.70%, Si: 0.
10-1%.

Mn:0.20〜1%、P:0.025%以下、s:0
.010%以下を含有し、残部がFeおよび不可避的不
純物からなる鋼を、断面減少率25〜75%の冷間加工
を行なった後、500〜620 ’Cで球状化焼鈍し、
そ・の後、250〜400 ”Cの温度範囲で0.2〜
2%の引張りひずみを与えることを特徴とするサワー環
境用高強度鋼線の製造方法。
Mn: 0.20-1%, P: 0.025% or less, s: 0
.. A steel containing 0.010% or less and the remainder consisting of Fe and unavoidable impurities is subjected to cold working with an area reduction rate of 25 to 75%, and then spheroidizing annealed at 500 to 620 'C,
After that, in the temperature range of 250-400"C, 0.2~
A method for producing a high-strength steel wire for use in a sour environment, characterized by imparting a tensile strain of 2%.

(2)C: 0.40〜0.70%、Si:0.10〜
1%。
(2) C: 0.40~0.70%, Si: 0.10~
1%.

Mn:0.20〜1%、P:0.025%以下、s二0
.010%以下、 AI : 0.008〜0.050
%を含有し、残部がFeおよび不可避的不純物からなる
鋼を、断面減少率25〜75%の冷間加工を行なった後
、500〜620℃で球状化焼鈍し、その後、250〜
400℃の温度範囲で0.2〜2%の引張りひずみを与
えることを特徴とするサワー環境用高強度鋼線の製造方
法。
Mn: 0.20-1%, P: 0.025% or less, s20
.. 010% or less, AI: 0.008-0.050
%, with the remainder consisting of Fe and unavoidable impurities. After cold working with a reduction in area of 25 to 75%, it is annealed to form a spheroid at 500 to 620°C, and then
A method for producing a high-strength steel wire for use in a sour environment, characterized by imparting a tensile strain of 0.2 to 2% in a temperature range of 400°C.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

Cは、0.40%未満では、球状化焼鈍後、所定の強度
が得られない。また、Cが0.70%を超えると冷間加
工で強加工が困難となり、加工中に鋼線中心部に微細ク
ラックが発生してHIC特性が劣化するため、0.70
%を上限とした。
If C is less than 0.40%, the desired strength cannot be obtained after spheroidizing annealing. In addition, if C exceeds 0.70%, strong cold working becomes difficult, and fine cracks occur in the center of the steel wire during processing, deteriorating the HIC properties.
The upper limit was %.

Stは、脱酸剤として、最低0.10%以上必要である
。その量は多くなるに従って強度が向上する。
St is required as a deoxidizing agent in a minimum amount of 0.10% or more. As the amount increases, the strength improves.

しかし、1%を超えると、脱炭が激しくなり、これが原
因となって冷間加工時に鋼線に割れが多発するため好ま
しくない。
However, if it exceeds 1%, decarburization becomes severe and this causes frequent cracking of the steel wire during cold working, which is not preferable.

Mnは、熱間脆性を防止するため0.20%以上必要で
ある。また、Mnは焼入性を向上させるため、パテンテ
ィングによって均一なパーライト組織を得るためにはそ
の量は多いほど望ましいが、1%を超えると中心偏析に
起因するHICの発生頻度が高くなるため1%を上限と
する。
Mn is required to be 0.20% or more in order to prevent hot embrittlement. Additionally, since Mn improves hardenability, a large amount of Mn is desirable in order to obtain a uniform pearlite structure through patenting, but if it exceeds 1%, the frequency of HIC caused by center segregation increases. The upper limit is 1%.

次に、Pは、粒界に偏析しやすいため、加工性を低下さ
せる。したがって、その量は少ないほうが好ましい。し
かし、連続鋳造で製造する場合、溶製温度を高くするた
め復Pが起こるので上限のみを0.025%に規定した
Next, since P tends to segregate at grain boundaries, it reduces workability. Therefore, the smaller the amount, the better. However, in the case of manufacturing by continuous casting, the melting temperature is increased, which causes re-P to occur, so only the upper limit was set at 0.025%.

Sは、Pと同様な弊害があるほか、耐食性の点で少ない
ほど好ましいが、現在経済的に製造できる0、010%
を上限とした。なお、Sは0.001%までは工業的生
産が十分可能である。
S has the same disadvantages as P, and from the viewpoint of corrosion resistance, it is preferable to have less S, but 0.010% S can be economically produced at present.
was set as the upper limit. Note that industrial production of S up to 0.001% is possible.

AIは、脱酸剤および結晶細粒化元素として必要に応じ
て使用する。AI添加の場合、細粒化に必要なAI量の
下限はo、 o o s%である。一方、AIが0、0
50%を超えると非金属介在物量が増加するため、表面
欠陥起因の歩留低下を惹起する。
AI is optionally used as a deoxidizing agent and crystal refining element. In the case of adding AI, the lower limit of the amount of AI required for grain refinement is o, o o s%. On the other hand, AI is 0,0
When it exceeds 50%, the amount of nonmetallic inclusions increases, resulting in a decrease in yield due to surface defects.

上述の各元素のほかに、異形鋼線の肉厚が厚いために焼
入性が不足する場合には、0.6%以下のCrを添加す
ることが有効である。さらに、0.3%以下のCuおよ
び0.02%以下のWは鋼中への水素侵入を抑制する効
果があるので、必要に応じてこれらを添加すれば、より
一層耐HIC特性を向上させることができる。
In addition to the above-mentioned elements, if the hardenability of the deformed steel wire is insufficient due to the thick wall thickness, it is effective to add 0.6% or less of Cr. Furthermore, 0.3% or less of Cu and 0.02% or less of W have the effect of suppressing hydrogen intrusion into the steel, so adding these as necessary will further improve HIC resistance. be able to.

以上の組成からなる線材を加工して鋼線とする。A wire rod having the above composition is processed into a steel wire.

本発明の鋼線とは、線材を異形引抜き、ローラーダイス
加工、あるいは圧延等の加工により、断面形状が円また
は異形(矩形や溝形)としたものを総称している。また
、ここでは、球状化焼鈍後の引張強さが70〜80kg
f/−のものを高強度銅線と称している。なすわち、引
張強さが70kgf/−以上ないと苛酷な使用環境から
要求される内圧および外圧に耐えられず、鎧装線として
の効果がない。一方、引張強さが80kgf/−を超え
ると、球状化セメンタイトを連結するモードのSSCが
発生しやすくなるため、上限を80kgf/−とした。
The steel wire of the present invention is a general term for wire rods that have a circular or irregular cross-sectional shape (rectangular or grooved) by processing such as irregular drawing, roller die processing, or rolling. In addition, here, the tensile strength after spheroidizing annealing is 70 to 80 kg.
f/- is called a high-strength copper wire. That is, unless the tensile strength is 70 kgf/- or more, it will not be able to withstand the internal and external pressures required in harsh usage environments, and will not be effective as an armored wire. On the other hand, if the tensile strength exceeds 80 kgf/-, SSC in a mode that connects spheroidized cementite is likely to occur, so the upper limit was set to 80 kgf/-.

次に、本発明にかかわる加工方法に関して説明する。Next, the processing method according to the present invention will be explained.

通常、線材は加工前に熱処理を行うが、本発明において
は、パテンティング処理を行なう。これにより線材の組
織を均一な微細パーライト組織とし、断面減少率25〜
75%の加工に耐え得る性能を付与する。
Usually, the wire rod is heat treated before processing, but in the present invention, a patenting treatment is performed. As a result, the structure of the wire rod becomes a uniform fine pearlite structure, and the cross-section reduction rate is 25 ~
Provides performance that can withstand 75% processing.

本発明で断面減少率を25〜75%の範囲に限定した理
由を説明する。
The reason why the area reduction rate is limited to a range of 25 to 75% in the present invention will be explained.

断面減少率25%未満では、加工後の焼鈍で、セメンタ
イトの球状化が不十分となり、HICが発生する。また
、断面減少率が75%を超えると、例えば平圧線の端面
および内部に加工による割れが発生し、特に、内部割れ
はHICを誘発するので好ましくない。なお、本発明の
断面減少率は次式で定義する。
When the area reduction rate is less than 25%, cementite becomes insufficiently spheroidized during annealing after processing, and HIC occurs. Moreover, if the area reduction rate exceeds 75%, cracks will occur on the end face and inside of the flat tension wire due to processing, and in particular, internal cracks will induce HIC, which is not preferable. Note that the cross-sectional reduction rate of the present invention is defined by the following formula.

S :異形加工された鋼線の断面積 S0 :素線(線材)の断面積 本発明の主要な特徴の第1は、断面減少率25〜75%
の冷間加工後、球状化焼鈍を行ない、加工ひずみを除去
するとともに、パーライト組織をフェライト(マトリッ
クス)中に微細な球状化セメンタイトの分散した組織に
変えることにある。
S: Cross-sectional area of the deformed steel wire S0: Cross-sectional area of the strand (wire rod) The first main feature of the present invention is the cross-sectional area reduction rate of 25-75%.
After cold working, spheroidizing annealing is performed to remove processing strain and change the pearlite structure to a structure in which fine spheroidized cementite is dispersed in ferrite (matrix).

すなわち、焼鈍によって得られた球状化セメンタイト組
織は、従来の層状パーライト組織に比べてHIC特性が
著しく優れていることを新たに見出したのである。鋼中
に侵入した水素原子は、セメンタイト/フェライト界面
に集積し、そこにHICの核を形成するが、球状化セメ
ンタイトの場合には、応力集中が小さいため、耐HIC
特性が優れていると考えられる。
That is, it has been newly discovered that the spheroidized cementite structure obtained by annealing has significantly superior HIC properties compared to the conventional layered pearlite structure. Hydrogen atoms that penetrate into steel accumulate at the cementite/ferrite interface and form HIC nuclei there, but in the case of spheroidized cementite, the stress concentration is small, so HIC resistance is low.
It is considered to have excellent characteristics.

適正な球状化焼鈍温度範囲を求めるために、鉛パテンテ
イング処理された直径9.5 anの線材を、伸線加工
および平圧延で平圧線としたのち、球状化焼鈍を実施し
た。球状化焼鈍は昇温2時間、保温4時間の条件で行な
った。結果を第1図に示す。
In order to find an appropriate spheroidizing annealing temperature range, a lead patented wire rod with a diameter of 9.5 ann was drawn and flat rolled into a flat wire, and then spheroidizing annealing was performed. Spheroidizing annealing was performed under the conditions of heating for 2 hours and keeping the temperature for 4 hours. The results are shown in Figure 1.

70kgf/−以上の引張強さが得られるのは、C00
42%の鋼線(・印:C0,42%、Si0.22%。
A tensile strength of 70 kgf/- or more can be obtained with C00
42% steel wire (・marked: C0.42%, Si0.22%.

Mn  O,75%、Po、015%、30.003%
、Al:o、 o os%、断面減少率 67%)では
550℃以下、またC0.65%の鋼線(Δ印:C0,
65%、Si0.24%、MnO,71%、Po、01
5%、So、 005%、Al:025%、断面減少率
 58%)では620℃以下である。一方、引張強さを
80kgf/−以下に抑えられる球状化焼鈍温度は、C
0,42%の鋼線では500℃以上、C0,65%の鋼
線では520℃以上必要である。したがって、本発明の
球状化焼鈍温度範囲は500〜620℃となる。
MnO, 75%, Po, 015%, 30.003%
, Al: o, o os%, area reduction rate 67%) is below 550°C, and steel wire with C0.65% (Δ mark: C0,
65%, Si0.24%, MnO, 71%, Po, 01
5%, So, 005%, Al: 025%, area reduction rate 58%), the temperature is 620°C or less. On the other hand, the spheroidizing annealing temperature that suppresses the tensile strength to 80 kgf/- or less is C
A temperature of 500°C or higher is required for a 0.42% steel wire, and a temperature of 520°C or higher is required for a 0.65% CO steel wire. Therefore, the spheroidizing annealing temperature range of the present invention is 500 to 620°C.

本発明の主要な特徴の第2は、耐SSC特性を向上させ
るために、以上の方法で製造した球状化焼鈍鋼線に、さ
らに250〜400℃の温度範囲で0.2〜2%の引張
りひずみを付与することである。
The second main feature of the present invention is that in order to improve the SSC resistance, the spheroidized annealed steel wire produced by the above method is further subjected to 0.2 to 2% tensile strength in a temperature range of 250 to 400°C. It is to apply strain.

SSCの原因は、サワー環境から鋼材中に侵入した水素
が、負荷応力により生じた微小降伏領域に拡散してそこ
に凝集する結果、降伏現象が加速されてマイクロクラン
クが生じるためと考えられる。従って、耐SSC特性を
向上させるためには、マクロ的な降伏現象がはじまる前
の局部的な微小降伏現象を阻止することが重要である。
The cause of SSC is thought to be that hydrogen that has entered the steel material from the sour environment diffuses into the micro-yield region caused by the applied stress and aggregates there, accelerating the yielding phenomenon and producing micro-cranks. Therefore, in order to improve the SSC resistance characteristics, it is important to prevent the local minute breakdown phenomenon before the macroscopic breakdown phenomenon begins.

すなわち、鋼材の降伏強度を高めることが効果を発揮す
る。
In other words, increasing the yield strength of the steel material is effective.

しかし、−船釣には、降伏強度を高めることにより、引
張強さは増加する。引張強さの増加は、前述したように
、SSC発生の危険性を高めるため、好ましいことでは
ない。
However, for boat fishing, the tensile strength is increased by increasing the yield strength. As mentioned above, an increase in tensile strength is not desirable because it increases the risk of SSC occurrence.

本発明者は、降伏強度を高めるが、引張強さやほかの機
械的性質に与える影響の少ない加工方法を研究し、その
結果、球状化焼鈍後の鋼線を青熱脆性温度に加熱し、そ
の温度でわずかな引張りひずみを与えること(以下、ヒ
ートストレッチングという)により目標とする高い降伏
強度が得られ、その結果、耐SSC特性が大幅に向上す
るという、従来なかった新しい知見を得るに至った。
The present inventor has researched a processing method that increases the yield strength but has less effect on the tensile strength and other mechanical properties, and as a result, the steel wire after spheroidizing annealing is heated to the blue brittle temperature. By applying a slight tensile strain at high temperature (hereinafter referred to as heat stretching), the target high yield strength can be obtained, and as a result, the SSC resistance properties are significantly improved. Ta.

ヒートストレッチングにおける引張りひずみは、0.2
%未満ではSSC改善効果が不十分である。
The tensile strain in heat stretching is 0.2
%, the SSC improvement effect is insufficient.

引張りひずみの増加に伴って降伏強度は上がり、それに
伴ってSSC発生下限応力も上昇する。しかし、2%を
超えると、HICが発生し、SSC発生下限応力も低下
傾向を示すため2%を上限とする。
As the tensile strain increases, the yield strength increases, and the lower limit stress for SSC generation also increases accordingly. However, if it exceeds 2%, HIC will occur and the lower limit stress for SSC generation will also tend to decrease, so the upper limit is set at 2%.

ヒートストレッチング温度に関しては、250℃未満で
はHICが発生し、また、SSC発生下限応力も低い。
Regarding the heat stretching temperature, if it is lower than 250°C, HIC occurs, and the lower limit stress for SSC generation is also low.

一方、400″Cを超えると降伏強度が低下するため、
耐SSC特性は著しく低下する。以上の理由により、ヒ
ートストレッチング温度は250〜400℃とする。
On the other hand, if the temperature exceeds 400″C, the yield strength decreases, so
The SSC resistance properties are significantly reduced. For the above reasons, the heat stretching temperature is set at 250 to 400°C.

ヒートストレッチング装置としては、長尺のコイル状鋼
線を加熱しながら連続的に処理できるものでなければな
らない。この意味からは、鋼線を供給する側のプーリの
回転速度に対し、銅線を巻き取る側のプーリの回転速度
を少し速くすることにより銅線に一定のひずみを与え、
同時に両プーリ間にある緊張鋼線を誘導加熱方式ないし
は通電加熱方式により加熱できるような機構を備えた装
置が望ましい。
The heat stretching device must be capable of continuously processing a long coiled steel wire while heating it. In this sense, by increasing the rotation speed of the pulley on the side that winds the copper wire a little faster than the rotation speed of the pulley on the side that supplies the steel wire, a certain strain is applied to the copper wire.
It is desirable to have a device equipped with a mechanism that can simultaneously heat the tensioned steel wire between both pulleys using an induction heating method or an electrical heating method.

実施例 鉛パテンテイングによって微細なパーライト組織にされ
た直径9.5 mの線材を伸線加工により直径5Ila
fiの鋼線とし、ついで、平圧延にて、厚み0.9〜2
.85mn0平圧線とした。これを球状化焼鈍したのち
、上述したような機構を備えたヒートストレッチング装
置を用いて鋼線を誘導加熱しながら0.2〜2%の引張
りひずみを与えた。
Example A wire rod with a diameter of 9.5 m made into a fine pearlite structure by lead patenting was drawn to a diameter of 5Ila.
fi steel wire, and then flat-rolled to a thickness of 0.9 to 2.
.. The wire was made of 85mmn0 flat pressure wire. After this was annealed to form a spheroid, a tensile strain of 0.2 to 2% was applied to the steel wire while induction heating it using a heat stretching device equipped with the mechanism described above.

HIC特性の評価は次の方法でおこなった。上述の平圧
線を長さ100m++に切断し、5%NaCJ −0,
5% CH3CO0HHis飽和溶液に25℃で96時
間浸漬後、3箇所研磨し、ミクロクラックの有無を光学
顕微鏡で観察した。
HIC characteristics were evaluated using the following method. The above-mentioned flat pressure wire was cut to a length of 100 m++, and 5% NaCJ -0,
After being immersed in a 5% CH3CO0HHis saturated solution at 25° C. for 96 hours, it was polished at three locations and observed with an optical microscope for the presence or absence of microcracks.

SSC特性の評価は次の方法で行った。上述の平圧線を
そのままの状態で試験片とし、両端をつかんで実際の降
伏強度の80〜110%の引張応力を与えた。試験片の
中央部200mmをサワー環境、すなわち、上述のHI
C試験と同じ組成の溶液中に浸漬した。溶液の温度は2
5℃とした。このような状態で720時間の負荷試験を
実施し、破断の生じない最大応力、すなわち、SSC発
生下限応力を測定した。
The SSC characteristics were evaluated by the following method. The above-mentioned flat wire was used as a test piece as it was, and both ends were grasped to apply a tensile stress of 80 to 110% of the actual yield strength. The center 200mm of the test piece was placed in a sour environment, that is, the HI described above.
It was immersed in a solution with the same composition as in Test C. The temperature of the solution is 2
The temperature was set at 5°C. A load test was conducted for 720 hours under such conditions, and the maximum stress at which no breakage occurred, ie, the lower limit stress for SSC generation, was measured.

使用した鋼線の化学成分、冷間加工、焼鈍温度、ヒート
ストレッチング条件などの製造条件ならびに製品の機械
的性質、耐サワー特性を第1表に示す。
Table 1 shows the chemical composition of the steel wire used, manufacturing conditions such as cold working, annealing temperature, and heat stretching conditions, as well as the mechanical properties and sour resistance properties of the product.

NcL1〜4、No、10およびN(111、No、1
8〜21、Nα24〜27は本発明法と二つの従来法の
比較を行なったもので、同一製造工程で焼鈍鋼線を製造
したのち、本発明法では330〜360℃において0.
8〜2.0%の引張りひずみを付与するヒートストレッ
チングを行なった。本発明法で製造された鋼線は、いず
れも引張強さが75kgf/−以上有り、従来法で製造
された鋼線に比べ、降伏強度が高い。また、SSC発生
下限応力は70kgf/−以上と、従来法のいずれにお
いても達成できなかった高いレベルに達している。
NcL1-4, No, 10 and N(111, No, 1
8 to 21 and Nα24 to 27 are the results of a comparison between the method of the present invention and two conventional methods.After producing annealed steel wire in the same manufacturing process, the method of the present invention shows 0.
Heat stretching was performed to impart a tensile strain of 8 to 2.0%. All of the steel wires manufactured by the method of the present invention have a tensile strength of 75 kgf/- or more, and have a higher yield strength than steel wires manufactured by the conventional method. Furthermore, the lower limit stress for SSC generation is 70 kgf/- or more, which is a high level that could not be achieved by any of the conventional methods.

No、 5〜9は、ヒートストレッチング時の引張りひ
ずみが、また、陥、13〜17は、ヒートストレッチン
グ時の温度が異形線の特性におよぼす影響を示したもの
である。本発明が規定する範囲内のヒートストレッチン
グ条件を選択することによりHICの発生がなく、かつ
、SSC発生下限応力が70kgf/−以上ある耐サワ
ー特性に優れた異形線を製造できる。
Nos. 5 to 9 show the effects of tensile strain during heat stretching, and Nos. 13 to 17 show the effects of temperature during heat stretching on the characteristics of the profiled wire. By selecting the heat stretching conditions within the range defined by the present invention, it is possible to produce a deformed wire that does not generate HIC and has excellent sour resistance characteristics with a lower limit stress for SSC generation of 70 kgf/- or more.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば、70kgf/
−以上の引張強さを有し、耐HIC特性ならびに耐SS
C特性が格段に改善されたサワー環境用高強度鋼線を製
造することが可能である。
As explained above, according to the present invention, 70kgf/
- Has a tensile strength of more than
It is possible to produce a high-strength steel wire for sour environments with significantly improved C characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼鈍温度と引張強さの関係を示す図である。 FIG. 1 is a diagram showing the relationship between annealing temperature and tensile strength.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.40〜0.70%、Si:0.10〜1
%、Mn:0.20〜1%、P:0.025%以下、S
:0.010%以下を含有し、残部がFeおよび不可避
的不純物からなる鋼を、断面減少率25〜75%の冷間
加工を行なった後、500〜620℃で球状化焼鈍し、
その後、250〜400℃の温度範囲で0.2〜2%の
引張りひずみを与えることを特徴とするサワー環境用高
強度鋼線の製造方法。
(1) C: 0.40-0.70%, Si: 0.10-1
%, Mn: 0.20-1%, P: 0.025% or less, S
: A steel containing 0.010% or less and the remainder consisting of Fe and unavoidable impurities is subjected to cold working with a cross-section reduction rate of 25 to 75%, and then spheroidizing annealed at 500 to 620°C,
A method for producing a high-strength steel wire for use in a sour environment, the method comprising then applying a tensile strain of 0.2 to 2% at a temperature range of 250 to 400°C.
(2)C:0.40〜0.70%、Si:0.10〜1
%、Mn:0.20〜1%、P:0.025%以下、S
:0.010%以下、Al:0.008〜0.050%
を含有し、残部がFeおよび不可避的不純物からなる鋼
を、断面減少率25〜75%の冷間加工を行なった後、
500〜620℃で球状化焼鈍し、その後、250〜4
00℃の温度範囲で0.2〜2%の引張りひずみを与え
ることを特徴とするサワー環境用高強度鋼線の製造方法
(2) C: 0.40-0.70%, Si: 0.10-1
%, Mn: 0.20-1%, P: 0.025% or less, S
: 0.010% or less, Al: 0.008 to 0.050%
After cold working steel with a cross-section reduction rate of 25 to 75%, with the remainder consisting of Fe and unavoidable impurities,
Spheroidizing annealing at 500-620℃, then 250-4
A method for producing a high-strength steel wire for use in a sour environment, characterized by imparting a tensile strain of 0.2 to 2% in a temperature range of 0.000C.
JP10409090A 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment Expired - Fee Related JP2840977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10409090A JP2840977B2 (en) 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10409090A JP2840977B2 (en) 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment

Publications (2)

Publication Number Publication Date
JPH042720A true JPH042720A (en) 1992-01-07
JP2840977B2 JP2840977B2 (en) 1998-12-24

Family

ID=14371429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10409090A Expired - Fee Related JP2840977B2 (en) 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment

Country Status (1)

Country Link
JP (1) JP2840977B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137319A (en) * 1992-10-27 1994-05-17 Toyo Kohan Co Ltd Heat exchanging roller and heating and cooling roller device formed by using same
WO1998010113A1 (en) * 1996-09-09 1998-03-12 Institut Français Du Petrole Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct
WO2014178303A1 (en) * 2013-04-30 2014-11-06 新日鐵住金株式会社 Flat steel wire
WO2015159650A1 (en) * 2014-04-18 2015-10-22 株式会社神戸製鋼所 Hot-rolled wire
KR20170099365A (en) 2016-02-23 2017-08-31 가부시키가이샤 사사꾸라 Cooling roll and method of manufacturing the same
EP3674425A1 (en) * 2018-12-31 2020-07-01 GE Oil & Gas UK Limited Steel wire

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137319A (en) * 1992-10-27 1994-05-17 Toyo Kohan Co Ltd Heat exchanging roller and heating and cooling roller device formed by using same
WO1998010113A1 (en) * 1996-09-09 1998-03-12 Institut Français Du Petrole Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct
FR2753206A1 (en) * 1996-09-09 1998-03-13 Inst Francais Du Petrole PROCESS FOR MANUFACTURING SELF-PRIMING STEEL YARNS, SHAPE YARNS AND APPLICATION TO A FLEXIBLE PIPE
WO2014178303A1 (en) * 2013-04-30 2014-11-06 新日鐵住金株式会社 Flat steel wire
JPWO2014178303A1 (en) * 2013-04-30 2017-02-23 新日鐵住金株式会社 Flat steel wire
WO2015159650A1 (en) * 2014-04-18 2015-10-22 株式会社神戸製鋼所 Hot-rolled wire
JP2015212412A (en) * 2014-04-18 2015-11-26 株式会社神戸製鋼所 Hot rolled wire
KR20170099365A (en) 2016-02-23 2017-08-31 가부시키가이샤 사사꾸라 Cooling roll and method of manufacturing the same
EP3674425A1 (en) * 2018-12-31 2020-07-01 GE Oil & Gas UK Limited Steel wire
WO2020141067A1 (en) * 2018-12-31 2020-07-09 Ge Oil & Gas Uk Limited Steel wire
CN113330124A (en) * 2018-12-31 2021-08-31 贝克休斯能源科技英国有限公司 Steel wire

Also Published As

Publication number Publication date
JP2840977B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
KR100636958B1 (en) Hot milled wire rod excelling in wire drawability and enabling avoiding heat treatment before wire drawing
JP5162875B2 (en) High strength wire rod excellent in wire drawing characteristics and method for producing the same
CA2620049C (en) Seamless steel pipe for line pipe and a method for its manufacture
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
KR100194431B1 (en) Excellent high strength steel wire and high strength steel wire with fatigue characteristics
JP2921978B2 (en) Manufacturing method of high strength and high ductility ultrafine steel wire
JPH0730394B2 (en) Method for manufacturing steel wire
JP2004091912A (en) Steel wire rod, production method therefor and production method for steel wire using the steel wire rod
WO2016002413A1 (en) Wire material for steel wire, and steel wire
JP2007131945A (en) High strength steel wire having excellent ductility and its production method
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
JPH01279732A (en) High-strength steel wire excellent in hydrogen-induced cracking resistance
JPH042720A (en) Production of high strength steel wire for use in sour environment
JPH0583611B2 (en)
JPH03274227A (en) Production of high strength steel wire for use in sour environment
KR20070068513A (en) A wire rod for steel cord, and method for manufacturing the same
WO2014175345A1 (en) Wire rod and method for manufacturing same
KR101428174B1 (en) Steel wire having excellent torsion property and method for manufacturing thereof
JPH03281724A (en) Production of high strength steel wire for use in sour environment
JP2004011002A (en) Element wire for drawing and wire
JPH03281725A (en) Production of high strength steel wire for use in sour environment
CN110819903B (en) Steel wire and steel wire rod having excellent kink characteristics, and method for producing same
JP2005163082A (en) High carbon steel wire rod having excellent longitudinal crack resistance
JPS5921369B2 (en) Manufacturing method for high-tensile, high-carbon steel wire with excellent wire drawability
JPH04346618A (en) Drawn steel wire rod

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees