JP2840977B2 - Manufacturing method of high strength steel wire for sour environment - Google Patents

Manufacturing method of high strength steel wire for sour environment

Info

Publication number
JP2840977B2
JP2840977B2 JP10409090A JP10409090A JP2840977B2 JP 2840977 B2 JP2840977 B2 JP 2840977B2 JP 10409090 A JP10409090 A JP 10409090A JP 10409090 A JP10409090 A JP 10409090A JP 2840977 B2 JP2840977 B2 JP 2840977B2
Authority
JP
Japan
Prior art keywords
steel wire
wire
ssc
less
sour environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10409090A
Other languages
Japanese (ja)
Other versions
JPH042720A (en
Inventor
征雄 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10409090A priority Critical patent/JP2840977B2/en
Publication of JPH042720A publication Critical patent/JPH042720A/en
Application granted granted Critical
Publication of JP2840977B2 publication Critical patent/JP2840977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は引張強さ70kgf/mm2以上の高強度鋼線の製造
方法に関し、さらに詳しくは、サワー環境(Sour envir
onments、湿潤硫化水素環境)で使用される高強度鋼線
の製造方法に関するものである。
The present invention relates to a method for producing a high-strength steel wire having a tensile strength of 70 kgf / mm 2 or more, and more specifically, to a sour environment (Sour envir
onments, wet hydrogen sulfide environment).

〔従来の技術〕[Conventional technology]

従来、たとえば、ガス、原油等の高圧流体輸送用フレ
キシブルパイプの鎧装線などは、C 0.2%以下の低炭素
鋼線材を伸線後、異形引抜き、ローラーダイス加工、圧
延等の異形加工により所定の断面形状の異形鋼線(平圧
線や溝形線)となし、そのまま、ないしは、500℃未満
の低温焼鈍を行なったのち、非サワー環境の使用に供せ
られていた。
Conventionally, for example, for the armored wire of flexible pipes for high-pressure fluid transport of gas, crude oil, etc., after drawing a low-carbon steel wire of C 0.2% or less, the wire is deformed by deforming such as drawing, roller dies, and rolling. A steel wire (flat pressure wire or grooved wire) having a cross-sectional shape of, was used as it is, or after being subjected to low-temperature annealing at a temperature of less than 500 ° C, in a non-sour environment.

しかし、最近の深井戸化に伴って、油井を取り巻く環
境が変化し、原油やガスの輸送環境も厳しくなってき
た。すなわわち、硫化水素を伴ったサワー環境が多くな
ってきた。このため、異形鋼線に要求される特性の中で
も、使用環境から鋼線中に侵入する水素に対する安定
性、すなわち、水素誘起割れ(Hydrogen Induced Crack
ing、以下、HICという)および硫化物応力腐食割れ(Su
lfide Stress Corrosion Cracking、以下、SSCという)
の発生しないことが特に要求されるようになった。ちな
みに、HICは、無負荷状態の鋼線に水素が侵入すること
に伴って発生する割れであり、一方、SSCは、高負荷状
態の鋼線に水素が侵入し、これが原因となって起こる割
れである。
However, with the recent deepening of wells, the environment surrounding oil wells has changed, and the transport environment for crude oil and gas has become more severe. That is, the sour environment accompanied by hydrogen sulfide has increased. For this reason, among the characteristics required for deformed steel wires, stability against hydrogen penetrating into the steel wires from the use environment, that is, hydrogen-induced cracking (Hydrogen Induced Crack)
ing, hereinafter referred to as HIC) and sulfide stress corrosion cracking (Su
lfide Stress Corrosion Cracking (SSC)
It has become particularly required that no phenomena occur. By the way, HIC is a crack that occurs when hydrogen enters a no-load steel wire, while SSC is a crack that occurs when hydrogen enters a high-load steel wire. It is.

このような動向に対して、本発明者らは、引張強さ50
kgf/mm2の鋼線を対象として二つの技術を提案してい
る。その一つは、すでに特開平1−279710号公報に「耐
水素誘起割れ特性に優れた高強度鋼線の製造法」(以
下、従来法1という)として開示されているように、0.
40〜0.70%のCを含む高炭素鋼線材をパテンティング
後、断面減少率25〜75%の冷間加工を行ったのち、500
〜700℃で球状化焼鈍する方法である。他の一つは、
「サワー環境用高強度鋼線の製造方法」(以下、従来法
2という)として平成2年3月30日に特許出願している
もので、従来法1で製造された鋼線に、0.2〜2%の引
張りひずみを付与したのち、250〜400℃でブルーイング
する方法である。
In response to such a trend, the present inventors have set a tensile strength of 50%.
We propose two techniques targeting the steel wire kgf / mm 2. One of them is disclosed in Japanese Patent Application Laid-Open No. 1-279710, entitled "Method of Manufacturing High-Strength Steel Wire with Excellent Resistance to Hydrogen-Induced Cracking" (hereinafter referred to as Conventional Method 1).
After patenting a high carbon steel wire containing 40 to 0.70% C, cold-working with a reduction in area of 25 to 75% is performed, and then 500
This is a method of performing spheroidizing annealing at ~ 700 ° C. The other one is
A patent application was filed on March 30, 1990 for "Method of manufacturing high-strength steel wire for sour environment" (hereinafter referred to as Conventional Method 2). After applying a tensile strain of 2%, it is a method of bluing at 250 to 400 ° C.

従来法1に従って製造された鋼線は、耐HIC特性は優
れている。しかし、実際の使用環境においては、鋼線に
は強い引張応力が作用していることから、耐HIC特性以
外に、耐SSC特性にも優れていることが重要である。こ
のような観点にたって、従来法1の耐SSC特性を改善し
たものが従来法2である。しかし、鋼線をより高負荷状
態で、しかもサワー環境でより安定して使用できるよう
にするためには、鋼線の強度を高め、かつ耐SSC特性を
さらに向上させる必要がある。
The steel wire manufactured according to the conventional method 1 has excellent HIC resistance. However, in an actual use environment, since a strong tensile stress acts on a steel wire, it is important to have excellent SSC resistance besides HIC resistance. From this point of view, Conventional Method 2 is an improvement of the SSC resistance characteristics of Conventional Method 1. However, in order to use the steel wire in a higher load state and more stably in a sour environment, it is necessary to increase the strength of the steel wire and further improve the SSC resistance.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、強度および耐SSC特性が従来法で製
造されたものに比べてより一段と優れたサワー環境用高
強度鋼線の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a high-strength steel wire for a sour environment in which strength and SSC resistance are much better than those produced by a conventional method.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の要旨とするところは下記のとおりである。 The gist of the present invention is as follows.

(1)C:0.40〜0.70%,Si:0.10〜1%,Mn:0.20〜1%,
P:0.025%以下,S:0.010%以下を含有し、残部がFeおよ
び不可避的不純物からなる鋼を、断面減少率25〜75%の
冷間加工を行なった後、500〜620℃で球状化焼鈍し、そ
の後、250〜400℃の温度範囲で0.2〜2%の引張りひず
みを与えることを特徴とするサワー環境用高強度鋼線の
製造方法。
(1) C: 0.40 to 0.70%, Si: 0.10 to 1%, Mn: 0.20 to 1%,
P: 0.025% or less, S: 0.010% or less, with the balance being Fe and unavoidable impurities, after being cold-worked at a cross-sectional reduction rate of 25-75%, spheroidized at 500-620 ° C A method for producing a high-strength steel wire for a sour environment, comprising annealing and then giving a tensile strain of 0.2 to 2% in a temperature range of 250 to 400 ° C.

(2)C:0.40〜0.70%,Si:0.10〜1%,Mn:0.20〜1%,
P:0.025%以下,S:0.010%以下,Al:0.008〜0.050%を含
有し、残部がFeおよび不可避的不純物からなる鋼を、断
面減少率25〜75%の冷間加工を行なった後、500〜620℃
で球状化焼鈍し、その後、250〜400℃の温度範囲で0.2
〜2%の引張りひずみを与えることを特徴とするサワー
環境用高強度鋼線の製造方法。
(2) C: 0.40 to 0.70%, Si: 0.10 to 1%, Mn: 0.20 to 1%,
P: 0.025% or less, S: 0.010% or less, Al: 0.008 to 0.050%, the balance is made of steel consisting of Fe and inevitable impurities. 500-620 ℃
Spheroidizing annealing in a temperature range of 250 to 400 ° C.
A method for producing a high-strength steel wire for a sour environment, wherein a tensile strain of about 2% is given.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

Cは、0.40%未満では、球状化焼鈍後、所定の強度が
得られない。また、Cが0.70%を超えると冷間加工で強
加工が困難となり、加工中に鋼線中心部に微細クラック
が発生してHIC特性が劣化するため、0.70%を上限とし
た。
If C is less than 0.40%, a predetermined strength cannot be obtained after spheroidizing annealing. On the other hand, if C exceeds 0.70%, it becomes difficult to perform strong working by cold working, and fine cracks are generated in the center of the steel wire during working to deteriorate the HIC characteristics. Therefore, the upper limit is set to 0.70%.

Siは、脱酸剤として、最低0.10%以上必要である。そ
の量は多くなるに従って強度が向上する。しかし、1%
を超えると、脱炭が激しくなり、これが原因となって冷
間加工時に鋼線に割れが多発するため好ましくない。
Si must be at least 0.10% or more as a deoxidizing agent. The strength increases as the amount increases. However, 1%
Exceeding the limit causes excessive decarburization, which is not preferred because cracks frequently occur in the steel wire during cold working.

Mnは、熱間脆性を防止するため0.20%以上必要であ
る。また、Mnは焼入性を向上させるため、パテンティン
グによって均一なパーライト組織を得るためにはその量
は多いほど望ましいが、1%を超えると中心偏析に起因
するHICの発生頻度が高くなれため1%を上限とする。
Mn is required to be 0.20% or more to prevent hot brittleness. In order to improve the hardenability of Mn, it is desirable to increase the amount of Mn in order to obtain a uniform pearlite structure by patenting, but if it exceeds 1%, the frequency of HIC caused by central segregation can increase. The upper limit is 1%.

次に、Pは、粒界に偏析しやすいため、加工性を低下
させる。したがって、その量は少ないほうが好ましい。
しかし、連続鋳造で製造する場合、溶製温度を高くする
ため復Pが起こるので上限のみを0.025%に規定した。
Next, P tends to segregate at the grain boundaries, and thus reduces workability. Therefore, the smaller the amount, the better.
However, in the case of manufacturing by continuous casting, since the re-P occurs to increase the melting temperature, only the upper limit is specified to 0.025%.

Sは、Pと同様な弊害があるほか、耐食性の点で少な
いほど好ましいが、現在経済的に製造できる0.010%を
上限とした。なお、Sは0.001%までは工業的生産が十
分可能である。
S has the same harmful effects as P and is preferably as small as possible in terms of corrosion resistance. However, the upper limit is 0.010% which can be economically manufactured at present. Industrial production is sufficiently possible up to 0.001% of S.

Alは、脱酸剤および結晶細粒化元素として必要に応じ
て使用する。Al添加の場合、細粒化に必要なAl量の下限
は0.008%である。一方、Alが0.050%を超えると非金属
介在物量が増加するため、表面欠陥起因の歩留低下を惹
起する。
Al is used as necessary as a deoxidizing agent and a grain refinement element. In the case of adding Al, the lower limit of the amount of Al required for grain refinement is 0.008%. On the other hand, if the content of Al exceeds 0.050%, the amount of nonmetallic inclusions increases, causing a decrease in yield due to surface defects.

上述の各元素のほかに、異形鋼線の肉厚が厚いために
焼入性が不測する場合には、0.6%以下のCrを添加する
ことが有効である。さらに、0.3%以下のCuおよび0.02
%以下のWは鋼中への水素侵入を抑制する効果があるの
で、必要に応じてこれらを添加すれば、より一層耐HIC
特性を向上させることができる。
In addition to the above-described elements, when the hardenability is unpredictable due to the large thickness of the deformed steel wire, it is effective to add 0.6% or less of Cr. In addition, less than 0.3% Cu and 0.02%
% Or less of W has the effect of suppressing the intrusion of hydrogen into steel.
The characteristics can be improved.

以上の組成からなる線材を加工して鋼線とする。本発
明の鋼線とは、線材を異形引抜き、ローラーダイス加
工、あるいは圧延等の加工により、断面形状が円または
異形(矩形や溝形)としたものを総称している。
The wire having the above composition is processed into a steel wire. The steel wire of the present invention is a general term for a wire having a circular or irregular (rectangular or groove-shaped) cross-sectional shape obtained by deforming a wire, performing roller dies, rolling, or the like.

次に、本発明にかかわる加工方法に関して説明する。 Next, a processing method according to the present invention will be described.

通常、線材は加工前に熱処理を行うが、本発明におい
ては、パテンティング処理を行なう。これにより線材の
組織を均一な微細パーライト組織とし、断面減少率25〜
75%の加工に耐え得る性能を付与する。
Usually, a heat treatment is performed on the wire before processing, but in the present invention, a patenting process is performed. As a result, the structure of the wire becomes a uniform fine pearlite structure, and the cross-sectional reduction rate is 25 to
Provides performance that can withstand 75% processing.

本発明で断面減少率25〜75%の範囲に限定した理由を
説明する。
The reason for limiting the reduction in area to the range of 25 to 75% in the present invention will be described.

断面減少率25%未満では、加工後の焼鈍で、セメンタ
イトの球状化が不十分となり、HICが発生する。また、
断面減少率が75%を超えると、例えば平圧線の端面およ
び内部に加工による割れが発生し、特に、内部割れはHI
Cを誘発するので好ましくない。なお、本発明の断面減
少率は次式で定義する。
If the cross-sectional reduction rate is less than 25%, spheroidization of cementite will be insufficient by annealing after processing, and HIC will occur. Also,
If the cross-sectional reduction rate exceeds 75%, for example, cracks due to processing occur on the end face and inside of the flat pressure line, and especially, internal cracks are HI
It is not preferable because it induces C. The cross-sectional reduction rate of the present invention is defined by the following equation.

S:異形加工された鋼線の断面積 SO:素線(線材)の断面積 本発明の主要な特徴の第1は、断面減少率25〜75%の
冷間加工後、球状化焼鈍を行ない、加工ひずみを除去す
るとともに、パーライト組織をフェライト(マトリック
ス)中に微細な球状化セメンタイトの分散した組織に変
えることにある。すなわち、焼鈍によって得られた球状
化セメンタイト組織は、従来の層状パーライト組織に比
べてHIC特性が著しく優れていることを新たに見出した
のである。鋼中に侵入した水素原子は、セメンタイト/
フェライト界面に集積し、そこにHICの核を形成する
が、球状化セメンタイトの場合には、応力集中が小さい
ため、耐HIC特性が優れていると考えられる。
S: Cross-sectional area of deformed steel wire S O : Cross-sectional area of wire (wire) The first of the main features of the present invention is that after cold working with a reduction rate of 25 to 75%, spheroidizing annealing is performed. The purpose of the present invention is to remove the processing strain and change the pearlite structure to a structure in which fine spheroidized cementite is dispersed in ferrite (matrix). That is, it has been newly found that the spheroidized cementite structure obtained by annealing has remarkably excellent HIC characteristics as compared with the conventional layered pearlite structure. Hydrogen atoms penetrating into steel are cementite /
It accumulates at the ferrite interface and forms HIC nuclei there. However, in the case of spheroidized cementite, it is considered that HIC resistance is excellent because stress concentration is small.

本発明の球状化焼鈍温度範囲を500〜620℃に規定した
理由は以下のとおりである。
The reason for defining the spheroidizing annealing temperature range of 500 to 620 ° C. in the present invention is as follows.

球状化温度範囲が500℃未満では、第1表のNo.12の比
較例データが示すように、HIC発生率頻度が高くなり、
耐HIC特性が劣化するとともに、SSC発生下限応力が、本
発明の目標値である70kgf/mm2以上のSSC発生下限応力を
達成し得ず、他方620℃を超えると、同じく第1表のNo.
22,23の比較例データが示すように、引張強さ、降伏強
さおよびSSC発生下限応力が本発明の目標値を達成し得
ない。
When the spheroidization temperature range is lower than 500 ° C., as shown in the comparative example data of No. 12 in Table 1, the frequency of HIC occurrence increases,
When the HIC resistance deteriorates and the SSC generation lower limit stress cannot achieve the SSC generation lower limit stress of 70 kgf / mm 2 or more, which is the target value of the present invention, and when it exceeds 620 ° C, the No. 1 in Table 1 also shows .
As shown by the data of Comparative Examples 22 and 23, the tensile strength, the yield strength, and the SSC lower limit stress cannot achieve the target values of the present invention.

本発明の主要な特徴の第2は、耐SSC特性を向上させ
るために、以上の方法で製造した球状化焼鈍鋼線に、さ
らに250〜400℃の温度範囲で0.2〜2%の引張りひずみ
を付与することである。
The second major feature of the present invention is that, in order to improve the SSC resistance, the spheroidized annealed steel wire produced by the above method is further subjected to a tensile strain of 0.2 to 2% in a temperature range of 250 to 400 ° C. It is to give.

SSCの原因は、サワー環境から鋼材中に侵入した水素
が、負荷応力により生じた微小降伏領域に拡散してそこ
に凝集する結果、降伏現象が加速されてマイクロクラッ
クが生じるためと考えられる。従って、耐SSC特性を向
上させるためには、マクロ的な降伏現象がはじまる前の
局部的な微小降伏現象を阻止することが重要である。す
なわち、鋼材の降伏強度を高めることが効果を発揮す
る。
It is considered that the cause of SSC is that hydrogen that has penetrated into the steel material from the sour environment diffuses into the small yield region generated by the applied stress and agglomerates there, thereby accelerating the yield phenomenon and causing microcracks. Therefore, in order to improve the SSC resistance, it is important to prevent the local minute breakdown phenomenon before the macro breakdown phenomenon starts. That is, increasing the yield strength of the steel material is effective.

しかし、一般的には、降伏強度を高めることにより、
引張強さは増加する。引張強さの増加は、前述したよう
に、SSC発生の危険性を高めるため、好ましいことでは
ない。
However, in general, by increasing the yield strength,
The tensile strength increases. Increasing the tensile strength is not preferable because it increases the risk of SSC occurrence, as described above.

本発明者は、降伏強度を高めるが、引張強さやほかの
機械的性質に与える影響の少ない加工方法を研究し、そ
の結果、球状化焼鈍後の鋼線を青熱脆性温度に加熱し、
その温度でわずかな引張りひずみを与えること(以下、
ヒートストレッチングという)により目標とする高い降
伏強度が得られ、その結果、耐SSC特性が大幅に向上す
るという、従来なかった新しい知見を得るに至った。ヒ
ートストレッチングにおける引張りひずみは、0.2%未
満ではSSC改善効果が不十分である。引張りひずみの増
加に伴って降伏強度は上がり、それに伴ってSSC発生下
限応力も上昇する。しかし、2%を超えると、HICが発
生し、SSC発生下限応力も低下傾向を示すため2%を上
限とする。
The present inventor studied a processing method that increases the yield strength but has little effect on the tensile strength and other mechanical properties, and as a result, heats the steel wire after spheroidizing annealing to a blue hot brittle temperature,
Giving a slight tensile strain at that temperature (hereinafter,
Heat-stretching) yielded the target high yield strength, and as a result, led to a new finding that SSC resistance was significantly improved. If the tensile strain in heat stretching is less than 0.2%, the effect of improving SSC is insufficient. As the tensile strain increases, the yield strength increases, and with it the SSC lower limit stress also increases. However, if it exceeds 2%, HIC occurs, and the lower limit stress for SSC occurrence also tends to decrease, so the upper limit is 2%.

ヒートストレッチング温度に関しては、250℃未満で
はHICが発生し、また、SSC発生下限応力も低い。一方、
400℃を超えると降伏強度が低下するため、耐SSC特性は
著しく低下する。以上の理由により、ヒートストレッチ
ング温度は250〜400℃とする。
Regarding the heat stretching temperature, if the temperature is less than 250 ° C., HIC occurs, and the lower limit stress for SSC occurrence is low. on the other hand,
If the temperature exceeds 400 ° C., the yield strength is reduced, and the SSC resistance is significantly reduced. For the above reasons, the heat stretching temperature is set to 250 to 400 ° C.

ヒートストレッチング装置としては、長尺のコイル状
鋼線を加熱しながら連続的に処理できるものでなければ
ならない。この意味からは、鋼線を供給する側のプーリ
の回転速度に対し、鋼線を巻き取る側のプーリの回転速
度を少し速くすることにより鋼線に一定のひずみを与
え、同時に両プーリ間にある緊張鋼線を誘導加熱方式な
いしは通電加熱方式により加熱できるような機構を備え
た装置が望ましい。
The heat stretching device must be capable of continuously processing a long coiled steel wire while heating it. In this sense, a certain strain is given to the steel wire by slightly increasing the rotation speed of the pulley on the winding side of the steel wire with respect to the rotation speed of the pulley on the side supplying the steel wire, and at the same time, between the two pulleys. An apparatus having a mechanism capable of heating a tensioned steel wire by an induction heating method or an electric heating method is desirable.

実施例 鉛パテンティングによって微細なパーライト組織にさ
れた直径9.5mmの線材を伸線加工により直径5mmの鋼線と
し、ついで、平圧延にて、厚み0.9〜2.85mmの平圧線と
した。これを球状化焼鈍したのち、上述したような機構
を備えたヒートストレッチング装置を用いて鋼線を誘導
加熱しながら0.2〜2%の引張りひずみを与えた。
Example A wire having a diameter of 9.5 mm, which was made into a fine pearlite structure by lead patenting, was formed into a steel wire having a diameter of 5 mm by wire drawing, and then flat rolled into a flat pressure wire having a thickness of 0.9 to 2.85 mm. After spheroidizing the steel wire, a tensile strain of 0.2 to 2% was given while the steel wire was induction-heated using a heat stretching device having the above-described mechanism.

HIC特性の評価は次の方法でおこなった。上述の平圧
線を長さ100mmに切断し、5%NaCl−0.5%CH3COOH−H2S
飽和溶液に25℃で96時間浸漬後、3箇所研磨し、ミクロ
クラックの有無を光学顕微鏡で観察した。
The evaluation of the HIC characteristics was performed by the following method. The above-described flat pressure curve was cut to a length 100mm, 5% NaCl-0.5% CH 3 COOH-H 2 S
After being immersed in a saturated solution at 25 ° C. for 96 hours, three places were polished, and the presence or absence of microcracks was observed with an optical microscope.

SSC特性の評価は次の方法で行った。上述の平圧線を
そのままの状態で試験片とし、両端をつかんで実際の降
伏強度の80〜110%の引張応力を与えた。試験片の中央
部200mmをサワー環境、すなわち、上述のHIC試験と同じ
組成の溶液中に浸漬した。溶液の温度は25℃とした。こ
のような状態で720時間の負荷試験を実施し、破断の生
じない最大応力、すなわち、SSC発生下限応力を測定し
た。
Evaluation of SSC characteristics was performed by the following method. The above flat pressure line was used as a test piece as it was, and both ends were gripped to give a tensile stress of 80 to 110% of the actual yield strength. A 200 mm central portion of the test piece was immersed in a sour environment, that is, a solution having the same composition as that of the HIC test described above. The temperature of the solution was 25 ° C. In this state, a load test was performed for 720 hours to measure the maximum stress at which no rupture occurred, that is, the lower limit stress at which SSC occurred.

使用した鋼線の化学成分、冷間加工、焼鈍温度、ヒー
トストレッチング条件などの製造条件ならびに製品の機
械的性質、耐サワー特性を第1表に示す。
Table 1 shows the chemical composition of the used steel wire, manufacturing conditions such as cold working, annealing temperature, and heat stretching conditions, as well as the mechanical properties and sour resistance of the product.

No.1〜4、No.10およびNo.11、No.18〜21、No.24〜27
は本発明法と二つの従来法の比較を行なったもので、同
一製造工程で焼鈍鋼線を製造したのち、本発明法では33
0〜360℃において0.8〜2.0%の引張りひずみを付与する
ヒートストレッチングを行なった。本発明法で製造され
た鋼線は、いずれも引張強さが75kgf/mm2以上であり、
従来法で製造された鋼線に比べ、降伏強度が高い。ま
た、SSC発生下限応力は70kgf/mm2以上と、従来法のいず
れにおいても達成できなかった高いレベルに達してい
る。
No.1-4, No.10 and No.11, No.18-21, No.24-27
Is a comparison between the method of the present invention and two conventional methods.After producing an annealed steel wire in the same manufacturing process, the method of the present invention uses 33
Heat stretching was performed at 0 to 360 ° C to impart a tensile strain of 0.8 to 2.0%. The steel wire produced by the method of the present invention has a tensile strength of 75 kgf / mm 2 or more,
Yield strength is higher than steel wire manufactured by the conventional method. In addition, the lower limit stress for SSC occurrence is 70 kgf / mm 2 or more, which is a high level that cannot be achieved by any of the conventional methods.

No.5〜9は、ヒートストレッチング時の引張りひずみ
が、また、No.13〜17は、ヒートストレッチング時の温
度が異形線の特性におよぼす影響を示したものである。
本発明が規定する範囲内のヒートストレッチング条件を
選択することによりHICの発生がなく、かつ、SSC発生下
限応力が70kgf/mm2以上ある耐サワー特性に優れた異形
線を製造できる。
Nos. 5 to 9 show the effects of the tensile strain during the heat stretching, and Nos. 13 to 17 show the effects of the temperature during the heat stretching on the characteristics of the deformed wire.
By selecting heat stretching conditions within the range specified by the present invention, it is possible to produce a deformed wire having no SIC generation and having an SSC generation lower limit stress of 70 kgf / mm 2 or more and excellent in sour resistance.

〔発明の効果〕 以上説明したように、本発明によれば、70kgf/mm2
上の引張強さを有し、耐HIC特性ならびに耐SSC特性が格
段に改善されたサワー環境用高強度鋼線を製造すること
が可能である。
As has been described [Effect of the Invention According to the present invention, has a 70 kgf / mm 2 or more tensile strength, high strength steel wire for sour environments HIC resistance and SSC resistance characteristics are greatly improved Can be manufactured.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.40〜0.70%,Si:0.10〜1%,Mn:0.20〜
1%,P:0.025%以下,S:0.010%以下を含有し、残部がFe
および不可避的不純物からなる鋼を、断面減少率25〜75
%の冷間加工を行なった後、500〜620℃で球状化焼鈍
し、その後、250〜400℃の温度範囲で0.2〜2%の引張
りひずみを与えることを特徴とするサワー環境用高強度
鋼線の製造方法。
(1) C: 0.40 to 0.70%, Si: 0.10 to 1%, Mn: 0.20 to
1%, P: 0.025% or less, S: 0.010% or less, with the balance being Fe
Steel with inevitable impurities
% Cold working, then spheroidizing annealing at 500 to 620 ° C, and then giving a 0.2 to 2% tensile strain at a temperature in the range of 250 to 400 ° C. Wire manufacturing method.
【請求項2】C:0.40〜0.70%,Si:0.10〜1%,Mn:0.20〜
1%,P:0.025%以下,S:0.010%以下,Al:0.008〜0.050%
を含有し、残部がFeおよび不可避的不純物からなる鋼
を、断面減少率25〜75%の冷間加工を行なった後、500
〜620℃で球状化焼鈍し、その後、250〜400℃の温度範
囲で0.2〜2%の引張りひずみを与えることを特徴とす
るサワー環境用高強度鋼線の製造方法。
2. C: 0.40 to 0.70%, Si: 0.10 to 1%, Mn: 0.20 to
1%, P: 0.025% or less, S: 0.010% or less, Al: 0.008 to 0.050%
, The balance of which consists of Fe and unavoidable impurities, after cold-working with a cross-sectional reduction rate of 25 to 75%,
A method for producing a high-strength steel wire for a sour environment, comprising performing spheroidizing annealing at -620 ° C, and thereafter giving a tensile strain of 0.2 to 2% in a temperature range of 250 to 400 ° C.
JP10409090A 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment Expired - Fee Related JP2840977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10409090A JP2840977B2 (en) 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10409090A JP2840977B2 (en) 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment

Publications (2)

Publication Number Publication Date
JPH042720A JPH042720A (en) 1992-01-07
JP2840977B2 true JP2840977B2 (en) 1998-12-24

Family

ID=14371429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10409090A Expired - Fee Related JP2840977B2 (en) 1990-04-19 1990-04-19 Manufacturing method of high strength steel wire for sour environment

Country Status (1)

Country Link
JP (1) JP2840977B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844149B2 (en) * 1992-10-27 1999-01-06 東洋鋼鈑株式会社 Heat exchange roll and heating / cooling roll device using the same
FR2753206B1 (en) * 1996-09-09 1998-11-06 Inst Francais Du Petrole METHOD FOR MANUFACTURING SELF-DIPPING STEEL WIRES, SHAPED WIRES AND APPLICATION TO A FLEXIBLE PIPE
EP2993246B1 (en) * 2013-04-30 2019-03-20 Nippon Steel & Sumitomo Metal Corporation Flat steel wire
JP2015212412A (en) * 2014-04-18 2015-11-26 株式会社神戸製鋼所 Hot rolled wire
JP6595368B2 (en) 2016-02-23 2019-10-23 株式会社ササクラ Cooling roll and manufacturing method thereof
DK3674425T3 (en) * 2018-12-31 2022-05-23 Baker Hughes Energy Tech Uk Limited Stålwire

Also Published As

Publication number Publication date
JPH042720A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JP5162875B2 (en) High strength wire rod excellent in wire drawing characteristics and method for producing the same
JPH0730394B2 (en) Method for manufacturing steel wire
RU2431693C1 (en) Seamless pipe of martensite stainless steel for oil field pipe equipment and procedure for its manufacture
JPWO2008044356A1 (en) High strength steel wire with excellent ductility and method for producing the same
JP2005206853A (en) High carbon steel wire rod having excellent wire drawability, and production method therefor
JP2007131945A (en) High strength steel wire having excellent ductility and its production method
KR100786939B1 (en) Steel wire rod excellent in wire-drawability and fatigue property, and production method thereof
WO2021218932A1 (en) High strength, high-temperature corrosion resistant martensitic stainless steel and manufacturing method therefor
WO2018216638A1 (en) Bent steel pipe and method for producing same
JPH01279732A (en) High-strength steel wire excellent in hydrogen-induced cracking resistance
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
CA1162826A (en) Method for the manufacture of steel suitable for electric-welded tubular products having superior resistance to sour gas
JP2840977B2 (en) Manufacturing method of high strength steel wire for sour environment
JP2834276B2 (en) Manufacturing method of high strength steel with excellent sulfide stress cracking resistance
JPH0583611B2 (en)
JPH03274227A (en) Production of high strength steel wire for use in sour environment
JPH08283867A (en) Production of hyper-eutectoid steel wire rod for wiredrawing
JP2004011002A (en) Element wire for drawing and wire
JP2004359992A (en) Wire rod for high strength steel wire, high strength steel wire, and their production method
JP2002180201A (en) Steel for hard-drawn wire having excellent fatigue strength and ductility, and hard-drawn wire
JPH03281724A (en) Production of high strength steel wire for use in sour environment
JP2013255925A (en) Method for producing seamless steel pipe for hollow spring
JP4392093B2 (en) High-strength direct patenting wire and method for producing the same
JPH03281725A (en) Production of high strength steel wire for use in sour environment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees