WO2014175345A1 - Wire rod and method for manufacturing same - Google Patents

Wire rod and method for manufacturing same Download PDF

Info

Publication number
WO2014175345A1
WO2014175345A1 PCT/JP2014/061460 JP2014061460W WO2014175345A1 WO 2014175345 A1 WO2014175345 A1 WO 2014175345A1 JP 2014061460 W JP2014061460 W JP 2014061460W WO 2014175345 A1 WO2014175345 A1 WO 2014175345A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
temperature
pearlite
particle size
finish rolling
Prior art date
Application number
PCT/JP2014/061460
Other languages
French (fr)
Japanese (ja)
Inventor
大羽 浩
新 磯
達誠 多田
敏之 真鍋
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP14788178.3A priority Critical patent/EP2990499B1/en
Priority to KR1020157031549A priority patent/KR20150138356A/en
Priority to JP2015513810A priority patent/JP6256464B2/en
Publication of WO2014175345A1 publication Critical patent/WO2014175345A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Definitions

  • the present invention mainly relates to a wire rod having excellent low-temperature ductility and low-temperature toughness, which is a PC steel stranded wire for reinforcing a PC structure used in an LNG (liquefied natural gas) tank of an energy-related facility.
  • a wire rod having excellent low-temperature ductility and low-temperature toughness which is a PC steel stranded wire for reinforcing a PC structure used in an LNG (liquefied natural gas) tank of an energy-related facility.
  • the present invention relates to a wire for terrestrial LNG and a method for manufacturing the same.
  • a conventional technique of the above ground type LNG tank there is a so-called metal double shell type LNG tank provided with a metal inner tank and an outer tank proposed in Patent Document 1 and the like.
  • a gap between the inner tank and the outer tank is usually filled with a cooling agent to suppress the temperature rise in the LNG tank and the accompanying LNG vaporization.
  • this structure has a possibility of causing damage such as a large amount of LNG flowing out when defects occur in the inner tank and the outer tank at the same time.
  • a PC breakwater equipped with a PC structure Prestressed Concrete Structure
  • the inside of the PC liquid breakwater is connected to a conventional metal secondary wall.
  • the PC breakwater in this technology includes concrete that forms a circular bank surrounding the LNG tank, and PC steel strands embedded in the concrete. Prestress is applied to the PC breakwater by tensioning the concrete along the circumferential direction using PC steel strands.
  • Prestress is applied to the PC breakwater by tensioning the concrete along the circumferential direction using PC steel strands.
  • tensile stress is applied to the PC breakwater in the circumferential direction due to the fluid pressure of the LNG that flows out, but prestress is applied to the PC breakwater. If given, this tensile stress is relaxed.
  • an object of the present invention is to provide a wire rod having a low temperature ductility and a low temperature toughness superior to those of conventional PC steel stranded wires.
  • the present inventors conducted a survey on the actual environment of the PC breakwater usage environment. It was. As a result, it was found that in an actual use environment, the wire may be exposed to an ambient temperature of around ⁇ 40 ° C. due to heat transfer to the LNG inside the LNG tank.
  • the gist of the present invention aimed at solving the above-mentioned problems is as follows.
  • the wire according to one embodiment of the present invention has a component composition of mass%, C: 0.60 to 1.20%, Si: 0.30 to 1.30%, Mn: 0.30 to 0 90%, P: 0.020% or less, S: 0.020% or less, N: 0.0025 to 0.0060%, Cr: 0 to 1.00%, and V: 0 to 0.800% And further containing one or more of Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, B: 0.0005 to 0.0040%, and the balance
  • the pearlite has an average value of the particle size of the pearlite block in the cross section perpendicular to the wire axis direction and not smaller than 23 ⁇ m and the particle size of 40 ⁇ m or more in the cross section perpendicular to the wire axis direction.
  • the number density of blocks is 0 to 20 pieces / mm 2 .
  • the component composition is 1% or 2 out of Cr: 0.10 to 1.00% and V: 0.005 to 0.800% in mass%. It may contain seeds.
  • the component composition is C: 0.70-0.90%, Si: 0.80-1.30%, Mn: 0.60-0 in mass%. .90%, and V: 0 to 0.500%.
  • the component composition is one or two of Cr: 0.50 to 1.00% and V: 0.300 to 0.500% by mass%. It may contain.
  • a method for producing a wire according to another aspect of the present invention comprises a method of rough rolling by heating a steel slab having the component composition described in (3) or (4) above to a rough rolling temperature of 950 to 1040 ° C.
  • a step of performing blast cooling to room temperature, and the finish rolling temperature and strain rate in the wire finish rolling satisfy the following formula A.
  • a PC steel stranded wire suitable for use as a tension member for a PC liquid barrier in a PC-type LNG tank due to a reduction in the particle size of the pearlite block and a limitation on the number density of the coarse pearlite block. It is possible to provide a wire rod that has better ductility and toughness in the vicinity of ⁇ 40 ° C. than the conventional wire rod.
  • the wire for a PC steel stranded wire excellent in low temperature ductility and low temperature toughness according to this embodiment has a component composition of mass%, and C: 0.60 to 1.20%, Si: 0.30 to 1.30%, Mn: 0.30 to 0.90%, P: 0.020% or less, S: 0.020% or less, N: 0.0025 to 0 .0060%, Cr: 0 to 1.00%, and V: 0 to 0.800%, Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, B: Contains one or more of 0.0005 to 0.0040%, the balance is Fe and impurities, and the average value of the particle size of the pearlite block in the cross section perpendicular to the wire axis direction is 23 ⁇ m or less. Yes, in the cross section perpendicular to the wire axis direction, the particle size of 40 ⁇ m or more The pearlite block has a number density of 0
  • % means mass%.
  • C (C: 0.60 to 1.20%) C is an element that has the effect of increasing the cementite fraction in the wire and thereby increasing the strength of the wire.
  • the lamella spacing of the pearlite can be controlled, and the strength of the wire can be increased by processing.
  • the C content is less than 0.60%, even if the above-mentioned patenting conditions are adjusted, it is impossible to obtain a strength that can sufficiently tension the PC liquid bank of the PC type LNG tank.
  • the C content of the wire exceeds 1.20%, network-like cementite is generated in the metal structure of the wire. Due to this mesh-like cementite, wire breakage frequently occurs during wire drawing, which may hinder wire production activities.
  • a method for manufacturing a wire according to the present embodiment either a DLP (Direct in-Line Patenting) method or a Stemmore method can be adopted.
  • the C content is preferably 0.70 to 0.90%.
  • the lower limit value of the C content is preferably set to 0.70%. Further, if the C content is excessively increased, the wire becomes hypereutectoid steel (steel having a structure in which pearlite and cementite coexist), so that in the process of cooling the wire, the proeutectoid cementite is formed in the prior austenite grain size. To form. This network-like pro-eutectoid cementite significantly reduces the wire drawing workability of the wire. In order to avoid precipitation of network-like pro-eutectoid cementite, the upper limit value of the C content is preferably set to 0.90%. The C content is more preferably 0.80 to 0.90%.
  • Si 0.30 to 1.30%)
  • Si is an element that acts as a deoxidizing element during refining. This deoxidation effect is sufficiently exhibited when 0.30% or more of Si is contained. Therefore, the lower limit value of the Si content of the wire according to this embodiment is 0.30%.
  • Si also has the effect of improving the strength of the wire, but this strength improvement effect is manifested when 0.80% or more of Si is contained. Therefore, it is good also considering the lower limit of Si content of the wire concerning this embodiment as 0.80%.
  • Si strengthens the solid solution of ferrite, but has the effect of raising the nose of isothermal transformation during heat treatment, so an excessive amount of Si increases the cost of heat treatment. Therefore, considering the capacity of the production facility, the upper limit of the Si content is set to 1.30%.
  • the Si content is 0.80 to 1.30%. It is preferable to do.
  • the lower limit value of the Si content is preferably set to 0.80%.
  • the Si content is more preferably 0.90 to 1.25%.
  • Mn is a solid solution strengthening element and has the effect of improving the ductility and toughness of the wire and the effect of improving the hardenability.
  • Mn In order to ensure the ductility and toughness of the wire, it is necessary to contain 0.30% or more of Mn.
  • the lower limit value of the Mn content may be 0.60%.
  • the Mn content exceeds 0.90%, a transformation delay occurs in the central portion of the wire during the production of the wire, and micro martensite is generated in the untransformed austenite portion. The micro martensite at the center of the wire causes breakage during wire drawing of the wire. Therefore, the upper limit of the Mn content needs to be 0.90%.
  • the Mn content is 0.60 to 0.90%. It is preferable that When manufacturing a wire using a Stealmore method, the cooling rate of a wire becomes slower than the time of manufacture by a DLP method, and the ductility and toughness of a wire become comparatively low. In order to compensate for this decrease in strength, the lower limit value of the Mn content is preferably 0.60%. The Mn content is more preferably 0.70 to 0.90%.
  • the S content exceeds 0.020%, this decrease in low temperature ductility becomes significant, so the S content is set to 0.020% or less.
  • the upper limit of S content as 0.010%, 0.005%, or 0.001%.
  • the P and S contents are preferably as low as possible. Therefore, the lower limit of the contents of P and S is 0%.
  • N is an element that combines with Al, Ti, and B to form a nitride. Since these nitrides become austenite precipitation nuclei, the austenite grain size can be controlled when the steel is heated by controlling the number of these nitrides. As the amount of nitride increases, the crystal grains become finer. If the N content is less than 0.0025%, nitrides are not sufficiently formed, and the effect of refining the particle size cannot be sufficiently obtained. On the other hand, if the N content exceeds 0.0060%, free N that does not bind to Al, Ti, and B becomes excessive. Due to this excessive free N, age hardening occurs, and the ductility and toughness of the wire are lowered. Therefore, the N content needs to be 0.0025 to 0.0060%. Preferably, the N content is 0.0025 to 0.0040%.
  • the wire according to this embodiment is one of Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, and B: 0.0005 to 0.0040%. Or 2 or more types are further contained.
  • Al acts as a deoxidizer during steel refining. Further, Al has a function of forming a compound with N in steel and fixing N. By fixing N, age hardening of steel can be prevented. Furthermore, when it contains B simultaneously, the amount of solid solution B can be increased by fixing N.
  • the Al content is less than 0.005%, the effect of fixing N by Al cannot be sufficiently obtained.
  • the Al content exceeds 0.100%, Al 2 O 3 produced by combining with oxygen in the steel forms clusters. This cluster becomes a starting point of cracking during wire drawing. Therefore, the Al content may be 0.005 to 0.100%.
  • the Al content is 0.020 to 0.050%.
  • Ti acts as a steel deoxidizer. Further, Ti forms a compound with N in the steel and has an action of fixing N. By fixing N, age hardening of steel can be prevented. Furthermore, when it contains B simultaneously, the amount of solid solution B can be increased by fixing N.
  • the Ti content is less than 0.003%, the effect of fixing N by Ti cannot be sufficiently obtained.
  • the Ti content exceeds 0.050%, TiC generated by combining with carbon in the steel increases. This TiC becomes a starting point of cracking during wire drawing. Therefore, the Ti content may be 0.003 to 0.050%.
  • the Ti content is 0.020 to 0.040%.
  • Al and Ti have the same effect. Therefore, the amount of Al added can be reduced by adding Ti, and the same effect can be obtained in this case.
  • B when present as a solid solution B in austenite, has the effect of improving the hardenability of the wire. If the B content is less than 0.0005%, the effect of improving hardenability cannot be sufficiently obtained. On the other hand, if the B content exceeds 0.0040%, B forms a compound with Fe and C, and precipitates such as Fe 23 (C, B) 6 are formed. This precipitate becomes a starting point of cracking during wire drawing. Therefore, the B content may be 0.0005 to 0.0040%. Preferably, the B content is 0.0009 to 0.0030%.
  • the wire according to the present embodiment may further contain Cr: 0 to 1.00%, V: 0 to 0.800% in mass%.
  • the inclusion of Cr is not essential. Therefore, the lower limit of the Cr content is 0%.
  • Cr has the effect of increasing the strength of the wire by reducing the lamella spacing of the pearlite. This action increases the strength of the wire during wire drawing. Since this effect is obtained when the Cr content is 0.10% or more, the Cr content is preferably set to 0.10% or more. Moreover, when improving an intensity
  • the upper limit of the Cr content is preferably 1.00%.
  • the Cr content is set to 0.50 to 1.00%. More preferably.
  • the cooling rate of the wire becomes slower than in the case of manufacturing by the DLP method, and the ductility and toughness of the wire become relatively low.
  • the lower limit of the Cr content is more preferably 0.5%.
  • the Cr content is more preferably 0.50 to 0.90%.
  • V (V: 0 to 0.800%)
  • the inclusion of V is not essential. Therefore, the lower limit of the V content is 0%.
  • V is an element that combines with C and precipitates as a carbide in ferrite. By precipitation of this carbide, the ferrite is hardened, and the strength of the wire can be increased. This effect is obtained when V is contained in an amount of 0.005% or more.
  • the V content exceeds 0.800%, coarse carbides precipitate. This coarse carbide becomes a starting point of cracking when the wire is processed. Therefore, the V content is preferably 0.005% or more and 0.800% or less.
  • the DLP method or the Stemmore method can be adopted.
  • the V content is 0.300 to 0.500%. More preferably.
  • the cooling rate of the wire becomes slower than in the case of manufacturing by the DLP method, and the ductility and toughness of the wire become relatively low.
  • the lower limit value of the V content is more preferably 0.300%.
  • a microcrack void is formed in the base metal interface part of VC deposit when it receives a processing strain, it is more preferable to make the upper limit of V content into 0.500%.
  • the V content is more preferably 0.300 to 0.400%.
  • the balance of the component composition of the wire according to this embodiment is made of Fe and impurities.
  • Impurities are raw materials such as ore or scrap, or components mixed in due to various factors in the manufacturing process when manufacturing steel materials industrially, and have an adverse effect on the characteristics of the wire according to this embodiment. It means what is allowed in the range.
  • the pearlite block grain boundary is defined as a boundary between two adjacent pearlites having an orientation difference of 9 degrees or more, and the pearlite block is defined as a region surrounded by the pearlite block grain boundary.
  • PBS perlite block particle size
  • the average PBS (pearlite block particle size) in a cross section perpendicular to the wire axis direction is set to 23 ⁇ m or less.
  • the wire according to this embodiment needs to have an aperture value of 30% or more.
  • a drawing value of 30% or more is necessary in order to prevent disconnection during wire drawing in wire drawing.
  • FIG. 1 shows that when the average PBS (pearlite block particle size) is 23 ⁇ m or less, an aperture value of 30% or more can be obtained.
  • the average PBS pearlite block particle size
  • the branching frequency of the crack tip decreases. Since the branching at the crack tip has an effect of suppressing crack propagation, the frequency of branching at the crack tip decreases, so that the fracture surface unit becomes large, and the low temperature ductility and low temperature toughness are lowered. Therefore, the average PBS (perlite block particle size) is 23 ⁇ m or less. Preferably, the average pearlite block particle size is 18 ⁇ m or less.
  • the average PBS in the cross section perpendicular to the axial direction of the wire in the present embodiment is obtained by the following procedure. First, (1) surface layer portion (region having a depth of 30 ⁇ m from the surface of the wire), (2) 1 / 4D portion (depth from the surface of the wire to 1 ⁇ 4 of the diameter D of the wire) in the cross section perpendicular to the axial direction of the wire Area), (3) center part, (4) 3 / 4D part (area of 3/4 depth of wire diameter D from the surface of the wire.
  • the average value is measured using an EBSD device.
  • an average value (secondary average value) of each primary average value is calculated. This secondary average value is the average PBS in a cross section perpendicular to the axial direction of the wire in the present embodiment.
  • the number density of pearlite blocks having a particle diameter of 40 ⁇ m or more in the cross section perpendicular to the wire axis direction is 0 to 20 / mm 2
  • the pearlite block particle size is 40 ⁇ m or more in the cross section perpendicular to the wire axis direction.
  • the number density of pearlite blocks is set to 0 to 20 pieces / mm 2 .
  • the pearlite block having a particle size of 40 ⁇ m or more serves as a starting point of fracture, even if the number is small, the ductility and toughness of the wire are lowered.
  • the wire according to the present embodiment in addition to controlling the average value of the pearlite block particle size as described above, it is also necessary to suppress the generation of coarse pearlite blocks. For this reason, the number density of coarse pearlite blocks is limited.
  • the “pearlite block having a particle size of 40 ⁇ m or more” may be referred to as “coarse pearlite block” or “coarse PB”.
  • the ductility and toughness of the wire do not satisfy the required level. Therefore, it is necessary to limit the number density of coarse pearlite blocks in a cross section perpendicular to the wire axis direction to 20 pieces / mm 2 or less.
  • the upper limit of the number density of coarse pearlite blocks in a cross section perpendicular to the axial direction of the wire is 18 / mm 2 . Since the number of coarse pearlite blocks is preferably small, the lower limit of the number density of coarse pearlite blocks in the cross section perpendicular to the wire axis direction is 0 / mm 2 .
  • the number density of pearlite blocks having a particle size of 40 ⁇ m or more within an arbitrary viewing angle can be obtained at an arbitrary position in a cross section perpendicular to the axial direction of the wire.
  • the number density of pearlite blocks having a pearlite block particle size of 40 ⁇ m or more in a cross section perpendicular to the wire axis direction is obtained by the following procedure.
  • (1) surface layer portion region having a depth of 30 ⁇ m from the surface of the wire
  • (2) 1 / 4D portion depth from the surface of the wire to 1/4 of the diameter D of the wire) in a cross section perpendicular to the axial direction of the wire Area
  • (3) center portion (4) 3 / 4D portion (from the surface of the wire to a region of a depth of 3/4 of the diameter D of the wire, ie, on the opposite side of (2) with respect to the wire center portion) Region), and (5) a particle size of 40 ⁇ m or more within a viewing angle of 300 ⁇ m ⁇ 180 ⁇ m at each of five locations consisting of the surface layer portion on the opposite side (that is, the region on the opposite side of (1) with respect to the wire rod central portion).
  • the number density of the pearlite block is measured using an EBSD device. Next, the average value of the number density at each location is calculated. This average value is the number density of pearlite blocks having a particle diameter of 40 ⁇ m or more in the cross section perpendicular to the axial direction of the wire in the present embodiment.
  • DLP Direct in-Line Patenting
  • Stealmore method As a method for manufacturing the wire according to the present embodiment, there is a DLP (Direct in-Line Patenting) method and a Stealmore method.
  • the finish rolling temperature and the strain rate must satisfy the relationship of the following formula 1. 13.7 ⁇ log 10 ⁇ (d ⁇ / dt) ⁇ exp (63800 / (1.98 ⁇ (T + 273.15))) ⁇ ⁇ 16.5 (Formula 1)
  • d ⁇ / dt represents the strain rate in the wire finish rolling in the unit s ⁇ 1
  • T represents the finish rolling temperature in the unit ° C.
  • the steel slab further contains one or two of Cr: 0.50 to 1.00% and V: 0.300 to 0.500% by mass%. May be.
  • Component composition of steel slabs for rough rolling within the above specified range
  • the component composition of the steel slab used for rough rolling needs to be in the above-mentioned specified range.
  • This specified range is narrower than the specified range described above as the component composition of the wire according to the present embodiment.
  • the Stemmore method is a manufacturing method that performs blast cooling after winding, and the cooling rate by blast cooling is slower than the cooling rate of direct heat treatment with molten salt in the DLP method described later. When the cooling rate is low, the ductility and toughness of the finally obtained wire are relatively low.
  • the wire according to the present embodiment is manufactured by the Stemmore method
  • C, Mn, and Si which are alloy elements for improving ductility and toughness
  • Cr and V are included to improve the properties of the wire
  • Cr and V are also subjected to direct heat treatment with molten salt in the DLP method. It is preferable to contain relatively more than the case.
  • the heating temperature (rough rolling temperature) of the steel slab before being subjected to rough rolling is set to 950 to 1040 ° C.
  • the heating temperature of the steel slab before rough rolling is set to 950 ° C. or higher.
  • AlN aluminum nitride
  • the heating temperature of the steel slab before rough rolling exceeds 1040 ° C.
  • solutionization of aluminum nitride (AlN) precipitated in the steel slab proceeds excessively.
  • AlN serves as austenite precipitation nuclei and contributes to refinement of the austenite crystal grain size.
  • the particle size of the austenite of the wire rod can be reduced.
  • the solution of AlN proceeds excessively, the austenite crystal grain size increases. In this case, the PBS of the wire becomes coarse when the wire is manufactured later.
  • the average value of the particle size of the pearlite block is more than 23 ⁇ m, and / or the number density of the pearlite block having the particle size of 40 ⁇ m or more is more than 20 / mm 2.
  • the heating temperature of the steel slab before rough rolling is set to 1040 ° C. or less.
  • the wire finish rolling is performed in a temperature range of 750 to 900 ° C.
  • the temperature of the wire finish rolling (finish rolling temperature) is less than 750 ° C.
  • an increase in the roll reaction force during rolling may cause equipment trouble such as roll breakage. °C or more.
  • the temperature of the wire finish rolling exceeds 900 ° C., the austenite crystal grain size becomes coarse.
  • the average value of the particle size of the pearlite block is more than 23 ⁇ m, and / or the number density of the pearlite block having the particle size of 40 ⁇ m or more is more than 20 / mm 2. .
  • the ductility of the wire deteriorates due to the coarsening of the pearlite block.
  • the wire finishing rolling temperature is set to 900 ° C. or less.
  • the strain rate d ⁇ / dt of the wire during the finish rolling of the wire can be obtained by the following equation.
  • d ⁇ / dt ⁇ ⁇ 2 ⁇ ⁇ ⁇ (N / 60) ⁇ L d (Formula 3)
  • ln (h2 / h1)
  • L d (r / ⁇ h) 1/2
  • ⁇ h h1-h2
  • is a strain amount in the finish rolling of the wire rod, and is a dimensionless number.
  • H1 indicates the diameter of the wire before the wire finish rolling in unit mm
  • h2 indicates the diameter of the wire after the wire finish rolling in unit mm
  • N indicates the number of rotations of the roll for performing the wire finish rolling in the unit of rpm.
  • L d indicates the projected contact length in the unit mm in the wire finishing rolling. The projected contact length is the length along the rolling direction of the region where the roll and the material to be rolled (wire) are in contact during rolling.
  • r represents the roll radius in the unit mm in the wire finishing rolling.
  • ⁇ h represents the amount of reduction in unit mm in the wire finish rolling.
  • the strain rate is a rolling condition related to both the rolling rate and the rolling reduction.
  • the upper limit value of log 10 Z is set to 16.5.
  • log 10 Z is preferably 14.0 to 16.0.
  • the average value of the particle size of the pearlite block exceeds 23 ⁇ m and / or the number density of the pearlite block having the particle size of 40 ⁇ m or more in the cross section perpendicular to the wire axis direction. Is over 20 pieces / mm 2 .
  • the wire finish rolling speed is not particularly limited as long as log 10 Z is in the range of 13.7 to 16.5.
  • the wire rod finish rolling speed is preferably 15.5 to 25.2 m / sec.
  • the speed of the wire finish rolling is less than 15.5 m / sec, the strain rate decreases.
  • the PBS may not be made sufficiently small.
  • the wire finishing rolling speed is preferably 15.5 m / sec or more.
  • the wire finish rolling speed exceeds 25.2 m / sec, heat generation during processing increases, and the austenite crystal grain size may become coarse. Also in this case, the PBS cannot be miniaturized.
  • the wire finish rolling speed is set so that the log 10 Z is in the range of 13.7 to 16.5. It is necessary to change appropriately from the range of.
  • the pearlite block particle diameter of the finally obtained wire cannot be adjusted to 23 ⁇ m or less, and / or the number density of pearlite blocks having a particle diameter of 40 ⁇ m or more is more than 20 / mm 2 .
  • the winding temperature is set to 840 ° C. or lower.
  • the winding temperature is preferably 750 to 820 ° C.
  • the wound wire is cooled to room temperature by blast cooling.
  • the room temperature basically indicates a temperature range of 5 to 35 ° C. as defined in JIS Z 8703.
  • the cooling rate is less than 15 ° C./second (ie, slow cooling)
  • the austenite particle size becomes large
  • the average value of the particle size of the pearlite block in the cross section perpendicular to the wire axis direction becomes more than 23 ⁇ m
  • the number density of the pearlite blocks having the particle diameter of 40 ⁇ m or more is more than 20 / mm 2 .
  • the cooling rate during blast cooling is set to 15 ° C./second or more.
  • the cooling rate at the time of blast cooling is preferably 25 ° C./second or more. Although it is not necessary to define the upper limit value of the cooling rate at the time of blast cooling, the upper limit value is about 50 ° C./second in consideration of the facility capacity.
  • (1) component composition is mass%, C: 0.60 to 1.20%, Si: 0.30 to 1.30%, Mn: 0 .30 to 0.90%, P: 0.020% or less, S: 0.020% or less, N: 0.0025 to 0.0060%, Cr: 0 to 1.00%, and V: 0 to 0 800%, Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, B: 0.0005 to 0.0040%, or one or more of them
  • the steel slab containing the composition containing Fe and impurities in the balance is heated to 950 to 1040 ° C., and then wire rolling is performed.
  • Winding is performed in a temperature range of 750 to 800 ° C.
  • heat treatment is directly performed with molten salt at 500 to 600 ° C.
  • the steel slab as the raw material is in mass%, Cr: 0.10 to 1.00%, and V: 0.005 to 0.800%. One or two of them may be further contained.
  • Component composition of steel slab used for wire rod rolling within the above-mentioned specified range
  • the component composition of the steel slab used for wire rolling needs to be in the above-mentioned specified range.
  • This specified range is the same as the specified range described above as the component composition of the wire according to the present embodiment.
  • the production method by the DLP method has an advantage that a wire having excellent ductility and toughness can be obtained from a steel piece having relatively few alloy elements for improving ductility and toughness.
  • a direct heat treatment with a molten salt is essential in the production method by the DLP method, more equipment is required for carrying out this production method than in the production method by the Stemmore method.
  • Heating temperature for wire rolling 950-1040 ° C
  • the heating temperature of the steel slab before wire rod rolling is set to 950 to 1040 ° C.
  • the heating temperature before wire rod rolling is set to 950 ° C. or higher.
  • the heating temperature before the wire rod rolling exceeds 1040 ° C.
  • the solution of aluminum nitride (AlN) precipitated in the steel slab proceeds, the austenite crystal grain size increases, and finally obtained.
  • the average value of the particle sizes of the pearlite blocks in the cross section perpendicular to the wire axis direction is more than 23 ⁇ m, and / or the number density of the pearlite blocks having a particle size of 40 ⁇ m or more is more than 20 / mm 2 .
  • the heating temperature before wire rod rolling is set to 1040 ° C. or lower.
  • the heating temperature before wire rolling is preferably 980 to 1030 ° C.
  • the finishing temperature in wire rod rolling is not particularly limited, and a reasonable temperature can be appropriately selected.
  • the winding temperature after wire rolling is set to 750 to 800 ° C.
  • the coiling temperature is less than 750 ° C.
  • the variation in the tensile strength in the longitudinal direction of the wire increases after the constant temperature transformation in the subsequent constant temperature transformation treatment step. Accordingly, the winding temperature is set to 750 ° C. or higher.
  • the coiling temperature exceeds 800 ° C., the austenite particle size increases.
  • the pearlite block particle diameter of the finally obtained wire cannot be adjusted to 23 ⁇ m or less, and the number density of pearlite blocks having a particle diameter of 40 ⁇ m or more cannot be adjusted to 20 pieces / mm 2 or less.
  • the winding temperature is set to 800 ° C. or lower.
  • Constant temperature transformation treatment method direct heat treatment
  • Constant temperature transformation treatment temperature 500-600 ° C
  • the wire is wound up and immediately immersed in a molten salt at 500 to 600 ° C. to perform a constant temperature transformation treatment.
  • the isothermal transformation temperature is less than 500 ° C.
  • a lot of non-pearlite structure is generated in the surface layer portion of the wire.
  • unevenness of processing strain occurs at the interface between the pearlite structure generated inside the wire and the non-pearlite structure of the surface part of the wire, and this non-uniformity causes breakage at the wire drawing stage. There is. Therefore, the temperature of the isothermal transformation treatment is set to 500 ° C.
  • the isothermal transformation temperature exceeds 600 ° C., operational problems such as increased thermal deformation of the equipment occur. Therefore, the isothermal transformation temperature is set to 600 ° C. or less. Moreover, this isothermal transformation process needs to be performed by direct heat treatment (on-line heat treatment). If direct heat treatment is not performed (that is, isothermal transformation is performed by off-line heat treatment), ⁇ grains grow by the reheating step included in off-line heat treatment. This phenomenon prevents the particle diameter of the PBS of the wire rod from being controlled to 23 ⁇ m or less.
  • the conditions at the time of creating the examples are condition examples adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to these condition examples.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • molten steel having the composition shown in Table 1-1 was continuously cast into a 300 mm ⁇ 500 mm slab, and this slab was then rolled into 122 mm square steel slabs by split rolling. Thereafter, the steel slab was heated at the heating temperature shown in Table 1-2, and the steel slab was rolled under the conditions shown in Table 1-2 to obtain a 12 mm ⁇ wire rod. The radius of the roll at the time of wire-finishing rolling was 75.5 mm.
  • No. S1 to S16 are invention examples that satisfy the conditions of the present invention.
  • S17 to S41 are comparative examples that do not satisfy the conditions of the present invention.
  • the tensile test piece shown in FIG. 3 was manufactured from the rolled wire. Tensile strength and ductility of the wire at ⁇ 40 ° C. were measured by conducting a tensile test on the tensile test piece in a low temperature atmosphere of ⁇ 40 ° C. while adjusting the temperature with dry ice and alcohol. Furthermore, a Charpy impact test piece defined in JISZ2202 was collected from the wire by the sampling method shown in FIG. 4 to produce a 2 mm U notch Charpy impact test piece of 5 mm subsize. By performing a Charpy impact test at ⁇ 40 ° C. on these Charpy impact test pieces, the impact value of the wire at a temperature of ⁇ 40 ° C., which is close to the actual use environment temperature of the PC liquid barrier in the LNG tank, was obtained.
  • the average PBS (pearlite block particle size) of the wire was obtained by the following procedure. First, (1) surface layer portion (region having a depth of 30 ⁇ m from the surface of the wire), (2) 1 / 4D portion (depth from the surface of the wire to 1 ⁇ 4 of the diameter D of the wire) in the cross section perpendicular to the axial direction of the wire Area), (3) center portion, (4) 3 / 4D portion (region having a depth of 3/4 of the diameter D of the wire from the surface of the wire, ie, the region opposite to (2) with respect to the wire center portion) ), And (5) the equivalent circle diameter of the pearlite block within the viewing angle of 300 ⁇ m ⁇ 180 ⁇ m at each of the five locations consisting of the surface layer portion on the opposite side (that is, the region opposite to (1) with respect to the central portion of the wire rod) The average value (primary average value) was measured using an EBSD device.
  • the average value (secondary average value) of each primary average value was calculated.
  • This secondary average value was defined as the average PBS in the cross section perpendicular to the axial direction of the wire.
  • the boundary between two adjacent pearlites having an orientation difference of 9 degrees or more was determined to be a pearlite block grain boundary.
  • the number density of coarse pearlite blocks in the wire was determined by the following procedure. First, (1) surface layer portion (region having a depth of 30 ⁇ m from the surface of the wire), (2) 1 / 4D portion (depth from the surface of the wire to 1 ⁇ 4 of the diameter D of the wire) in the cross section perpendicular to the axial direction of the wire Area), (3) center part, (4) 3 / 4D part (area of 3/4 depth of wire diameter D from the wire surface. Region), and (5) a particle size of 40 ⁇ m or more within a viewing angle of 300 ⁇ m ⁇ 180 ⁇ m at each of five locations consisting of the surface layer portion on the opposite side (that is, the region on the opposite side of (1) with respect to the wire center).
  • the number density of pearlite blocks was measured using an EBSD apparatus. Next, the average value of the number density at each location was calculated. This average value was defined as the number density of pearlite blocks having a particle diameter of 40 ⁇ m or more in a cross section perpendicular to the axial direction of the wire.
  • the heating temperature, finishing temperature, and winding temperature in the invention examples are within an appropriate temperature range.
  • the pearlite block of the inventive example was made fine, and the average PBS and coarse PB number density of the inventive example were controlled to appropriate levels.
  • the number density of average PBS and coarse PB in the comparative examples in which the heating temperature, finishing temperature, and winding temperature are higher than the appropriate temperature range were outside the specified range of the present invention.
  • the inventive examples exhibited better properties than the comparative examples with respect to low temperature strength, low temperature toughness, and room temperature toughness.
  • the finish rolling temperature was below the appropriate temperature range, so the mill load increased and rolling could not be performed.
  • 5A and 5B show an SEM photograph of the pearlite block of the invention example and an SEM photograph of the pearlite block of the comparative example. It was possible to discriminate from these SEM photographs that the pearlite block particle size of the inventive example was smaller than the pearlite block particle size of the comparative example.
  • FIG. 6 shows the results of a tensile test at ⁇ 40 ° C. for the inventive example (No. S6) and the comparative example (No. S17).
  • the ductility of the inventive example was higher than that of the comparative example, and it was determined that it was good.
  • Table 2 it can be determined that the ductility of the inventive example tends to be higher than the ductility of the comparative example. It is estimated that the difference in ductility was caused by the difference in the pearlite block particle size shown in FIGS. 5A and 5B.
  • molten steel having the composition shown in Table 3 was continuously cast to form a 300 mm ⁇ 500 mm slab, and then rolled into a 122 mm square steel slab. Thereafter, the steel slab is heated at the heating temperature shown in Table 3, and further, under the conditions shown in Table 3, the steel slab is subjected to rolling, winding, and heat treatment using a molten salt to obtain a 12 mm ⁇ wire. It was. No. D1 to D16 and No. D30 to D36 were produced by heat treatment (direct heat treatment) immersed in the molten salt without being reheated after winding. No. In D17 to D29, winding was performed under the conditions shown in Table 3, and thereafter, heat treatment (offline heat treatment) for reheating to 950 ° C. and performing lead patenting treatment was performed.
  • the tensile strength at ⁇ 40 ° C., the ductility at ⁇ 40 ° C., and the impact value at ⁇ 40 ° C. of the wire were determined.
  • the test method for obtaining these values is described in No. 1 above. S1-No. This is the same as the method of each test performed for S41.
  • the Charpy impact test at room temperature was performed on the wire, and the impact value of the wire at room temperature was obtained.
  • the method for performing the Charpy impact test at room temperature was the same as the method for performing the Charpy impact test at ⁇ 40 described above, except for the test temperature.
  • the average density of PBS and the number density of coarse pearlite blocks of the above-mentioned wire rods are No. S1-No. It was measured by the measurement method applied to S16.
  • FIGS 7A and 7B show an SEM photograph of the pearlite block of the invention example and an SEM photograph of the pearlite block of the comparative example. It was possible to discriminate from the SEM photograph that the pearlite block particle sizes (PBS) of the invention example and the comparative example were clearly different.
  • PBS pearlite block particle sizes
  • FIG. 8 shows the relationship between the pearlite block particle size ( ⁇ m) and the impact value based on the impact values shown in Tables 4 and 4. From FIG. 8, it was determined that the impact value (PBS: 15 to 23 ⁇ m) of the example of the present invention was higher than the impact value of the comparative example (PBS: 30 to 45 ⁇ m) both at room temperature and at ⁇ 40 ° C.
  • FIG. 9A and FIG. 9B show the results of observing the fracture surface of the Charpy impact test piece of the invention example and the comparative example with an SEM.
  • FIG. 9A shows a fracture surface unit of the invention example
  • FIG. 9B shows a fracture surface unit of the comparative example.
  • the fracture surface unit of the invention example was finer than the fracture surface unit of the comparative example. This indicates that the inventive example is superior in terms of toughness. Also in this point, the effect of PBS miniaturization could be confirmed.
  • the toughness of the inventive example is higher than the toughness of the comparative example both at room temperature and in the environment of ⁇ 40 ° C. that is exposed when the wire is actually used as the reinforcing PC of the LNG tank. was able to be determined.
  • the ductility in the vicinity of ⁇ 40 ° C. of the PC steel stranded wire used for the tension material of the PC type LNG PC breakwater is better than that of the conventional material due to the reduction of the pearlite block particle size. It became possible to provide wire rods. Therefore, the present invention contributes to improving the reliability of PC steel stranded wire, which is a member of LNG tank-related equipment, which has been increasingly demanded in recent years, in a low temperature use environment, and can be used industrially. It is highly probable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

A wire rod that has a definite composition of components with the balance consisting of Fe and impurities, wherein the average particle diameter of pearlite blocks in a cross-section perpendicular to the axial direction of the wire rod is not more than 23 μm, and the number density of the pearlite blocks having the aforesaid average particle diameter of 40 μm or more in the cross-section perpendicular to the axial direction of the wire rod is 0-20 blocks/mm2.

Description

線材及びその製造方法Wire rod and manufacturing method thereof
 本発明は、主に、エネルギー関連施設のLNG(液化天然ガス)タンクに用いるPC構造補強用のPC鋼撚り線の材料である、低温延性および低温靱性に優れた線材に関する。
 本願は、2013年4月25日に日本にて出願された特願2013-092782号、および2013年4月25日に日本にて出願された特願2013-092775号に基づき優先権を主張し、その内容をここに援用する。
The present invention mainly relates to a wire rod having excellent low-temperature ductility and low-temperature toughness, which is a PC steel stranded wire for reinforcing a PC structure used in an LNG (liquefied natural gas) tank of an energy-related facility.
This application claims priority based on Japanese Patent Application No. 2013-092782 filed in Japan on April 25, 2013 and Japanese Patent Application No. 2013-092775 filed in Japan on April 25, 2013. , The contents of which are incorporated herein.
 LNGタンクは、地上式および地下式に分類される。本発明は、地上式LNG用の線材及びその製造方法に関する。地上式LNGタンクの従来技術としては、特許文献1などで提唱されている、金属製の内槽及び外槽を備える、いわゆる、金属二重殻式のLNGタンクがある。 LNG tanks are classified as above-ground and underground. The present invention relates to a wire for terrestrial LNG and a method for manufacturing the same. As a conventional technique of the above ground type LNG tank, there is a so-called metal double shell type LNG tank provided with a metal inner tank and an outer tank proposed in Patent Document 1 and the like.
 金属二重殻式のLNGタンクでは通常、内槽及び外槽の間の隙間部に保冷剤を充満させて、LNGタンク内の温度上昇と、それに伴うLNGの気化とを抑制している。但し、この構造は、内槽および外槽に同時に欠陥が生じた場合に、大量のLNGが流出するなどの被害が生じる可能性を有する。このため、近年では、更に安全性を高めるために、PC構造(Prestressed Concrete Structure)を具備したPC防液堤をLNGタンクの外側に配置し、このPC防液堤の内側を、従来の金属二重殻式のLNGタンクと一体化させる技術が登場してきた。 In a metal double shell type LNG tank, a gap between the inner tank and the outer tank is usually filled with a cooling agent to suppress the temperature rise in the LNG tank and the accompanying LNG vaporization. However, this structure has a possibility of causing damage such as a large amount of LNG flowing out when defects occur in the inner tank and the outer tank at the same time. For this reason, in recent years, in order to further enhance safety, a PC breakwater equipped with a PC structure (Prestressed Concrete Structure) is arranged outside the LNG tank, and the inside of the PC liquid breakwater is connected to a conventional metal secondary wall. Technology that integrates with the heavy shell LNG tank has appeared.
 この技術におけるPC防液堤は、LNGタンクを囲む円状の堤を形成するコンクリートと、このコンクリートの内部に埋設されたPC鋼撚り線とを備える。PC鋼撚り線を用いてコンクリートを円周方向に沿って緊張することにより、PC防液堤にプレストレスを与える。LNGがPC防液堤の内部のLNGタンクから流出した場合、流出したLNGの液圧によって、PC防液堤にはその円周方向に引張応力が加えられるが、PC防液堤にプレストレスが与えられていれば、この引張応力が緩和される。 The PC breakwater in this technology includes concrete that forms a circular bank surrounding the LNG tank, and PC steel strands embedded in the concrete. Prestress is applied to the PC breakwater by tensioning the concrete along the circumferential direction using PC steel strands. When LNG flows out of the LNG tank inside the PC breakwater, tensile stress is applied to the PC breakwater in the circumferential direction due to the fluid pressure of the LNG that flows out, but prestress is applied to the PC breakwater. If given, this tensile stress is relaxed.
日本国特開2006-234137号公報Japanese Unexamined Patent Publication No. 2006-234137
 しかし、PC防液堤は、LNGタンク内部のLNGに熱を奪われることにより、常に低温状態である。さらに、上述のようなLNGの漏出が生じた場合は、-162℃以下の温度であるLNGとコンクリートとが接触することにより、コンクリートの内部でPC防液堤を補強しているPC鋼撚り線の周囲の温度が大きく低下し得る。PC鋼撚り線の低温延性および低温靱性が十分に高くない場合、PC鋼撚り線が破断し、PC防液堤が破損する恐れがある。このため、従来のPC鋼撚り線用の線材よりも低温延性および低温靱性に優れた線材が求められるようになった。本発明は、このような市場の要求に応えるために、低温延性および低温靱性が従来のPC鋼撚り線用の線材よりも優れた線材を提供することを目的とする。 However, the PC breakwater is always in a low temperature state due to heat being taken away by the LNG inside the LNG tank. Furthermore, when LNG leaks as described above, the PC steel stranded wire that reinforces the PC breakwater inside the concrete by contacting the LNG with a temperature of −162 ° C. or less with the concrete. The ambient temperature of the can be greatly reduced. If the low-temperature ductility and low-temperature toughness of the PC steel stranded wire are not sufficiently high, the PC steel stranded wire may break and the PC liquid breakwater may be damaged. For this reason, the wire rod which was excellent in low temperature ductility and low temperature toughness compared with the wire rod for the conventional PC steel strand wire came to be calculated | required. In order to meet such market demand, an object of the present invention is to provide a wire rod having a low temperature ductility and a low temperature toughness superior to those of conventional PC steel stranded wires.
 本発明者らは、PC式LNGタンク(PC防液堤を備えるLNGタンク)を構成しているPC防液堤における緊張付与効果を高めるために、PC防液堤の使用環境の実態調査を行った。その結果、実際の使用環境においては、LNGタンク内部のLNGへの伝熱により、線材は-40℃前後の雰囲気温度に曝される可能性があることが判った。 In order to enhance the effect of imparting tension to the PC breakwater constituting the PC type LNG tank (LNG tank having a PC breakwater), the present inventors conducted a survey on the actual environment of the PC breakwater usage environment. It was. As a result, it was found that in an actual use environment, the wire may be exposed to an ambient temperature of around −40 ° C. due to heat transfer to the LNG inside the LNG tank.
 そこで、従来のPC鋼撚り線よりも高い低温延性および低温靱性を有する線材を得るための方法について、種々検討を行った。具体的には、まず低温延性について検討するために、図3に示される特殊形状を有する引張試験片を線材から作製して、この引張試験片にて引張試験を実施した。さらに、低温靱性について検討するために、JISZ2202に規定された5mmサブサイズシャルピー衝撃試験片を線材から作製し、この試験片に2mmUノッチ試験を行ない、この試験により得られた破面形態の特徴とシャルピー吸収エネルギーとの関係を調査した。これら試験の結果から、線材のパーライトブロック粒径の平均値と、粗大なパーライトブロックの個数密度とが-40℃での低温延性及び破面単位に影響を与えることを見いだし、このことが低温延性および低温靱性の改善につながることを確認した。 Therefore, various studies were conducted on methods for obtaining a wire having higher cold ductility and lower temperature toughness than conventional PC steel stranded wires. Specifically, first, in order to examine low temperature ductility, a tensile test piece having a special shape shown in FIG. 3 was prepared from a wire, and a tensile test was performed using the tensile test piece. Furthermore, in order to examine low temperature toughness, a 5 mm sub-size Charpy impact test piece specified in JISZ2202 was prepared from a wire, and a 2 mm U notch test was performed on this test piece. The relationship with Charpy absorbed energy was investigated. From the results of these tests, we found that the average value of the pearlite block particle size of the wire and the number density of coarse pearlite blocks affect the low temperature ductility and fracture surface units at -40 ° C. And it was confirmed that it leads to improvement of low temperature toughness.
 そして、上記知見に基づけば、従来のPC鋼撚り線用線材よりも低温延性および低温靱性が優れた線材を提供することが可能であることが解った。 And based on the said knowledge, it turned out that it is possible to provide the wire rod which was excellent in low temperature ductility and low temperature toughness than the conventional wire for PC steel strand wire.
 即ち、上記課題を解決することを目的とする本発明の要旨は、以下のとおりである。 That is, the gist of the present invention aimed at solving the above-mentioned problems is as follows.
 (1)本発明の一形態に係る線材は、成分組成が、質量%で、C:0.60~1.20%、Si:0.30~1.30%、Mn:0.30~0.90%、P:0.020%以下、S:0.020%以下、N:0.0025~0.0060%、Cr:0~1.00%、およびV:0~0.800%を含有し、更に、Al:0.005~0.100%、Ti:0.003~0.050%、B:0.0005~0.0040%のうち1種又は2種以上を含有し、残部がFe及び不純物からなり、線材軸方向に垂直な断面におけるパーライトブロックの粒径の平均値が23μm以下であり、前記線材軸方向に垂直な前記断面において、40μm以上の前記粒径を有する前記パーライトブロックの個数密度が0~20個/mmである。 (1) The wire according to one embodiment of the present invention has a component composition of mass%, C: 0.60 to 1.20%, Si: 0.30 to 1.30%, Mn: 0.30 to 0 90%, P: 0.020% or less, S: 0.020% or less, N: 0.0025 to 0.0060%, Cr: 0 to 1.00%, and V: 0 to 0.800% And further containing one or more of Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, B: 0.0005 to 0.0040%, and the balance The pearlite has an average value of the particle size of the pearlite block in the cross section perpendicular to the wire axis direction and not smaller than 23 μm and the particle size of 40 μm or more in the cross section perpendicular to the wire axis direction. The number density of blocks is 0 to 20 pieces / mm 2 .
 (2)上記(1)に記載の線材は、前記成分組成が、質量%で、Cr:0.10~1.00%、およびV:0.005~0.800%のうち1種又は2種を含有してもよい。 (2) In the wire according to (1), the component composition is 1% or 2 out of Cr: 0.10 to 1.00% and V: 0.005 to 0.800% in mass%. It may contain seeds.
 (3)上記(1)に記載の線材は、前記成分組成が、質量%でC:0.70~0.90%、Si:0.80~1.30%、Mn:0.60~0.90%、およびV:0~0.500%を含有してもよい。 (3) In the wire according to (1), the component composition is C: 0.70-0.90%, Si: 0.80-1.30%, Mn: 0.60-0 in mass%. .90%, and V: 0 to 0.500%.
 (4)上記(3)に記載の線材は、前記成分組成が、質量%でCr:0.50~1.00%、およびV:0.300~0.500%のうち1種又は2種を含有してもよい。 (4) In the wire according to (3), the component composition is one or two of Cr: 0.50 to 1.00% and V: 0.300 to 0.500% by mass%. It may contain.
 (5)本発明の別の形態に係る線材の製造方法は、上記(3)または(4)に記載の前記成分組成を有する鋼片を950~1040℃の粗圧延温度に加熱して粗圧延を行う工程と、750~900℃の仕上圧延温度で線材仕上圧延を行う工程と、次いで、730~840℃の巻取温度で巻取を行う工程と、その後、15℃/秒以上の冷却速度で常温まで衝風冷却を行う工程と、を備え、前記線材仕上圧延における前記仕上圧延温度と歪み速度とが下記式Aを満たす。
  13.7≦log10{(dε/dt)×exp(63800/(1.98×(T+273.15))}≦16.5 (式A)
 ただし、dε/dtは前記線材仕上圧延の際の前記歪み速度を単位s-1で示し、Tは前記仕上圧延温度を単位℃で示す。
(5) A method for producing a wire according to another aspect of the present invention comprises a method of rough rolling by heating a steel slab having the component composition described in (3) or (4) above to a rough rolling temperature of 950 to 1040 ° C. A step of performing a wire rod finish rolling at a finishing rolling temperature of 750 to 900 ° C., a step of winding at a winding temperature of 730 to 840 ° C., and then a cooling rate of 15 ° C./second or more. And a step of performing blast cooling to room temperature, and the finish rolling temperature and strain rate in the wire finish rolling satisfy the following formula A.
13.7 ≦ log 10 {(dε / dt) × exp (63800 / (1.98 × (T + 273.15))} ≦ 16.5 (Formula A)
Where dε / dt represents the strain rate in the finish rolling of the wire in the unit s −1 , and T represents the finish rolling temperature in the unit of ° C.
 本発明の上記態様によれば、パーライトブロック粒径の小型化、および粗大パーライトブロックの個数密度の制限により、PC式LNGタンクのPC防液堤の緊張材として用いるために好適なPC鋼撚り線用線材であって、-40℃近傍における延性および靱性が従来材よりも良好な線材を提供することが可能となる。 According to the above aspect of the present invention, a PC steel stranded wire suitable for use as a tension member for a PC liquid barrier in a PC-type LNG tank due to a reduction in the particle size of the pearlite block and a limitation on the number density of the coarse pearlite block. It is possible to provide a wire rod that has better ductility and toughness in the vicinity of −40 ° C. than the conventional wire rod.
線材の平均パーライトブロック粒径と線材の絞り値との関係を示すグラフである。It is a graph which shows the relationship between the average pearlite block particle size of a wire, and the aperture value of a wire. 線材の製造工程におけるZ値と線材のパーライトブロック粒径との関係を示すグラフである。It is a graph which shows the relationship between Z value in the manufacturing process of a wire, and the pearlite block particle size of a wire. 低温引張試験片の形状を示す図である。It is a figure which shows the shape of a low-temperature tension test piece. JIS Z 2202に規定された5mmサブサイズシャルピー衝撃試験片の採取位置を示す図である。It is a figure which shows the collection position of the 5-mm subsize Charpy impact test piece prescribed | regulated to JISZ2202. ステルモア法によって製造された発明例のパーライトブロック粒径を示す図である。It is a figure which shows the pearlite block particle size of the example of an invention manufactured by the Stealmore method. 比較例のパーライトブロック粒径を示す図である。It is a figure which shows the pearlite block particle size of a comparative example. 発明例(No6)および比較例(No17)の-40℃における延性を示す図である。It is a figure which shows the ductility in -40 degreeC of invention example (No6) and a comparative example (No17). DLP法によって製造された発明例のパーライトブロック粒径を示す図である。It is a figure which shows the pearlite block particle size of the invention example manufactured by DLP method. 比較例のパーライトブロック粒径を示す図である。It is a figure which shows the pearlite block particle size of a comparative example. パーライトブロック粒径(μm)と吸収エネルギー(シャルピー衝撃値)(J)の関係を示す図である。It is a figure which shows the relationship between a pearlite block particle size (micrometer) and absorbed energy (Charpy impact value) (J). 本発明例の衝撃試験片の破面をSEMで観察した結果を示す写真である。It is a photograph which shows the result of having observed the fracture surface of the impact test piece of the example of this invention by SEM. 比較例の衝撃試験片の破面をSEMで観察した結果を示す写真である。It is a photograph which shows the result of having observed the fracture surface of the impact test piece of a comparative example by SEM. ステルモア法による線材の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the wire by a Stealmore method.
 本実施形態に係る低温延性および低温靱性に優れたPC鋼撚り線用線材(以下「本実施形態に係る線材」ということがある)は、成分組成が、質量%で、C:0.60~1.20%、Si:0.30~1.30%、Mn:0.30~0.90%、P:0.020%以下、S:0.020%以下、N:0.0025~0.0060%、Cr:0~1.00%、およびV:0~0.800%を含有し、更に、Al:0.005~0.100%、Ti:0.003~0.050%、B:0.0005~0.0040%のうち1種又は2種以上を含有し、残部がFe及び不純物からなり、線材軸方向に垂直な断面におけるパーライトブロックの粒径の平均値が23μm以下であり、前記線材軸方向に垂直な前記断面において、40μm以上の前記粒径を有する前記パーライトブロックの個数密度が0~20個/mmである。 The wire for a PC steel stranded wire excellent in low temperature ductility and low temperature toughness according to this embodiment (hereinafter sometimes referred to as “the wire according to this embodiment”) has a component composition of mass%, and C: 0.60 to 1.20%, Si: 0.30 to 1.30%, Mn: 0.30 to 0.90%, P: 0.020% or less, S: 0.020% or less, N: 0.0025 to 0 .0060%, Cr: 0 to 1.00%, and V: 0 to 0.800%, Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, B: Contains one or more of 0.0005 to 0.0040%, the balance is Fe and impurities, and the average value of the particle size of the pearlite block in the cross section perpendicular to the wire axis direction is 23 μm or less. Yes, in the cross section perpendicular to the wire axis direction, the particle size of 40 μm or more The pearlite block has a number density of 0 to 20 pieces / mm 2 .
 まず、本実施形態に係る線材の成分組成の限定理由について説明する。以下、%は質量%を意味する。 First, the reasons for limiting the component composition of the wire according to this embodiment will be described. Hereinafter,% means mass%.
(C:0.60~1.20%)
 Cは、線材中のセメンタイト分率を上げ、これにより線材の強度を上げる作用を有する元素である。パテンティング条件を調整することによってパーライトのラメラ間隔を制御し、且つ加工によって線材の強度を上げることが可能である。しかし、C含有量が0.60%を下回ると、たとえ上述のパテンティング条件の調整を行ったとしても、PC式LNGタンクのPC防液堤を、十分に緊張させ得る強度が得られなくなる。
(C: 0.60 to 1.20%)
C is an element that has the effect of increasing the cementite fraction in the wire and thereby increasing the strength of the wire. By adjusting the patenting conditions, the lamella spacing of the pearlite can be controlled, and the strength of the wire can be increased by processing. However, if the C content is less than 0.60%, even if the above-mentioned patenting conditions are adjusted, it is impossible to obtain a strength that can sufficiently tension the PC liquid bank of the PC type LNG tank.
 線材のC含有量が1.20%を超えると、線材の金属組織中に網目状のセメンタイトが生じる。この網目状のセメンタイトにより、伸線加工中に断線が多発し、線材の生産活動に支障をきたす場合がある。
 本実施形態に係る線材の製造方法として、後述するように、DLP(Direct in-Line Patenting)法およびステルモア法のいずれをも採用することができるが、ステルモア法を用いて線材を製造する場合、C含有量を0.70~0.90%とすることが好ましい。ステルモア法を用いて線材を製造する場合、線材の冷却速度がDLP法による製造時よりも遅くなり、線材の延性および靱性が比較的低くなる。この強度低下を補うために、C含有量の下限値を0.70%とすることが好ましい。また、C含有量が過剰に増大すると、線材が過共析鋼(パーライトとセメンタイトとが共存する組織を有する鋼)となるので、線材を冷却する工程において旧オーステナイト粒径に初析セメンタイトが網目状に生成する。この網目状の初析セメンタイトは、線材の伸線加工性を著しく低下させる。網目状の初析セメンタイトの析出を避けるためには、C含有量の上限値を0.90%とすることが好ましい。C含有量は、さらに好ましくは0.80~0.90%である。
When the C content of the wire exceeds 1.20%, network-like cementite is generated in the metal structure of the wire. Due to this mesh-like cementite, wire breakage frequently occurs during wire drawing, which may hinder wire production activities.
As described later, as a method for manufacturing a wire according to the present embodiment, either a DLP (Direct in-Line Patenting) method or a Stemmore method can be adopted. However, when a wire is manufactured using the Stemmore method, The C content is preferably 0.70 to 0.90%. When manufacturing a wire using a Stealmore method, the cooling rate of a wire becomes slower than the time of manufacture by a DLP method, and the ductility and toughness of a wire become comparatively low. In order to compensate for this decrease in strength, the lower limit value of the C content is preferably set to 0.70%. Further, if the C content is excessively increased, the wire becomes hypereutectoid steel (steel having a structure in which pearlite and cementite coexist), so that in the process of cooling the wire, the proeutectoid cementite is formed in the prior austenite grain size. To form. This network-like pro-eutectoid cementite significantly reduces the wire drawing workability of the wire. In order to avoid precipitation of network-like pro-eutectoid cementite, the upper limit value of the C content is preferably set to 0.90%. The C content is more preferably 0.80 to 0.90%.
(Si:0.30~1.30%)
 Siは、精錬時に脱酸元素として作用する元素である。0.30%以上のSiが含有された場合に、この脱酸効果が十分に発現する。従って、本実施形態に係る線材のSi含有量の下限値は0.30%である。Siは線材の強度を向上させる効果も有するが、0.80%以上のSiが含有された場合に、この強度向上効果が発現する。従って、本実施形態に係る線材のSi含有量の下限値を0.80%としてもよい。また、Siは、フェライトの固溶強化を行うが、熱処理時の恒温変態のノーズを上げる作用があるので、過剰な量のSiは、熱処理のコストを増大させる。従って、製造設備の能力を考慮して、Si含有量の上限を1.30%とする。
 本実施形態に係る線材の製造方法として、DLP法およびステルモア法のいずれを採用してもよいが、ステルモア法を用いて線材を製造する場合、Si含有量を0.80~1.30%とすることが好ましい。ステルモア法を用いて線材を製造する場合、線材の冷却速度がDLP法による製造時よりも遅くなり、線材の延性および靱性が比較的低くなる。この強度低下を補うために、Si含有量の下限値を0.80%とすることが好ましい。Si含有量は、さらに好ましくは0.90~1.25%である。
(Si: 0.30 to 1.30%)
Si is an element that acts as a deoxidizing element during refining. This deoxidation effect is sufficiently exhibited when 0.30% or more of Si is contained. Therefore, the lower limit value of the Si content of the wire according to this embodiment is 0.30%. Si also has the effect of improving the strength of the wire, but this strength improvement effect is manifested when 0.80% or more of Si is contained. Therefore, it is good also considering the lower limit of Si content of the wire concerning this embodiment as 0.80%. Further, Si strengthens the solid solution of ferrite, but has the effect of raising the nose of isothermal transformation during heat treatment, so an excessive amount of Si increases the cost of heat treatment. Therefore, considering the capacity of the production facility, the upper limit of the Si content is set to 1.30%.
As a manufacturing method of the wire according to the present embodiment, either the DLP method or the Stemmore method may be adopted. However, when the wire is manufactured using the Stemmore method, the Si content is 0.80 to 1.30%. It is preferable to do. When manufacturing a wire using a Stealmore method, the cooling rate of a wire becomes slower than the time of manufacture by a DLP method, and the ductility and toughness of a wire become comparatively low. In order to compensate for this decrease in strength, the lower limit value of the Si content is preferably set to 0.80%. The Si content is more preferably 0.90 to 1.25%.
(Mn:0.30~0.90%)
 Mnは、固溶強化元素であり、線材の延性および靭性を向上させる効果と、焼入れ性を向上させる効果とを有する。線材の延性および靱性を確保するために、0.30%以上のMnを含有させる必要がある。また、線材の延性をさらに高めるために、Mn含有量の下限値を0.60%としてもよい。一方、Mn含有量が0.90%を超えると、線材の製造の際に、線材の中心部において変態遅れが生じ、これにより未変態オーステナイト部にミクロマルテンサイトが生成する。この線材中心部のミクロマルテンサイトは、線材の伸線加工時に断線を発生させる。したがって、Mn含有量の上限値を0.90%とする必要がある。
 本実施形態に係る線材の製造方法として、DLP法およびステルモア法のいずれをも採用することができるが、ステルモア法を用いて線材を製造する場合、Mn含有量を0.60~0.90%とすることが好ましい。ステルモア法を用いて線材を製造する場合、線材の冷却速度がDLP法による製造時よりも遅くなり、線材の延性および靱性が比較的低くなる。この強度低下を補うために、Mn含有量の下限値を0.60%とすることが好ましい。Mn含有量は、さらに好ましくは0.70~0.90%である。
(Mn: 0.30-0.90%)
Mn is a solid solution strengthening element and has the effect of improving the ductility and toughness of the wire and the effect of improving the hardenability. In order to ensure the ductility and toughness of the wire, it is necessary to contain 0.30% or more of Mn. In order to further improve the ductility of the wire, the lower limit value of the Mn content may be 0.60%. On the other hand, when the Mn content exceeds 0.90%, a transformation delay occurs in the central portion of the wire during the production of the wire, and micro martensite is generated in the untransformed austenite portion. The micro martensite at the center of the wire causes breakage during wire drawing of the wire. Therefore, the upper limit of the Mn content needs to be 0.90%.
As a method for producing a wire according to the present embodiment, either the DLP method or the Stemmore method can be adopted. However, when producing a wire using the Stemmore method, the Mn content is 0.60 to 0.90%. It is preferable that When manufacturing a wire using a Stealmore method, the cooling rate of a wire becomes slower than the time of manufacture by a DLP method, and the ductility and toughness of a wire become comparatively low. In order to compensate for this decrease in strength, the lower limit value of the Mn content is preferably 0.60%. The Mn content is more preferably 0.70 to 0.90%.
(P:0.020%以下)
(S:0.020%以下)
 Pは、鋼を脆化させる作用を有する。従って、P含有量の上限値を0.020%とする必要がある。なお、線材の低温脆化の防止をさらに確実に行う場合には、P含有量の上限値を0.010%、0.005%、または0.001%としてもよい。
 Sは、線材中のMnと結合してMnSを形成する元素である。Sは、鋼を精錬および凝固させる過程で、鋼の中心部に偏析するので、鋼の中心部にMnSが集積するが、このMnSは鋼の低温延性を低下させる。S含有量が0.020%を超えた場合に、この低温延性の低下が顕著となるので、S含有量は0.020%以下とする。なお、線材の低温脆化の防止をさらに確実に行う場合には、S含有量の上限値を0.010%、0.005%、または0.001%としてもよい。
 本実施形態に係る線材において、PおよびSの含有量は、低い方が好ましい。従って、PおよびSそれぞれの含有量の下限値は0%である。
(P: 0.020% or less)
(S: 0.020% or less)
P has the effect | action which embrittles steel. Therefore, the upper limit of the P content needs to be 0.020%. In addition, when preventing the low-temperature embrittlement of a wire rod more reliably, it is good also considering the upper limit of P content as 0.010%, 0.005%, or 0.001%.
S is an element that combines with Mn in the wire to form MnS. S is segregated at the center of the steel in the process of refining and solidifying the steel, so MnS accumulates in the center of the steel, but this MnS lowers the low temperature ductility of the steel. When the S content exceeds 0.020%, this decrease in low temperature ductility becomes significant, so the S content is set to 0.020% or less. In addition, when performing prevention of the low temperature embrittlement of a wire more reliably, it is good also considering the upper limit of S content as 0.010%, 0.005%, or 0.001%.
In the wire according to the present embodiment, the P and S contents are preferably as low as possible. Therefore, the lower limit of the contents of P and S is 0%.
(N:0.0025~0.0060%)
 Nは、Al、Ti、およびBと結びついて窒化物を形成する元素である。これら窒化物はオーステナイトの析出核となるので、これら窒化物の個数を制御することにより、鋼の加熱時にオーステナイト粒径を制御することができる。窒化物の量が増加すると、結晶粒が微細化する。N含有量が0.0025%未満であると、窒化物を十分に形成せず、粒径の微細化効果が十分に得られない。一方、N含有量が0.0060%を超えると、Al、Ti、およびBと結合しないフリーNが過剰となる。この過剰なフリーNによって、時効硬化が起きて、線材の延性および靱性が低下する。したがって、N含有量は、0.0025~0.0060%とする必要がある。好ましくは、N含有量は0.0025~0.0040%である。
(N: 0.0025 to 0.0060%)
N is an element that combines with Al, Ti, and B to form a nitride. Since these nitrides become austenite precipitation nuclei, the austenite grain size can be controlled when the steel is heated by controlling the number of these nitrides. As the amount of nitride increases, the crystal grains become finer. If the N content is less than 0.0025%, nitrides are not sufficiently formed, and the effect of refining the particle size cannot be sufficiently obtained. On the other hand, if the N content exceeds 0.0060%, free N that does not bind to Al, Ti, and B becomes excessive. Due to this excessive free N, age hardening occurs, and the ductility and toughness of the wire are lowered. Therefore, the N content needs to be 0.0025 to 0.0060%. Preferably, the N content is 0.0025 to 0.0040%.
 本実施形態に係る線材は、上記元素の他に、Al:0.005~0.100%、Ti:0.003~0.050%、B:0.0005~0.0040%のうち1種又は2種以上をさらに含有する。 In addition to the above elements, the wire according to this embodiment is one of Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, and B: 0.0005 to 0.0040%. Or 2 or more types are further contained.
(Al:0.005~0.100%)
 Alは、鋼の精錬時に脱酸材として作用する。更にAlは、鋼中のNと化合物を形成し、Nを固定する作用を有する。Nを固定することで、鋼の時効硬化を防止することができる。さらに、Bを同時に含有する場合には、Nを固定することで、固溶B量を増加させることができる。
(Al: 0.005 to 0.100%)
Al acts as a deoxidizer during steel refining. Further, Al has a function of forming a compound with N in steel and fixing N. By fixing N, age hardening of steel can be prevented. Furthermore, when it contains B simultaneously, the amount of solid solution B can be increased by fixing N.
 しかし、Al含有量が0.005%未満であると、AlによるN固定の効果が十分に得られない。一方、Al含有量が0.100%を超えると、鋼中の酸素と結合して生成するAlがクラスターを形成する。このクラスターは、伸線加工時に割れの起点となる。したがって、Al含有量を、0.005~0.100%としてもよい。好ましくは、Al含有量は0.020~0.050%である。 However, if the Al content is less than 0.005%, the effect of fixing N by Al cannot be sufficiently obtained. On the other hand, when the Al content exceeds 0.100%, Al 2 O 3 produced by combining with oxygen in the steel forms clusters. This cluster becomes a starting point of cracking during wire drawing. Therefore, the Al content may be 0.005 to 0.100%. Preferably, the Al content is 0.020 to 0.050%.
(Ti:0.003~0.050%)
 Tiは、Alと同様に、鋼の脱酸材として作用する。更に、Tiは鋼中のNと化合物を形成し、Nを固定する作用を有する。Nを固定することで、鋼の時効硬化を防止することができる。さらに、Bを同時に含有する場合には、Nを固定することで、固溶B量を増加させることができる。
(Ti: 0.003 to 0.050%)
Ti, like Al, acts as a steel deoxidizer. Further, Ti forms a compound with N in the steel and has an action of fixing N. By fixing N, age hardening of steel can be prevented. Furthermore, when it contains B simultaneously, the amount of solid solution B can be increased by fixing N.
 しかし、Ti含有量が0.003%未満であると、TiによるN固定の効果が十分に得られない。一方、Ti含有量が0.050%を超えると、鋼中の炭素と結合して生成するTiCが増加する。このTiCは、伸線加工時に割れの起点となる。したがって、Ti含有量を、0.003~0.050%としてもよい。好ましくは、Ti含有量は0.020~0.040%である。
 なお、上述のようにAlとTiは同様の効果を有する。従って、Tiの添加によってAlの添加量を低減することができ、この場合も同様の効果が得られる。
However, if the Ti content is less than 0.003%, the effect of fixing N by Ti cannot be sufficiently obtained. On the other hand, when the Ti content exceeds 0.050%, TiC generated by combining with carbon in the steel increases. This TiC becomes a starting point of cracking during wire drawing. Therefore, the Ti content may be 0.003 to 0.050%. Preferably, the Ti content is 0.020 to 0.040%.
As described above, Al and Ti have the same effect. Therefore, the amount of Al added can be reduced by adding Ti, and the same effect can be obtained in this case.
(B:0.0005~0.0040%)
 Bは、オーステナイト中に固溶Bとして存在した場合、線材の焼入れ性を向上させる作用を有する。B含有量が0.0005%未満であると、焼入れ性向上の効果が十分に得られない。一方、B含有量が0.0040%を超えると、BがFeおよびCと化合物を形成し、Fe23(C、B)などの析出物を形成する。この析出物は、伸線加工時の割れの起点となる。したがって、B含有量を、0.0005~0.0040%としてもよい。好ましくは、B含有量は0.0009~0.0030%である。
(B: 0.0005-0.0040%)
B, when present as a solid solution B in austenite, has the effect of improving the hardenability of the wire. If the B content is less than 0.0005%, the effect of improving hardenability cannot be sufficiently obtained. On the other hand, if the B content exceeds 0.0040%, B forms a compound with Fe and C, and precipitates such as Fe 23 (C, B) 6 are formed. This precipitate becomes a starting point of cracking during wire drawing. Therefore, the B content may be 0.0005 to 0.0040%. Preferably, the B content is 0.0009 to 0.0030%.
 また、本実施形態に係る線材は、上記元素の他に、更に、質量%で、Cr:0~1.00%、V:0~0.800%を含有してもよい。 In addition to the above elements, the wire according to the present embodiment may further contain Cr: 0 to 1.00%, V: 0 to 0.800% in mass%.
(Cr:0~1.00%)
 本実施形態に係る線材において、Crの含有は必須ではない。従って、Cr含有量の下限値は0%である。しかしながら、Crは、パーライトのラメラ間隔を小さくして、線材の強度を上げる作用を有する。この作用によって、伸線加工時の線材の強度上昇が大きくなる。この効果は、Cr含有量が0.10%以上である場合に得られるので、Cr含有量を0.10%以上とすることが好ましい。また、強度をさらに向上させる場合、0.50%以上のCrを含有させることが好ましい。Cr含有量が1.00%を超えると、パーライト変態の終了時間が長くなり、線材の冷却の過程で過冷組織が生成し、線材の延性が劣化する。従って、Cr含有量の上限を1.00%とすることが好ましい。
 本実施形態に係る線材の製造方法として、DLP法およびステルモア法のいずれをも採用することができるが、ステルモア法を用いて製造する場合、Cr含有量を0.50~1.00%とすることがさらに好ましい。ステルモア法を用いて製造する場合、線材の冷却速度がDLP法による製造時よりも遅くなり、線材の延性および靱性が比較的低くなる。この強度低下を補うために、Cr含有量の下限値を0.5%とすることがさらに好ましい。Cr含有量は、より一層好ましくは0.50~0.90%である。
(Cr: 0 to 1.00%)
In the wire according to this embodiment, the inclusion of Cr is not essential. Therefore, the lower limit of the Cr content is 0%. However, Cr has the effect of increasing the strength of the wire by reducing the lamella spacing of the pearlite. This action increases the strength of the wire during wire drawing. Since this effect is obtained when the Cr content is 0.10% or more, the Cr content is preferably set to 0.10% or more. Moreover, when improving an intensity | strength further, it is preferable to contain 0.50% or more of Cr. When the Cr content exceeds 1.00%, the end time of the pearlite transformation becomes long, a supercooled structure is generated in the process of cooling the wire, and the ductility of the wire is deteriorated. Therefore, the upper limit of the Cr content is preferably 1.00%.
As a method for manufacturing the wire according to the present embodiment, either the DLP method or the Stemmore method can be adopted. However, in the case of manufacturing using the Stemmore method, the Cr content is set to 0.50 to 1.00%. More preferably. In the case of manufacturing using the Stealmore method, the cooling rate of the wire becomes slower than in the case of manufacturing by the DLP method, and the ductility and toughness of the wire become relatively low. In order to compensate for this decrease in strength, the lower limit of the Cr content is more preferably 0.5%. The Cr content is more preferably 0.50 to 0.90%.
(V:0~0.800%)
 本実施形態に係る線材において、Vの含有は必須ではない。従って、V含有量の下限値は0%である。しかしながら、Vは、Cと結合して、フェライト中に炭化物として析出する元素である。この炭化物の析出によって、フェライトが硬化し、線材を高強度化することができる。この作用は、Vを0.005%以上含有した場合に得られる。しかし、V含有量が0.800%を超えると、粗大な炭化物が析出する。この粗大な炭化物は、線材の加工の際に割れの起点になる。したがって、V含有量は、0.005%以上0.800%以下とすることが好ましい。
 本実施形態に係る線材の製造方法として、DLP法およびステルモア法のいずれをも採用することができるが、ステルモア法を用いて製造する場合、V含有量を0.300~0.500%とすることがさらに好ましい。ステルモア法を用いて製造する場合、線材の冷却速度がDLP法による製造時よりも遅くなり、線材の延性および靱性が比較的低くなる。この強度低下を補うために、V含有量の下限値を0.300%とすることがさらに好ましい。また、加工歪を受けた場合にVC析出物の地鉄界面部にマイクロクラックボイドが形成されるため、V含有量の上限値を0.500%とすることがさらに好ましい。V含有量は、より一層好ましくは0.300~0.400%である。
(V: 0 to 0.800%)
In the wire according to this embodiment, the inclusion of V is not essential. Therefore, the lower limit of the V content is 0%. However, V is an element that combines with C and precipitates as a carbide in ferrite. By precipitation of this carbide, the ferrite is hardened, and the strength of the wire can be increased. This effect is obtained when V is contained in an amount of 0.005% or more. However, when the V content exceeds 0.800%, coarse carbides precipitate. This coarse carbide becomes a starting point of cracking when the wire is processed. Therefore, the V content is preferably 0.005% or more and 0.800% or less.
As a method for producing the wire according to the present embodiment, either the DLP method or the Stemmore method can be adopted. However, when the wire is produced using the Stemmore method, the V content is 0.300 to 0.500%. More preferably. In the case of manufacturing using the Stealmore method, the cooling rate of the wire becomes slower than in the case of manufacturing by the DLP method, and the ductility and toughness of the wire become relatively low. In order to compensate for this decrease in strength, the lower limit value of the V content is more preferably 0.300%. Moreover, since a microcrack void is formed in the base metal interface part of VC deposit when it receives a processing strain, it is more preferable to make the upper limit of V content into 0.500%. The V content is more preferably 0.300 to 0.400%.
(残部:Fe及び不純物)
 本実施形態に係る線材の成分組成の残部は、Feおよび不純物からなる。不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る線材の特性に悪影響を与えない範囲で許容されるものを意味する。
(Balance: Fe and impurities)
The balance of the component composition of the wire according to this embodiment is made of Fe and impurities. Impurities are raw materials such as ore or scrap, or components mixed in due to various factors in the manufacturing process when manufacturing steel materials industrially, and have an adverse effect on the characteristics of the wire according to this embodiment. It means what is allowed in the range.
(線材軸方向に垂直な断面におけるパーライトブロック粒径の平均値:23μm以下)
 本実施形態では、パーライトブロック粒界は、方位差が9度以上である隣り合う2つのパーライトの境界であると定義され、パーライトブロックは、パーライトブロック粒界によって囲まれた領域であると定義され、PBS(パーライトブロック粒径)は、パーライトブロックの円相当径であると定義される。本実施形態に係る線材においては、上述のように成分組成が規定されることに加えて、線材軸方向に垂直な断面における平均PBS(パーライトブロック粒径)が23μm以下とされる。
(Average value of pearlite block particle size in cross section perpendicular to wire axis direction: 23 μm or less)
In this embodiment, the pearlite block grain boundary is defined as a boundary between two adjacent pearlites having an orientation difference of 9 degrees or more, and the pearlite block is defined as a region surrounded by the pearlite block grain boundary. , PBS (perlite block particle size) is defined as the equivalent circle diameter of a pearlite block. In the wire according to this embodiment, in addition to defining the component composition as described above, the average PBS (pearlite block particle size) in a cross section perpendicular to the wire axis direction is set to 23 μm or less.
 平均PBS(パーライトブロック粒径)が23μmを超える場合、線材の絞り値が低下する。本実施形態に係る線材は、30%以上の絞り値を有する必要がある。過去の製造実績に鑑みて、線材の伸線加工において伸線中の断線などを防止するためには、30%以上の絞り値が必要であることが判明している。本発明者らが検討した結果、平均パーライトブロック粒径と絞り値と間には、図1のグラフによって示される関係があることがわかった。図1から、平均PBS(パーライトブロック粒径)が23μm以下である場合に、30%以上の絞り値が得られることがわかる。さらに、平均PBS(パーライトブロック粒径)が23μmを超える場合、亀裂先端の分岐頻度が低下する。亀裂先端の分岐は、亀裂伝播を抑制する効果を有するので、亀裂先端の分岐頻度が低下することにより破面単位が大きくなり、低温延性および低温靱性が低下する。それ故、平均PBS(パーライトブロック粒径)を23μm以下とする。好ましくは、平均パーライトブロック粒径は18μm以下である。 When the average PBS (pearlite block particle size) exceeds 23 μm, the drawing value of the wire decreases. The wire according to this embodiment needs to have an aperture value of 30% or more. In view of past production results, it has been found that a drawing value of 30% or more is necessary in order to prevent disconnection during wire drawing in wire drawing. As a result of studies by the present inventors, it has been found that there is a relationship shown by the graph in FIG. 1 between the average pearlite block particle size and the aperture value. FIG. 1 shows that when the average PBS (pearlite block particle size) is 23 μm or less, an aperture value of 30% or more can be obtained. Furthermore, when the average PBS (pearlite block particle size) exceeds 23 μm, the branching frequency of the crack tip decreases. Since the branching at the crack tip has an effect of suppressing crack propagation, the frequency of branching at the crack tip decreases, so that the fracture surface unit becomes large, and the low temperature ductility and low temperature toughness are lowered. Therefore, the average PBS (perlite block particle size) is 23 μm or less. Preferably, the average pearlite block particle size is 18 μm or less.
 EBSD装置を用いれば、線材の軸方向に垂直な断面の任意の箇所における、任意の大きさの視野角内の、パーライトブロックの円相当径の平均値を得ることができる。本実施形態における線材の軸方向に垂直な断面における平均PBSは、以下の手順によって求められる。まず、線材の軸方向に垂直な断面の(1)表層部(線材表面から30μmの深さの領域)、(2)1/4D部(線材表面から、線材の直径Dの1/4の深さの領域)、(3)中心部、(4)3/4D部(線材表面から、線材の直径Dの3/4の深さの領域。即ち、線材中心部に関して(2)の反対側の領域)、および(5)反対側の表層部(即ち、線材中心部に関して(1)の反対側の領域)からなる5つの箇所それぞれにおいて、300μm×180μmの視野角内のパーライトブロックの円相当径の平均値(一次平均値)を、EBSD装置を用いて測定する。次に、各一次平均値の平均値(二次平均値)を算出する。この二次平均値が、本実施形態における線材の軸方向に垂直な断面における平均PBSである。 Using an EBSD device, it is possible to obtain an average value of the equivalent circle diameters of the pearlite block within an arbitrary viewing angle at an arbitrary position in a cross section perpendicular to the axial direction of the wire. The average PBS in the cross section perpendicular to the axial direction of the wire in the present embodiment is obtained by the following procedure. First, (1) surface layer portion (region having a depth of 30 μm from the surface of the wire), (2) 1 / 4D portion (depth from the surface of the wire to ¼ of the diameter D of the wire) in the cross section perpendicular to the axial direction of the wire Area), (3) center part, (4) 3 / 4D part (area of 3/4 depth of wire diameter D from the surface of the wire. That is, on the opposite side of (2) with respect to the wire center part) Area), and (5) the equivalent circle diameter of the pearlite block within a viewing angle of 300 μm × 180 μm at each of the five locations consisting of the opposite surface layer portion (that is, the region opposite to (1) with respect to the central portion of the wire rod) The average value (primary average value) is measured using an EBSD device. Next, an average value (secondary average value) of each primary average value is calculated. This secondary average value is the average PBS in a cross section perpendicular to the axial direction of the wire in the present embodiment.
(線材軸方向に垂直な断面において、40μm以上の粒径を有するパーライトブロックの個数密度が0~20個/mm
 本実施形態に係る線材においては、上述のように成分組成およびパーライトブロック粒径の平均値が規定されることに加えて、線材軸方向に垂直な断面において、パーライトブロック粒径が40μm以上であるパーライトブロックの個数密度を0~20個/mmとする。
(The number density of pearlite blocks having a particle diameter of 40 μm or more in the cross section perpendicular to the wire axis direction is 0 to 20 / mm 2 )
In the wire according to the present embodiment, in addition to defining the component composition and the average value of the pearlite block particle size as described above, the pearlite block particle size is 40 μm or more in the cross section perpendicular to the wire axis direction. The number density of pearlite blocks is set to 0 to 20 pieces / mm 2 .
 40μm以上の粒径を有するパーライトブロックは、破壊の起点となるので、たとえその個数が少数であったとしても、線材の延性および靱性を低下させる。本実施形態に係る線材においては、上述のようにパーライトブロック粒径の平均値を制御することに加えて、粗大パーライトブロックの生成を抑制することも必要となる。このような理由により、粗大パーライトブロックの個数密度を制限する。以下、「40μm以上の粒径を有するパーライトブロック」を「粗大パーライトブロック」、または「粗大PB」と称する場合がある。
 線材軸方向に垂直な前記断面において、粗大パーライトブロックの個数密度が20個/mm超となった場合、線材の延性および靱性が要求水準を満たさなくなる。従って、線材軸方向に垂直な断面における粗大パーライトブロックの個数密度を20個/mm以下に制限する必要がある。好ましくは、線材軸方向に垂直な断面における粗大パーライトブロックの個数密度の上限値は18個/mmである。粗大パーライトブロックは、少ない方が好ましいので、線材軸方向に垂直な断面における粗大パーライトブロックの個数密度の下限値は0個/mmである。
Since the pearlite block having a particle size of 40 μm or more serves as a starting point of fracture, even if the number is small, the ductility and toughness of the wire are lowered. In the wire according to the present embodiment, in addition to controlling the average value of the pearlite block particle size as described above, it is also necessary to suppress the generation of coarse pearlite blocks. For this reason, the number density of coarse pearlite blocks is limited. Hereinafter, the “pearlite block having a particle size of 40 μm or more” may be referred to as “coarse pearlite block” or “coarse PB”.
In the cross section perpendicular to the wire axis direction, when the number density of coarse pearlite blocks exceeds 20 / mm 2 , the ductility and toughness of the wire do not satisfy the required level. Therefore, it is necessary to limit the number density of coarse pearlite blocks in a cross section perpendicular to the wire axis direction to 20 pieces / mm 2 or less. Preferably, the upper limit of the number density of coarse pearlite blocks in a cross section perpendicular to the axial direction of the wire is 18 / mm 2 . Since the number of coarse pearlite blocks is preferably small, the lower limit of the number density of coarse pearlite blocks in the cross section perpendicular to the wire axis direction is 0 / mm 2 .
 EBSD装置を用いれば、線材の軸方向に垂直な断面の任意の箇所における、任意の大きさの視野角内の、40μm以上の粒径を有するパーライトブロックの個数密度を得ることができる。本実施形態における、線材軸方向に垂直な断面においてパーライトブロック粒径が40μm以上であるパーライトブロックの個数密度は、以下の手順によって求められる。まず、線材の軸方向に垂直な断面の(1)表層部(線材表面から30μmの深さの領域)、(2)1/4D部(線材表面から、線材の直径Dの1/4の深さの領域)、(3)中心部、(4)3/4D部(線材表面から、線材の直径Dの3/4の深さの領域、即ち、線材中心部に関して(2)の反対側の領域)、および(5)反対側の表層部(即ち、線材中心部に関して(1)の反対側の領域)からなる5つの箇所それぞれにおいて、300μm×180μmの視野角内の40μm以上の粒径を有するパーライトブロックの個数密度を、EBSD装置を用いて測定する。次に、各箇所の個数密度の平均値を算出する。この平均値が、本実施形態における線材の軸方向に垂直な断面において、40μm以上の粒径を有するパーライトブロックの個数密度である。 Using an EBSD device, the number density of pearlite blocks having a particle size of 40 μm or more within an arbitrary viewing angle can be obtained at an arbitrary position in a cross section perpendicular to the axial direction of the wire. In the present embodiment, the number density of pearlite blocks having a pearlite block particle size of 40 μm or more in a cross section perpendicular to the wire axis direction is obtained by the following procedure. First, (1) surface layer portion (region having a depth of 30 μm from the surface of the wire), (2) 1 / 4D portion (depth from the surface of the wire to 1/4 of the diameter D of the wire) in a cross section perpendicular to the axial direction of the wire Area), (3) center portion, (4) 3 / 4D portion (from the surface of the wire to a region of a depth of 3/4 of the diameter D of the wire, ie, on the opposite side of (2) with respect to the wire center portion) Region), and (5) a particle size of 40 μm or more within a viewing angle of 300 μm × 180 μm at each of five locations consisting of the surface layer portion on the opposite side (that is, the region on the opposite side of (1) with respect to the wire rod central portion). The number density of the pearlite block is measured using an EBSD device. Next, the average value of the number density at each location is calculated. This average value is the number density of pearlite blocks having a particle diameter of 40 μm or more in the cross section perpendicular to the axial direction of the wire in the present embodiment.
 次に、本実施形態に係る線材の製造方法について説明する。 Next, a method for manufacturing the wire according to this embodiment will be described.
 本実施形態に係る線材の製造方法としては、DLP(Direct in-Line Patenting)法およびステルモア法がある。 As a method for manufacturing the wire according to the present embodiment, there is a DLP (Direct in-Line Patenting) method and a Stealmore method.
 ステルモア法によって本実施形態に係る線材を製造する場合、図10に示されるように、(1)質量%で、C:0.70~0.90%、Si:0.80~1.30%、Mn:0.60~0.90%、P:0.020%以下、S:0.020%以下、N:0.0025~0.0060%、Cr:0~1.00%、およびV:0~0.500%を含有し、更に、Al:0.005~0.100%、Ti:0.003~0.050%、B:0.0005~0.0040%のうち1種又は2種以上を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を、950~1040℃の粗圧延温度に加熱してから粗圧延を行い、(2)750~900℃の仕上圧延温度で線材仕上圧延を行い、(3)730~840℃の巻取温度で巻取を行い、(4)15℃/秒以上の冷却速度で常温まで衝風冷却を行う。この際に、仕上圧延温度と、歪み速度とが、下記式1の関係を満たす必要がある。
  13.7≦log10{(dε/dt)×exp(63800/(1.98×(T+273.15)))}≦16.5 (式1)
 ただし、dε/dtは線材仕上圧延の際の歪み速度を単位s-1で示し、Tは仕上圧延温度を単位℃で示す。
 なお、ステルモア法による製造を行う場合、鋼片が、質量%で、Cr:0.50~1.00%、およびV:0.300~0.500%のうち1種または2種をさらに含有してもよい。
When the wire rod according to the present embodiment is manufactured by the Stemmore method, as shown in FIG. 10, (1) mass%, C: 0.70 to 0.90%, Si: 0.80 to 1.30% , Mn: 0.60 to 0.90%, P: 0.020% or less, S: 0.020% or less, N: 0.0025 to 0.0060%, Cr: 0 to 1.00%, and V : 0 to 0.500%, Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, B: one of 0.0005 to 0.0040% or A steel slab containing two or more components, the balance of which is composed of Fe and impurities, is heated to a rough rolling temperature of 950 to 1040 ° C. and then subjected to rough rolling, and (2) finish rolling at 750 to 900 ° C. (3) Winding is performed at a winding temperature of 730 to 840 ° C., and (4) Performing blast cooling to room temperature at 15 ° C. / sec or more cooling rate. At this time, the finish rolling temperature and the strain rate must satisfy the relationship of the following formula 1.
13.7 ≦ log 10 {(dε / dt) × exp (63800 / (1.98 × (T + 273.15)))} ≦ 16.5 (Formula 1)
Here, dε / dt represents the strain rate in the wire finish rolling in the unit s −1 , and T represents the finish rolling temperature in the unit ° C.
In addition, when manufacturing by the Stealmore method, the steel slab further contains one or two of Cr: 0.50 to 1.00% and V: 0.300 to 0.500% by mass%. May be.
(粗圧延に供する鋼片の成分組成:上述の規定範囲内)
 ステルモア法によって本実施形態に係る線材を製造する場合、粗圧延に供する鋼片の成分組成は、上述の規定範囲内とする必要がある。この規定範囲は、本実施形態に係る線材の成分組成として上述された規定範囲よりも狭い。ステルモア法は、巻取後に衝風冷却を行う製造方法であり、衝風冷却による冷却速度は、後述するDLP法における溶融塩による直接熱処理の冷却速度よりも遅い。冷却速度が遅い場合、最終的に得られる線材の延性および靱性が比較的低くなる。従って、ステルモア法によって本実施形態に係る線材を製造する場合は、DLP法における溶融塩による直接熱処理を行う場合よりも、延性および靱性の向上のための合金元素であるC、Mn、およびSiを比較的多く含有させる必要がある。また、ステルモア法によって本実施形態に係る線材を製造する際に、CrおよびVを含有させることにより線材の特性を向上させる場合には、CrおよびVも、DLP法における溶融塩による直接熱処理を行う場合よりも比較的多く含有させることが好ましい。
(Component composition of steel slabs for rough rolling: within the above specified range)
When manufacturing the wire which concerns on this embodiment by the Stealmore method, the component composition of the steel slab used for rough rolling needs to be in the above-mentioned specified range. This specified range is narrower than the specified range described above as the component composition of the wire according to the present embodiment. The Stemmore method is a manufacturing method that performs blast cooling after winding, and the cooling rate by blast cooling is slower than the cooling rate of direct heat treatment with molten salt in the DLP method described later. When the cooling rate is low, the ductility and toughness of the finally obtained wire are relatively low. Therefore, when the wire according to the present embodiment is manufactured by the Stemmore method, C, Mn, and Si, which are alloy elements for improving ductility and toughness, are compared to the case of performing the direct heat treatment with the molten salt in the DLP method. It is necessary to contain a relatively large amount. In addition, when manufacturing the wire according to this embodiment by the Stealmore method, when Cr and V are included to improve the properties of the wire, Cr and V are also subjected to direct heat treatment with molten salt in the DLP method. It is preferable to contain relatively more than the case.
(粗圧延に供する前の鋼片の加熱温度:950~1040℃)
 ステルモア法による、本実施形態に係る線材の製造方法では、粗圧延に供する前の鋼片の加熱温度(粗圧延温度)を950~1040℃とする。粗圧延前の鋼片の加熱温度が950℃未満である場合、線材圧延時のロール反力が急激に増加して、ロール割損などの設備トラブルが発生する場合がある。従って、粗圧延前の鋼片の加熱温度を950℃以上とする。一方、粗圧延前の鋼片の加熱温度が1040℃を超えると、鋼片中に析出している窒化アルミニウム(AlN)の溶体化が過剰に進行する。AlNは上述のようにオーステナイトの析出核となり、オーステナイトの結晶粒径に微細化に寄与する。製造段階の線材のオーステナイトの粒径を微細化することにより、最終的に得られる線材のパーライトの粒径を微細化することができる。しかし、AlNの溶体化が過剰に進行すると、オーステナイト結晶粒径の粗大化が進む。この場合、後に線材を製造した段階で、線材のPBSが粗大化する。この場合、線材軸方向に垂直な断面においてパーライトブロックの粒径の平均値が23μm超となり、および/または、40μm以上の前記粒径を有するパーライトブロックの個数密度が20個/mm超となる。このような現象を回避するために、粗圧延前の鋼片の加熱温度を1040℃以下とする。
(Heating temperature of steel slab before being subjected to rough rolling: 950 to 1040 ° C)
In the wire manufacturing method according to the present embodiment by the Stealmore method, the heating temperature (rough rolling temperature) of the steel slab before being subjected to rough rolling is set to 950 to 1040 ° C. When the heating temperature of the steel slab before rough rolling is less than 950 ° C., the roll reaction force at the time of wire rod rolling increases rapidly, and equipment troubles such as roll breakage may occur. Therefore, the heating temperature of the steel slab before rough rolling is set to 950 ° C. or higher. On the other hand, when the heating temperature of the steel slab before rough rolling exceeds 1040 ° C., solutionization of aluminum nitride (AlN) precipitated in the steel slab proceeds excessively. As described above, AlN serves as austenite precipitation nuclei and contributes to refinement of the austenite crystal grain size. By refining the particle size of the austenite of the wire rod in the production stage, the particle size of the pearlite of the finally obtained wire rod can be reduced. However, when the solution of AlN proceeds excessively, the austenite crystal grain size increases. In this case, the PBS of the wire becomes coarse when the wire is manufactured later. In this case, in the cross section perpendicular to the wire axis direction, the average value of the particle size of the pearlite block is more than 23 μm, and / or the number density of the pearlite block having the particle size of 40 μm or more is more than 20 / mm 2. . In order to avoid such a phenomenon, the heating temperature of the steel slab before rough rolling is set to 1040 ° C. or less.
(線材仕上圧延の温度:750~900℃)
 ステルモア法による、本実施形態に係る線材の製造方法では、線材仕上圧延を、750~900℃の温度域で行う。線材仕上圧延の温度(仕上圧延温度)が750℃未満である場合、圧延時のロール反力の増加によって、ロール割損などの設備トラブルが発生する場合があるので、線材仕上圧延の温度を750℃以上とする。一方、線材仕上圧延の温度が900℃を超えると、オーステナイト結晶粒径が粗大化する。この場合、線材軸方向に垂直な断面においてパーライトブロックの粒径の平均値が23μm超となり、および/または、40μm以上の前記粒径を有するパーライトブロックの個数密度が20個/mm超となる。パーライトブロックの粗大化により、線材の延性が劣化する。このような現象を回避するために、線材仕上圧延の温度を900℃以下とする。
(Temperature of wire finish rolling: 750-900 ° C)
In the wire manufacturing method according to the present embodiment by the Stealmore method, the wire finish rolling is performed in a temperature range of 750 to 900 ° C. When the temperature of the wire finish rolling (finish rolling temperature) is less than 750 ° C., an increase in the roll reaction force during rolling may cause equipment trouble such as roll breakage. ℃ or more. On the other hand, if the temperature of the wire finish rolling exceeds 900 ° C., the austenite crystal grain size becomes coarse. In this case, in the cross section perpendicular to the wire axis direction, the average value of the particle size of the pearlite block is more than 23 μm, and / or the number density of the pearlite block having the particle size of 40 μm or more is more than 20 / mm 2. . The ductility of the wire deteriorates due to the coarsening of the pearlite block. In order to avoid such a phenomenon, the wire finishing rolling temperature is set to 900 ° C. or less.
(線材仕上圧延の際の仕上圧延温度と歪み速度との関係:13.7≦log10Z≦16.5)
 ステルモア法による本実施形態に係る線材の製造方法では、さらに、線材仕上圧延の際の仕上圧延温度と歪み速度との間の関係を規定する必要がある。具体的には、線材仕上圧延の際の線材の歪み速度dε/dt、線材の塑性変形の活性化エネルギーQ、および線材仕上圧延の際の仕上圧延温度Tを、以下の式2によって示されるZener-Hollomonの式に代入して得られるZ値(Zener-Hollomon parameter)の常用対数(log10Z)が13.7~16.5である必要がある。
  Z=(dε/dt)×exp(Q/RT) (式2)
 「dε/dt」は、歪み速度を単位s-1で示すものである。「R」は、気体定数であり、その値は1.98cal/mol・degである。「T」は、仕上圧延温度を単位Kで示すものである。仕上圧延温度の単位を℃とする場合、式2における「T」を「(T+273.15)」とする必要がある。「Q」は、線材の塑性変形の活性化エネルギーを示す。上述された化学組成を有する本実施形態に係る線材の塑性変形の活性化エネルギーは、63800cal/molであるとみなされる。
 本実施形態に係る製造方法においては、線材仕上圧延の際の線材の歪み速度dε/dtを以下の式によって求めることができる。
  dε/dt=ε×2×π×(N/60)×L (式3)
  ε=ln(h2/h1) (式4)
  L=(r/Δh)1/2 (式5)
  Δh=h1-h2 (式6)
 「ε」は、線材仕上圧延の際の歪み量であり、無次元数である。「h1」は、線材仕上圧延前の線材の径を単位mmで示すものであり、「h2」は、線材仕上圧延後の線材の径を単位mmで示すものである。「N」は線材仕上圧延を行うロールの回転数を単位rpmで示すものである。「L」は線材仕上圧延の際の投影接触長さを単位mmで示すものである。投影接触長さとは、圧延の際にロールと被圧延材(線材)とが接触している領域の、圧延方向に沿った長さである。rは線材仕上圧延の際のロール半径を単位mmで示すものである。Δhは線材仕上圧延の際の圧下量を単位mmで示すものである。式3~式6からわかるように、歪み速度とは、圧延速度および圧下率の両方に関係する圧延条件である。
 本発明者らが検討した結果、線材仕上圧延の際のZ値と、最終的に得られる線材の平均パーライトブロック粒径との間には、図2に示される相関関係があることがわかった。図2からわかるように、線材軸方向に垂直な断面における平均パーライトブロック粒径を23μm以下にするためには、log10Zを13.7以上にする必要がある。また、40μm以上の粒径を有する粗大なパーライトブロックの個数密度を0~20個/mmに抑制するためにも、同様にlog10Zを13.7以上にする必要がある。一方、log10Zを16.5超にすることは、設備能力を考慮すると困難である。Zener-Hollomonの式を見ればわかるように、Z値を大きくするためには、圧延温度を下げることと歪み速度を大きくすることとが必要とされるからである。従って、ステルモア法を用いた本実施形態に係る線材の製造方法では、log10Zの上限値を16.5とした。log10Zは、好ましくは14.0~16.0である。log10Zが上述の範囲を下回った場合、線材軸方向に垂直な断面においてパーライトブロックの粒径の平均値が23μm超となり、および/または、40μm以上の前記粒径を有するパーライトブロックの個数密度が20個/mm超となる。
(Relationship between finish rolling temperature and strain rate in wire finish rolling: 13.7 ≦ log 10 Z ≦ 16.5)
In the manufacturing method of the wire rod according to the present embodiment by the Stealmore method, it is further necessary to define the relationship between the finish rolling temperature and the strain rate in the wire finish rolling. Specifically, the strain rate dε / dt of the wire during the wire finish rolling, the activation energy Q of the plastic deformation of the wire, and the finish rolling temperature T during the wire finish rolling are expressed by the following equation 2 -The common logarithm (log 10 Z) of the Z value (Zener-Holomon parameter) obtained by substituting into the Hollomon equation needs to be 13.7 to 16.5.
Z = (dε / dt) × exp (Q / RT) (Formula 2)
“Dε / dt” indicates the strain rate in the unit s −1 . “R” is a gas constant, and its value is 1.98 cal / mol · deg. “T” indicates the finish rolling temperature in K. When the unit of the finish rolling temperature is ° C., “T” in Equation 2 needs to be “(T + 273.15)”. “Q” indicates the activation energy of plastic deformation of the wire. The activation energy of plastic deformation of the wire according to the present embodiment having the chemical composition described above is considered to be 63800 cal / mol.
In the manufacturing method according to this embodiment, the strain rate dε / dt of the wire during the finish rolling of the wire can be obtained by the following equation.
dε / dt = ε × 2 × π × (N / 60) × L d (Formula 3)
ε = ln (h2 / h1) (Formula 4)
L d = (r / Δh) 1/2 (Formula 5)
Δh = h1-h2 (Formula 6)
“Ε” is a strain amount in the finish rolling of the wire rod, and is a dimensionless number. “H1” indicates the diameter of the wire before the wire finish rolling in unit mm, and “h2” indicates the diameter of the wire after the wire finish rolling in unit mm. “N” indicates the number of rotations of the roll for performing the wire finish rolling in the unit of rpm. “L d ” indicates the projected contact length in the unit mm in the wire finishing rolling. The projected contact length is the length along the rolling direction of the region where the roll and the material to be rolled (wire) are in contact during rolling. r represents the roll radius in the unit mm in the wire finishing rolling. Δh represents the amount of reduction in unit mm in the wire finish rolling. As can be seen from Equations 3 to 6, the strain rate is a rolling condition related to both the rolling rate and the rolling reduction.
As a result of investigations by the present inventors, it has been found that there is a correlation shown in FIG. 2 between the Z value at the time of wire finish rolling and the average pearlite block particle size of the finally obtained wire. . As can be seen from FIG. 2, in order to make the average pearlite block particle size in the cross section perpendicular to the wire axis direction 23 μm or less, log 10 Z needs to be 13.7 or more. Further, in order to suppress the number density of coarse pearlite blocks having a particle diameter of 40 μm or more to 0 to 20 / mm 2 , log 10 Z needs to be 13.7 or more in the same manner. On the other hand, it is difficult to set log 10 Z to more than 16.5 in consideration of equipment capacity. This is because, as can be seen from the Zener-Holomon equation, to increase the Z value, it is necessary to lower the rolling temperature and increase the strain rate. Therefore, in the method for manufacturing the wire rod according to the present embodiment using the Stemmore method, the upper limit value of log 10 Z is set to 16.5. log 10 Z is preferably 14.0 to 16.0. When log 10 Z is less than the above range, the average value of the particle size of the pearlite block exceeds 23 μm and / or the number density of the pearlite block having the particle size of 40 μm or more in the cross section perpendicular to the wire axis direction. Is over 20 pieces / mm 2 .
 線材仕上圧延の速度(仕上圧延速度)は、log10Zが13.7~16.5の範囲内である限り、特に限定されない。好ましい線材仕上圧延の速度は、例えば線径が12mmの線材を製造する場合、15.5~25.2m/秒である。線材仕上圧延の速度が15.5m/秒未満であると、歪み速度が低下する。この場合、PBSを十分に小さくすることができない場合がある。従って、線材仕上圧延の速度は15.5m/秒以上とすることが好ましい。一方、線材仕上圧延の速度が25.2m/秒を超えると、加工時の発熱が大きくなり、オーステナイト結晶粒径が粗大化する場合がある。この場合も、PBSを微細化することができない。上述の式3~6からわかるように、線径が12mmではない線材を製造する場合には、log10Zが13.7~16.5の範囲内となるように、線材仕上圧延速度を上述の範囲から適宜変更する必要がある。 The wire finish rolling speed (finish rolling speed) is not particularly limited as long as log 10 Z is in the range of 13.7 to 16.5. For example, when a wire rod having a wire diameter of 12 mm is produced, the wire rod finish rolling speed is preferably 15.5 to 25.2 m / sec. When the speed of the wire finish rolling is less than 15.5 m / sec, the strain rate decreases. In this case, the PBS may not be made sufficiently small. Accordingly, the wire finishing rolling speed is preferably 15.5 m / sec or more. On the other hand, when the wire finish rolling speed exceeds 25.2 m / sec, heat generation during processing increases, and the austenite crystal grain size may become coarse. Also in this case, the PBS cannot be miniaturized. As can be seen from the above formulas 3 to 6, when manufacturing a wire having a wire diameter other than 12 mm, the wire finish rolling speed is set so that the log 10 Z is in the range of 13.7 to 16.5. It is necessary to change appropriately from the range of.
(巻取温度:730~840℃)
(巻取後の衝風冷却速度:15℃/秒以上)
 ステルモア法による本実施形態に係る線材の製造方法では、線材仕上圧延に次いで、線材を730~840℃で巻き取り、その後、15℃/秒以上の冷却速度で衝風冷却を行う。巻取温度が730℃未満であると、スケール生成量が少なくなり、メカニカルデスケーリング性が劣化するので、巻取温度を730℃以上とする。巻取温度が840℃を超えると、オーステナイト粒径が大きくなる。この場合、最終的に得られる線材のパーライトブロック粒径を23μm以下に調整できなくなり、および/または、40μm以上の粒径を有するパーライトブロックの個数密度が20個/mm超となる。従って、巻取温度を840℃以下とする。巻取温度は、好ましくは750~820℃である。
(Winding temperature: 730-840 ° C)
(Shock cooling rate after winding: 15 ℃ / second or more)
In the method for manufacturing the wire according to the present embodiment by the Stealmore method, after the wire finish rolling, the wire is wound at 730 to 840 ° C., and then blast cooling is performed at a cooling rate of 15 ° C./second or more. If the coiling temperature is less than 730 ° C, the amount of scale generation is reduced and the mechanical descaling property is deteriorated, so the coiling temperature is set to 730 ° C or higher. When the coiling temperature exceeds 840 ° C., the austenite particle size increases. In this case, the pearlite block particle diameter of the finally obtained wire cannot be adjusted to 23 μm or less, and / or the number density of pearlite blocks having a particle diameter of 40 μm or more is more than 20 / mm 2 . Accordingly, the winding temperature is set to 840 ° C. or lower. The winding temperature is preferably 750 to 820 ° C.
 巻取後の線材を、衝風冷却によって常温まで冷却する。常温とは、基本的に、JIS Z 8703に既定されているように、5~35℃の温度域を示す。その際、冷却速度が15℃/秒未満(即ち、緩冷却)であると、オーステナイト粒径が大きくなり、線材軸方向に垂直な断面においてパーライトブロックの粒径の平均値が23μm超となり、および/または、40μm以上の前記粒径を有するパーライトブロックの個数密度が20個/mm超となる。これにより、最終的に得られる線材の延性が劣化する。従って、衝風冷却の際の冷却速度を15℃/秒以上とする。衝風冷却の際の冷却速度は、好ましくは25℃/秒以上である。衝風冷却の際の冷却速度の上限値を規定する必要はないが、設備能力を考慮すると、その上限値は約50℃/秒である。 The wound wire is cooled to room temperature by blast cooling. The room temperature basically indicates a temperature range of 5 to 35 ° C. as defined in JIS Z 8703. At that time, if the cooling rate is less than 15 ° C./second (ie, slow cooling), the austenite particle size becomes large, the average value of the particle size of the pearlite block in the cross section perpendicular to the wire axis direction becomes more than 23 μm, and / Or the number density of the pearlite blocks having the particle diameter of 40 μm or more is more than 20 / mm 2 . Thereby, the ductility of the wire finally obtained deteriorates. Therefore, the cooling rate during blast cooling is set to 15 ° C./second or more. The cooling rate at the time of blast cooling is preferably 25 ° C./second or more. Although it is not necessary to define the upper limit value of the cooling rate at the time of blast cooling, the upper limit value is about 50 ° C./second in consideration of the facility capacity.
 DLP法によって本実施形態に係る線材を製造する場合、(1)成分組成が、質量%で、C:0.60~1.20%、Si:0.30~1.30%、Mn:0.30~0.90%、P:0.020%以下、S:0.020%以下、N:0.0025~0.0060%、Cr:0~1.00%、およびV:0~0.800%を含有し、更に、Al:0.005~0.100%、Ti:0.003~0.050%、B:0.0005~0.0040%のうち1種又は2種以上を含有し、残部がFe及び不純物からなる成分組成を有する鋼片を950~1040℃に加熱してから線材圧延を行い、(2)750~800℃の温度域で巻取を行い、(3)巻取終了後直ちに500~600℃の溶融塩にて直接熱処理を施す。
 なお、DLP法によって本実施形態に係る線材を製造する場合、原材料である鋼片が、質量%で、Cr:0.10~1.00%、およびV:0.005~0.800%のうち1種または2種をさらに含有してもよい。
When manufacturing the wire according to the present embodiment by the DLP method, (1) component composition is mass%, C: 0.60 to 1.20%, Si: 0.30 to 1.30%, Mn: 0 .30 to 0.90%, P: 0.020% or less, S: 0.020% or less, N: 0.0025 to 0.0060%, Cr: 0 to 1.00%, and V: 0 to 0 800%, Al: 0.005 to 0.100%, Ti: 0.003 to 0.050%, B: 0.0005 to 0.0040%, or one or more of them The steel slab containing the composition containing Fe and impurities in the balance is heated to 950 to 1040 ° C., and then wire rolling is performed. (2) Winding is performed in a temperature range of 750 to 800 ° C. (3) Immediately after completion of winding, heat treatment is directly performed with molten salt at 500 to 600 ° C.
When the wire according to the present embodiment is manufactured by the DLP method, the steel slab as the raw material is in mass%, Cr: 0.10 to 1.00%, and V: 0.005 to 0.800%. One or two of them may be further contained.
(線材圧延に供する鋼片の成分組成:上述の規定範囲内)
 DLP法によって本実施形態に係る線材を製造する場合、線材圧延に供する鋼片の成分組成は、上述の規定範囲内とする必要がある。この規定範囲は、本実施形態に係る線材の成分組成として上述された規定範囲と同一である。DLP法による製造方法は、延性および靱性の向上のための合金元素が比較的少ない鋼片から、延性および靱性に優れた線材が得られるという利点がある。ただし、DLP法による製造方法では溶融塩による直接熱処理が必須であるので、この製造方法の実施のためには、ステルモア法による製造方法よりも多くの設備が必要とされる。
(Component composition of steel slab used for wire rod rolling: within the above-mentioned specified range)
When manufacturing the wire which concerns on this embodiment by DLP method, the component composition of the steel slab used for wire rolling needs to be in the above-mentioned specified range. This specified range is the same as the specified range described above as the component composition of the wire according to the present embodiment. The production method by the DLP method has an advantage that a wire having excellent ductility and toughness can be obtained from a steel piece having relatively few alloy elements for improving ductility and toughness. However, since a direct heat treatment with a molten salt is essential in the production method by the DLP method, more equipment is required for carrying out this production method than in the production method by the Stemmore method.
(線材圧延の加熱温度:950~1040℃)
 DLP法によって本実施形態に係る線材を製造する場合、鋼片の線材圧延前の加熱温度を950~1040℃とする。加熱温度を950℃未満とした場合、線材圧延時のロール反力が著しく増加して、ロール割損などの設備トラブルが発生するおそれがあるので、線材圧延前の加熱温度を950℃以上とする。一方、線材圧延前の加熱温度が1040℃を超えると、鋼片中に析出している窒化アルミニウム(AlN)の溶体化が進んで、オーステナイト結晶粒径の粗大化が進み、最終的に得られる線材のパーライトブロック粒径(PBS)が粗大化する。この場合、線材軸方向に垂直な断面においてパーライトブロックの粒径の平均値が23μm超となり、および/または、40μm以上の粒径を有するパーライトブロックの個数密度が20個/mm超となる。このような現象を回避するために、線材圧延前の加熱温度を1040℃以下とする。線材圧延前の加熱温度は、好ましくは980~1030℃である。なお、線材圧延における仕上温度は特に制限されず、合理的な温度を適宜選択することができる。
(Heating temperature for wire rolling: 950-1040 ° C)
When manufacturing the wire according to the present embodiment by the DLP method, the heating temperature of the steel slab before wire rod rolling is set to 950 to 1040 ° C. When the heating temperature is less than 950 ° C., the roll reaction force during wire rod rolling increases remarkably, and equipment troubles such as roll breakage may occur. Therefore, the heating temperature before wire rod rolling is set to 950 ° C. or higher. . On the other hand, when the heating temperature before the wire rod rolling exceeds 1040 ° C., the solution of aluminum nitride (AlN) precipitated in the steel slab proceeds, the austenite crystal grain size increases, and finally obtained. The pearlite block particle size (PBS) of the wire becomes coarse. In this case, the average value of the particle sizes of the pearlite blocks in the cross section perpendicular to the wire axis direction is more than 23 μm, and / or the number density of the pearlite blocks having a particle size of 40 μm or more is more than 20 / mm 2 . In order to avoid such a phenomenon, the heating temperature before wire rod rolling is set to 1040 ° C. or lower. The heating temperature before wire rolling is preferably 980 to 1030 ° C. In addition, the finishing temperature in wire rod rolling is not particularly limited, and a reasonable temperature can be appropriately selected.
(巻取温度:750~800℃)
 DLP法によって本実施形態に係る線材を製造する場合、線材圧延後の巻取温度を750~800℃とする。巻取温度が750℃未満であると、後の恒温変態処理工程における恒温変態後に、線材の長手方向の引張強度のばらつきが大きくなる。従って、巻取温度を750℃以上とする。巻取温度が800℃を超えると、オーステナイト粒径が大きくなる。この場合、最終的に得られる線材のパーライトブロック粒径を23μm以下に調整することも、40μm以上の粒径を有するパーライトブロックの個数密度を20個/mm以下に調整することもできなくなるので、巻取温度を800℃以下とする。
(Winding temperature: 750-800 ° C)
When manufacturing the wire according to the present embodiment by the DLP method, the winding temperature after wire rolling is set to 750 to 800 ° C. When the coiling temperature is less than 750 ° C., the variation in the tensile strength in the longitudinal direction of the wire increases after the constant temperature transformation in the subsequent constant temperature transformation treatment step. Accordingly, the winding temperature is set to 750 ° C. or higher. When the coiling temperature exceeds 800 ° C., the austenite particle size increases. In this case, the pearlite block particle diameter of the finally obtained wire cannot be adjusted to 23 μm or less, and the number density of pearlite blocks having a particle diameter of 40 μm or more cannot be adjusted to 20 pieces / mm 2 or less. The winding temperature is set to 800 ° C. or lower.
(恒温変態処理方法:直接熱処理)
(恒温変態処理温度:500~600℃)
 DLP法によって本実施形態に係る線材を製造する場合、線材を巻き取った後、直ちに、500~600℃の溶融塩に浸漬して恒温変態処理を行う。恒温変態処理温度が500℃未満であると、線材の表層部に非パーライト組織が多く生成する。この場合、線材の内部に生成しているパーライト組織と、線材の表層部の非パーライト組織との界面において、加工歪の不均一が生じ、この不均一は伸線加工段階で断線を生じさせる場合がある。従って、恒温変態処理の温度は500℃以上とする。恒温変態処理温度が600℃を超えると、設備の熱変形が大きくなる等の操業上の問題が生じるので、恒温変態処理温度は600℃以下とする。また、この恒温変態処理は直接熱処理(オンライン熱処理)によって行われる必要がある。もし直接熱処理が行われなかった場合(すなわち、オフライン熱処理によって恒温変態処理が行われた場合)、オフライン熱処理が含む再加熱工程によってγ粒の成長が生じる。この現象は、線材のPBSの粒径を23μm以下に制御することを妨げる。
(Constant temperature transformation treatment method: direct heat treatment)
(Constant temperature transformation treatment temperature: 500-600 ° C)
When the wire according to this embodiment is manufactured by the DLP method, the wire is wound up and immediately immersed in a molten salt at 500 to 600 ° C. to perform a constant temperature transformation treatment. When the isothermal transformation temperature is less than 500 ° C., a lot of non-pearlite structure is generated in the surface layer portion of the wire. In this case, unevenness of processing strain occurs at the interface between the pearlite structure generated inside the wire and the non-pearlite structure of the surface part of the wire, and this non-uniformity causes breakage at the wire drawing stage. There is. Therefore, the temperature of the isothermal transformation treatment is set to 500 ° C. or higher. If the isothermal transformation temperature exceeds 600 ° C., operational problems such as increased thermal deformation of the equipment occur. Therefore, the isothermal transformation temperature is set to 600 ° C. or less. Moreover, this isothermal transformation process needs to be performed by direct heat treatment (on-line heat treatment). If direct heat treatment is not performed (that is, isothermal transformation is performed by off-line heat treatment), γ grains grow by the reheating step included in off-line heat treatment. This phenomenon prevents the particle diameter of the PBS of the wire rod from being controlled to 23 μm or less.
 次に、本発明の実施例について説明する。実施例を作成した際の諸条件は、本発明の実施可能性及び効果を確認するために採用された条件例であり、本発明は、この条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions at the time of creating the examples are condition examples adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to these condition examples. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 (実施例)
 以下、ステルモア法を用いた製造方法による実施例について説明する。
(Example)
Hereinafter, examples of the manufacturing method using the Stealmore method will be described.
 まず表1-1に示す成分組成の溶鋼を連続鋳造して、300mm×500mmの鋳片とし、次いで分塊圧延によって、この鋳片を122mm角の鋼片に圧延した。その後、表1-2に示す加熱温度で鋼片を加熱し、さらに表1-2に示す条件で鋼片を圧延することにより、12mmφの線材を得た。線材仕上圧延の際のロールの半径は75.5mmであった。No.S1~S16は、本発明の条件を満たす発明例であり、No.S17~S41は、本発明の条件を満たさない比較例である。 First, molten steel having the composition shown in Table 1-1 was continuously cast into a 300 mm × 500 mm slab, and this slab was then rolled into 122 mm square steel slabs by split rolling. Thereafter, the steel slab was heated at the heating temperature shown in Table 1-2, and the steel slab was rolled under the conditions shown in Table 1-2 to obtain a 12 mmφ wire rod. The radius of the roll at the time of wire-finishing rolling was 75.5 mm. No. S1 to S16 are invention examples that satisfy the conditions of the present invention. S17 to S41 are comparative examples that do not satisfy the conditions of the present invention.
 圧延した線材から、図3に示す引張試験片を製造した。この引張試験片に、-40℃の低温雰囲気において、ドライアイスおよびアルコールで温度調節しながら引張試験を行なうことによって、線材の-40℃での引張強度と延性とを測定した。
 さらに、上記線材から、JISZ2202で規定されたシャルピー衝撃試験片を、図4に示す採取方法で採取することにより、5mmサブサイズの2mmUノッチシャルピー衝撃試験片を作製した。これらのシャルピー衝撃試験片に-40℃でのシャルピー衝撃試験を行うことにより、LNGタンクのPC防液堤の実使用環境温度に近い-40℃の温度での線材の衝撃値を求めた。
The tensile test piece shown in FIG. 3 was manufactured from the rolled wire. Tensile strength and ductility of the wire at −40 ° C. were measured by conducting a tensile test on the tensile test piece in a low temperature atmosphere of −40 ° C. while adjusting the temperature with dry ice and alcohol.
Furthermore, a Charpy impact test piece defined in JISZ2202 was collected from the wire by the sampling method shown in FIG. 4 to produce a 2 mm U notch Charpy impact test piece of 5 mm subsize. By performing a Charpy impact test at −40 ° C. on these Charpy impact test pieces, the impact value of the wire at a temperature of −40 ° C., which is close to the actual use environment temperature of the PC liquid barrier in the LNG tank, was obtained.
 線材の平均PBS(パーライトブロック粒径)は、以下の手順によって求められた。まず、線材の軸方向に垂直な断面の(1)表層部(線材表面から30μmの深さの領域)、(2)1/4D部(線材表面から、線材の直径Dの1/4の深さの領域)、(3)中心部、(4)3/4D部(線材表面から線材の直径Dの3/4の深さの領域、即ち、線材中心部に関して(2)の反対側の領域)、および(5)反対側の表層部(即ち、線材中心部に関して(1)の反対側の領域)からなる5つの箇所それぞれにおいて、300μm×180μmの視野角内のパーライトブロックの円相当径の平均値(一次平均値)を、EBSD装置を用いて測定した。次に、各一次平均値の平均値(二次平均値)を算出した。この二次平均値を、線材の軸方向に垂直な断面における平均PBSとした。なお、EBSD装置での測定の際には、方位差が9度以上である隣り合う2つのパーライトの境界を、パーライトブロック粒界であると判断した。 The average PBS (pearlite block particle size) of the wire was obtained by the following procedure. First, (1) surface layer portion (region having a depth of 30 μm from the surface of the wire), (2) 1 / 4D portion (depth from the surface of the wire to ¼ of the diameter D of the wire) in the cross section perpendicular to the axial direction of the wire Area), (3) center portion, (4) 3 / 4D portion (region having a depth of 3/4 of the diameter D of the wire from the surface of the wire, ie, the region opposite to (2) with respect to the wire center portion) ), And (5) the equivalent circle diameter of the pearlite block within the viewing angle of 300 μm × 180 μm at each of the five locations consisting of the surface layer portion on the opposite side (that is, the region opposite to (1) with respect to the central portion of the wire rod) The average value (primary average value) was measured using an EBSD device. Next, the average value (secondary average value) of each primary average value was calculated. This secondary average value was defined as the average PBS in the cross section perpendicular to the axial direction of the wire. In the measurement with the EBSD apparatus, the boundary between two adjacent pearlites having an orientation difference of 9 degrees or more was determined to be a pearlite block grain boundary.
 線材の、粗大パーライトブロックの個数密度は、以下の手順によって求められた。まず、線材の軸方向に垂直な断面の(1)表層部(線材表面から30μmの深さの領域)、(2)1/4D部(線材表面から、線材の直径Dの1/4の深さの領域)、(3)中心部、(4)3/4D部(線材表面から、線材の直径Dの3/4の深さの領域。即ち、線材中心部に関して(2)の反対側の領域)、および(5)反対側の表層部(即ち、線材中心部に関して(1)の反対側の領域)からなる5つの箇所それぞれにおいて、300μm×180μmの視野角内の40μm以上の粒径を有するパーライトブロックの個数密度を、EBSD装置を用いて測定した。次に、各箇所の個数密度の平均値を算出した。この平均値を、線材の軸方向に垂直な断面において、40μm以上の粒径を有するパーライトブロックの個数密度とした。 The number density of coarse pearlite blocks in the wire was determined by the following procedure. First, (1) surface layer portion (region having a depth of 30 μm from the surface of the wire), (2) 1 / 4D portion (depth from the surface of the wire to ¼ of the diameter D of the wire) in the cross section perpendicular to the axial direction of the wire Area), (3) center part, (4) 3 / 4D part (area of 3/4 depth of wire diameter D from the wire surface. Region), and (5) a particle size of 40 μm or more within a viewing angle of 300 μm × 180 μm at each of five locations consisting of the surface layer portion on the opposite side (that is, the region on the opposite side of (1) with respect to the wire center). The number density of pearlite blocks was measured using an EBSD apparatus. Next, the average value of the number density at each location was calculated. This average value was defined as the number density of pearlite blocks having a particle diameter of 40 μm or more in a cross section perpendicular to the axial direction of the wire.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 発明例の加熱温度、仕上温度、及び、巻取温度は、適切な温度範囲内にある。これにより、発明例のパーライトブロックが細粒化され、発明例の平均PBSおよび粗大PBの個数密度が適切な水準に制御された。一方、加熱温度、仕上温度、及び、巻取温度が適切な温度範囲よりも高い比較例の平均PBSおよび粗大PBの個数密度は本発明の規定範囲外となった。発明例は、低温強度、低温靱性、および室温靱性に関し、比較例よりも良好な特性を示した。比較例S36は、仕上圧延温度が適切な温度範囲を下回ったので、ミル負荷が増大し、圧延が行えなかった。 The heating temperature, finishing temperature, and winding temperature in the invention examples are within an appropriate temperature range. As a result, the pearlite block of the inventive example was made fine, and the average PBS and coarse PB number density of the inventive example were controlled to appropriate levels. On the other hand, the number density of average PBS and coarse PB in the comparative examples in which the heating temperature, finishing temperature, and winding temperature are higher than the appropriate temperature range were outside the specified range of the present invention. The inventive examples exhibited better properties than the comparative examples with respect to low temperature strength, low temperature toughness, and room temperature toughness. In Comparative Example S36, the finish rolling temperature was below the appropriate temperature range, so the mill load increased and rolling could not be performed.
 図5Aおよび図5Bに、発明例のパーライトブロックのSEM写真と、比較例のパーライトブロックのSEM写真とを示す。発明例のパーライトブロック粒径が、比較例のパーライトブロック粒径より小さいことが、これらSEM写真から判別できた。 5A and 5B show an SEM photograph of the pearlite block of the invention example and an SEM photograph of the pearlite block of the comparative example. It was possible to discriminate from these SEM photographs that the pearlite block particle size of the inventive example was smaller than the pearlite block particle size of the comparative example.
 図6に、発明例(No.S6)と比較例(No.S17)の-40℃における引張試験の結果を示す。-40℃の低温環境下において、発明例の延性は、比較例の延性より高く、良好であることが判別できた。また、表2からも、発明例の延性が比較例の延性よりも高い傾向にあることが判別できた。延性の差異は、図5Aおよび図5Bに示すパーライトブロック粒径の差異によって生じたと推測される。 FIG. 6 shows the results of a tensile test at −40 ° C. for the inventive example (No. S6) and the comparative example (No. S17). In a low temperature environment of −40 ° C., the ductility of the inventive example was higher than that of the comparative example, and it was determined that it was good. Also from Table 2, it can be determined that the ductility of the inventive example tends to be higher than the ductility of the comparative example. It is estimated that the difference in ductility was caused by the difference in the pearlite block particle size shown in FIGS. 5A and 5B.
 次に、DLP法を用いた製造方法による実施例について以下に説明する。 Next, examples of the manufacturing method using the DLP method will be described below.
 まず表3に示す成分組成の溶鋼を連続鋳造して、300mm×500mmの鋳片とした後、122mm角の鋼片に圧延した。その後、表3に示す加熱温度で鋼片を加熱し、さらに表3に示す条件で、鋼片に圧延と、巻取と、溶融塩を用いた熱処理とを行うことにより、12mmφの線材を得た。No.D1~D16およびNo.D30~D36は、巻取の後に再加熱されることなく溶融塩に浸漬される熱処理(直接熱処理)によって製造された。No.D17~D29には、表3に示す条件で巻取が行われ、その後、950℃に再加熱して鉛パテンティング処理を行う熱処理(オフライン熱処理)が行われた。 First, molten steel having the composition shown in Table 3 was continuously cast to form a 300 mm × 500 mm slab, and then rolled into a 122 mm square steel slab. Thereafter, the steel slab is heated at the heating temperature shown in Table 3, and further, under the conditions shown in Table 3, the steel slab is subjected to rolling, winding, and heat treatment using a molten salt to obtain a 12 mmφ wire. It was. No. D1 to D16 and No. D30 to D36 were produced by heat treatment (direct heat treatment) immersed in the molten salt without being reheated after winding. No. In D17 to D29, winding was performed under the conditions shown in Table 3, and thereafter, heat treatment (offline heat treatment) for reheating to 950 ° C. and performing lead patenting treatment was performed.
 上記線材の、-40℃での引張強度、-40℃での延性、および-40℃での衝撃値を求めた。これら値を求めるための試験方法は、上述したNo.S1~No.S41に対して行われた各試験の方法と同じである。また、上記線材に対して、室温でのシャルピー衝撃試験を行い、室温での線材の衝撃値を求めた。室温でのシャルピー衝撃試験の実施方法は、試験温度以外は、上述した-40でのシャルピー衝撃試験の実施方法と同じであった。上記線材の平均PBSおよび粗大パーライトブロックの個数密度は、上述したNo.S1~No.S16に適用された測定方法によって測定された。 The tensile strength at −40 ° C., the ductility at −40 ° C., and the impact value at −40 ° C. of the wire were determined. The test method for obtaining these values is described in No. 1 above. S1-No. This is the same as the method of each test performed for S41. Moreover, the Charpy impact test at room temperature was performed on the wire, and the impact value of the wire at room temperature was obtained. The method for performing the Charpy impact test at room temperature was the same as the method for performing the Charpy impact test at −40 described above, except for the test temperature. The average density of PBS and the number density of coarse pearlite blocks of the above-mentioned wire rods are No. S1-No. It was measured by the measurement method applied to S16.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3のNo.D1~D16は、本発明の条件を満たす発明例である。一方、表4のNo.D17~D38は、本発明の条件を満たさない比較例である。発明例のパーライトブロック粒径および粗大PBの個数密度は適切な水準に制御されたが、一方比較例のパーライトブロック粒径および粗大PBの個数密度は本発明の規定範囲外となった。発明例は、低温強度、低温靱性、および室温靱性に関し、比較例よりも良好な特性を示した。 No. in Table 3 D1 to D16 are invention examples that satisfy the conditions of the present invention. On the other hand, no. D17 to D38 are comparative examples that do not satisfy the conditions of the present invention. The pearlite block particle size and coarse PB number density of the inventive example were controlled at appropriate levels, while the pearlite block particle size and coarse PB number density of the comparative example were outside the specified range of the present invention. The inventive examples exhibited better properties than the comparative examples with respect to low temperature strength, low temperature toughness, and room temperature toughness.
 図7Aおよび図7Bに、発明例のパーライトブロックのSEM写真と比較例のパーライトブロックのSEM写真を示す。発明例および比較例のパーライトブロック粒径(PBS)が明確に相違することが、SEM写真から判別できた。 7A and 7B show an SEM photograph of the pearlite block of the invention example and an SEM photograph of the pearlite block of the comparative example. It was possible to discriminate from the SEM photograph that the pearlite block particle sizes (PBS) of the invention example and the comparative example were clearly different.
 図8に、表及び表4に示す衝撃値に基づいて、パーライトブロック粒径(μm)と衝撃値との関係を示す。図8から、本発明例の衝撃値(PBS:15~23μm)は、室温においても-40℃においても、比較例(PBS:30~45μm)の衝撃値よりも高いことが判別できた。 FIG. 8 shows the relationship between the pearlite block particle size (μm) and the impact value based on the impact values shown in Tables 4 and 4. From FIG. 8, it was determined that the impact value (PBS: 15 to 23 μm) of the example of the present invention was higher than the impact value of the comparative example (PBS: 30 to 45 μm) both at room temperature and at −40 ° C.
 図9A及び図9Bに、発明例および比較例のシャルピー衝撃試験片の破面をSEMで観察した結果を示す。図9Aに、発明例の破面単位を示し、図9Bに比較例の破面単位を示す。発明例の破面単位は、比較例の破面単位よりも細かくなっていた。このことは、靱性に関し発明例の方が優れていることを示している。この点においても、PBS微細化の効果を確認することができた。 FIG. 9A and FIG. 9B show the results of observing the fracture surface of the Charpy impact test piece of the invention example and the comparative example with an SEM. FIG. 9A shows a fracture surface unit of the invention example, and FIG. 9B shows a fracture surface unit of the comparative example. The fracture surface unit of the invention example was finer than the fracture surface unit of the comparative example. This indicates that the inventive example is superior in terms of toughness. Also in this point, the effect of PBS miniaturization could be confirmed.
 以上のことから、発明例の靭性は、室温においても、実際にLNGタンクの補強PCとして線材が使用される際に曝される-40℃の環境下においても、比較例の靱性に比べて高いことが判別できた。 From the above, the toughness of the inventive example is higher than the toughness of the comparative example both at room temperature and in the environment of −40 ° C. that is exposed when the wire is actually used as the reinforcing PC of the LNG tank. Was able to be determined.
 本発明によれば、パーライトブロック粒径の小型化により、PC式LNGのPC防液堤の緊張材用に用いるPC鋼撚り線用線材の-40℃近傍における延性が、従来材よりも良好な線材を提供することが可能となった。したがって、本発明は、近年、益々需要が高くなったLNGタンク関連設備を構成する一部材であるPC鋼撚り線の低温使用環境下における信頼性向上に寄与するものであり、産業上の利用可能性が高いものである。 According to the present invention, the ductility in the vicinity of −40 ° C. of the PC steel stranded wire used for the tension material of the PC type LNG PC breakwater is better than that of the conventional material due to the reduction of the pearlite block particle size. It became possible to provide wire rods. Therefore, the present invention contributes to improving the reliability of PC steel stranded wire, which is a member of LNG tank-related equipment, which has been increasingly demanded in recent years, in a low temperature use environment, and can be used industrially. It is highly probable.
 1 線材
 2 2mmUノッチシャルピー衝撃試験片
 3 2mmUノッチ
1 Wire material 2 2 mm U-notch Charpy impact test piece 3 2 mm U-notch

Claims (5)

  1.  成分組成が、質量%で、
     C :0.60~1.20%、
     Si:0.30~1.30%、
     Mn:0.30~0.90%、
     P :0.020%以下、
     S :0.020%以下、
     N :0.0025~0.0060%、
     Cr:0~1.00%、および
     V :0~0.800%を含有し、
     更に、
     Al:0.005~0.100%、
     Ti:0.003~0.050%、
     B :0.0005~0.0040%
    のうち1種又は2種以上を含有し、
     残部がFe及び不純物からなり、
     線材軸方向に垂直な断面におけるパーライトブロックの粒径の平均値が23μm以下であり、
     前記線材軸方向に垂直な前記断面において、40μm以上の前記粒径を有する前記パーライトブロックの個数密度が0~20個/mmである
    ことを特徴とする線材。
    Ingredient composition is mass%,
    C: 0.60 to 1.20%,
    Si: 0.30 to 1.30%
    Mn: 0.30 to 0.90%,
    P: 0.020% or less,
    S: 0.020% or less,
    N: 0.0025 to 0.0060%,
    Cr: 0 to 1.00%, and V: 0 to 0.800%,
    Furthermore,
    Al: 0.005 to 0.100%,
    Ti: 0.003 to 0.050%,
    B: 0.0005 to 0.0040%
    Containing one or more of them,
    The balance consists of Fe and impurities,
    The average value of the particle size of the pearlite block in the cross section perpendicular to the wire axis direction is 23 μm or less,
    A wire rod, wherein the number density of the pearlite blocks having the particle diameter of 40 μm or more in the cross section perpendicular to the wire rod axis direction is 0 to 20 / mm 2 .
  2.  前記成分組成が、質量%で、
     Cr:0.10~1.00%、および
     V :0.005~0.800%
    のうち1種又は2種を含有する
    ことを特徴とする請求項1に記載の線材。
    The component composition is mass%,
    Cr: 0.10 to 1.00%, and V: 0.005 to 0.800%
    The wire according to claim 1, wherein one or two of them are contained.
  3.  前記成分組成が、質量%で
     C :0.70~0.90%、
     Si:0.80~1.30%、
     Mn:0.60~0.90%、および
     V :0~0.500%
    を含有することを特徴とする請求項1に記載の線材。
    The component composition is, by mass%, C: 0.70 to 0.90%,
    Si: 0.80 to 1.30%,
    Mn: 0.60 to 0.90%, and V: 0 to 0.500%
    The wire according to claim 1, comprising:
  4.  前記成分組成が、質量%で
     Cr:0.50~1.00%、および
     V :0.300~0.500%
    のうち1種又は2種を含有する
    ことを特徴とする請求項3に記載の線材。
    The component composition is, in mass%, Cr: 0.50 to 1.00%, and V: 0.300 to 0.500%
    The wire according to claim 3, wherein one or two of them are contained.
  5.  請求項3又は4に記載の前記成分組成を有する鋼片を950~1040℃の粗圧延温度に加熱して粗圧延を行う工程と、
     750~900℃の仕上圧延温度で線材仕上圧延を行う工程と、
     次いで、730~840℃の巻取温度で巻取を行う工程と、
     その後、15℃/秒以上の冷却速度で常温まで衝風冷却を行う工程と、
    を備え、
     前記線材仕上圧延における前記仕上圧延温度と歪み速度とが下記式Aを満たす
    ことを特徴とする線材の製造方法。
      13.7≦log10{(dε/dt)×exp(63800/(1.98×(T+273.15))}≦16.5 (式A)
     ただし、dε/dtは前記線材仕上圧延の際の前記歪み速度を単位s-1で示し、Tは前記仕上圧延温度を単位℃で示す。
    Heating the steel slab having the component composition according to claim 3 or 4 to a rough rolling temperature of 950 to 1040 ° C., and performing rough rolling;
    A step of performing wire finish rolling at a finish rolling temperature of 750 to 900 ° C .;
    Next, a step of winding at a winding temperature of 730 to 840 ° C.,
    Thereafter, blast cooling to room temperature at a cooling rate of 15 ° C./second or more,
    With
    The finish rolling temperature and the strain rate in the finish finish rolling satisfy the following formula A.
    13.7 ≦ log 10 {(dε / dt) × exp (63800 / (1.98 × (T + 273.15))} ≦ 16.5 (Formula A)
    Where dε / dt represents the strain rate in the finish rolling of the wire in the unit s −1 , and T represents the finish rolling temperature in the unit of ° C.
PCT/JP2014/061460 2013-04-25 2014-04-23 Wire rod and method for manufacturing same WO2014175345A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14788178.3A EP2990499B1 (en) 2013-04-25 2014-04-23 Wire rod and method for manufacturing same
KR1020157031549A KR20150138356A (en) 2013-04-25 2014-04-23 Wire rod and method for manufacturing same
JP2015513810A JP6256464B2 (en) 2013-04-25 2014-04-23 Wire rod and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-092775 2013-04-25
JP2013092775 2013-04-25
JP2013092782 2013-04-25
JP2013-092782 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014175345A1 true WO2014175345A1 (en) 2014-10-30

Family

ID=51791913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061460 WO2014175345A1 (en) 2013-04-25 2014-04-23 Wire rod and method for manufacturing same

Country Status (4)

Country Link
EP (1) EP2990499B1 (en)
JP (1) JP6256464B2 (en)
KR (1) KR20150138356A (en)
WO (1) WO2014175345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3235918A4 (en) * 2014-12-15 2018-04-25 Nippon Steel & Sumitomo Metal Corporation Wire material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014169A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Wire rod for steel wire and steel wire
CN112176258B (en) * 2020-09-30 2022-06-21 江苏省沙钢钢铁研究院有限公司 Wire rod for 2500 MPa-grade steel strand and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192148A (en) * 1998-12-25 2000-07-11 Kobe Steel Ltd Steel wire rod excellent in cold workability and its production
JP2006234137A (en) 2005-02-28 2006-09-07 Mitsubishi Heavy Ind Ltd Ground type lng tank
JP2008007856A (en) * 2006-06-01 2008-01-17 Nippon Steel Corp Method for producing high-ductility direct patenting wire rod
JP2010229469A (en) * 2009-03-26 2010-10-14 Nippon Steel Corp High-strength wire rod excellent in cold working characteristic and method of producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005019268D1 (en) * 2004-12-22 2010-03-25 Kobe Steel Ltd High carbon steel wire with excellent drawing properties and process for its production
BRPI0903902B1 (en) * 2008-03-25 2017-06-06 Nippon Steel & Sumitomo Metal Corp high strength steel wire and its production method
US9255306B2 (en) * 2011-03-14 2016-02-09 Nippon Steel & Sumitomo Metal Corporation Steel wire rod and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192148A (en) * 1998-12-25 2000-07-11 Kobe Steel Ltd Steel wire rod excellent in cold workability and its production
JP2006234137A (en) 2005-02-28 2006-09-07 Mitsubishi Heavy Ind Ltd Ground type lng tank
JP2008007856A (en) * 2006-06-01 2008-01-17 Nippon Steel Corp Method for producing high-ductility direct patenting wire rod
JP2010229469A (en) * 2009-03-26 2010-10-14 Nippon Steel Corp High-strength wire rod excellent in cold working characteristic and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3235918A4 (en) * 2014-12-15 2018-04-25 Nippon Steel & Sumitomo Metal Corporation Wire material
US10385427B2 (en) 2014-12-15 2019-08-20 Nippon Steel Corporation Wire rod

Also Published As

Publication number Publication date
EP2990499A1 (en) 2016-03-02
JP6256464B2 (en) 2018-01-10
KR20150138356A (en) 2015-12-09
EP2990499B1 (en) 2018-07-18
JPWO2014175345A1 (en) 2017-02-23
EP2990499A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
KR101728272B1 (en) High-carbon steel wire rod and method for manufacturing same
WO2013147197A1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
WO2014041801A1 (en) Hot-rolled steel sheet and method for manufacturing same
WO2014041802A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP2006291291A (en) Steel wire for cold formed spring having excellent corrosion resistance, and method for producing the same
KR20140027470A (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
JP5834534B2 (en) High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe
KR101572775B1 (en) Rolled wire rod, and method for producing same
JP2012172256A (en) Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
JP2017057449A (en) Steel sheet excellent in sour resistance and production method therefor
JP2018104746A (en) Steel material for linepipe and manufacturing method therefor
JP2018104757A (en) Steel material for linepipe and manufacturing method therefor
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
JP6288265B2 (en) Steel wire
JP6812893B2 (en) Electric pipe for line pipe and its manufacturing method
JP5640899B2 (en) Steel for line pipe
JP6256464B2 (en) Wire rod and manufacturing method thereof
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
JP2006009078A (en) Seamless steel pipe for oil well use having excellent expandability
KR20170043662A (en) Steel strip for electric-resistance-welded steel pipe or tube, electric-resistance-welded steel pipe or tube, and process for producing steel strip for electric-resistance-welded steel pipe or tube
WO2020166637A1 (en) Steel pipe for fuel injection pipe, and fuel injection pipe employing same
JP2019065343A (en) Steel pipe for oil well and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513810

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014788178

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031549

Country of ref document: KR

Kind code of ref document: A