JPH051523B2 - - Google Patents

Info

Publication number
JPH051523B2
JPH051523B2 JP23262484A JP23262484A JPH051523B2 JP H051523 B2 JPH051523 B2 JP H051523B2 JP 23262484 A JP23262484 A JP 23262484A JP 23262484 A JP23262484 A JP 23262484A JP H051523 B2 JPH051523 B2 JP H051523B2
Authority
JP
Japan
Prior art keywords
magnetic
substrate
magnetic head
thermal expansion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23262484A
Other languages
Japanese (ja)
Other versions
JPS61110310A (en
Inventor
Takeshi Hirota
Osamu Inoe
Mitsuo Satomi
Toshihiro Mihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23262484A priority Critical patent/JPS61110310A/en
Publication of JPS61110310A publication Critical patent/JPS61110310A/en
Publication of JPH051523B2 publication Critical patent/JPH051523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/255Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features comprising means for protection against wear
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気ヘツドの構成の改良に関する。[Detailed description of the invention] Industrial applications The present invention relates to improvements in the construction of magnetic heads.

従来例の構成とその問題点 従来、非磁性基板として、ガラス、Znフエラ
イト、ペロブスカイト型構造のBaTiO3などを用
い、パーマロイ、センダスト、アモルフアス合金
等の軟磁性金属材料、又は、軟磁性のMn−Znフ
エライトやNi−Znフエライトを、接合もしくは、
接着剤で接着し、磁気ヘツドにしたもの、又は、
前述の基板の上に、スパツター、蒸着、CVD、
メツキ等の薄膜形成法を用いて、磁性膜を形成し
磁気ヘツドとしたものなどがあつた。いずれの方
法を取るにしても、基板材料と磁性材料の熱膨張
係数が、等しいか、又はその差が極めて小さくな
ければ、両材料の接合界面に応力が発生し、亀裂
が生じたり、又は破壊を起こしたりする。そこ
で、基板材料として磁性材料の熱膨張係数に合つ
た材料が用いられなければならない。ガラス基板
は、組成を変える事により、比較的自由に熱膨張
係数が変えられるが、成分として、アルカリ金属
を含むものが多く、使用時の環境条件、特に湿度
の変化に対して、化学的に不安定であり、磁気ヘ
ツドとして、充分を特性も持つものが得られなか
つた。アルカリ金属を含まないガラス(結晶化ガ
ラスも含む)でも、Ca、Ba等のアルカリ土類金
属を含み、前述の環境条件下では、問題を生じて
いた。非磁性のZnフエライトを用いた場合では、
その熱膨張係数が、85×10-71/℃程度と小さく、
金属磁性材料の熱膨張係数が100〜130×10-71/
℃と大きいため、使用できなかつた。又、ペロブ
スカイト型構造のBaTiO3系材料では、熱膨張係
数が95×10-71/℃と小さく、又、熱膨張係数を
大きくするため、Caを添加すると、磁気ヘツド
として使用する際に、耐湿性の点で問題を生じて
いた。又、正方晶系のペロブスカイト構造の基板
を用いて、磁気ヘツドを作成すると、磁気記録媒
体(磁気テープ等)で摺動させると、基板多結晶
の各結晶粒子の耐摩耗性が結晶方位によつて異な
るため、偏摩耗を生じ、ひいては、磁気ヘツドの
出力が低下するという問題点もあつた。
Conventional configurations and problems Conventionally, glass, Zn ferrite, BaTiO 3 with a perovskite structure, etc. have been used as non-magnetic substrates, and soft magnetic metal materials such as permalloy, sendust, amorphous alloys, or soft magnetic Mn- Zn ferrite or Ni-Zn ferrite can be bonded or
Glued with adhesive and made into a magnetic head, or
Sputtering, vapor deposition, CVD,
There were some that used thin film forming methods such as plating to form a magnetic film and use it as a magnetic head. Whichever method you choose, unless the thermal expansion coefficients of the substrate material and the magnetic material are equal or the difference is extremely small, stress will occur at the bonding interface between the two materials, causing cracks or destruction. wake up. Therefore, a material that matches the thermal expansion coefficient of the magnetic material must be used as the substrate material. The coefficient of thermal expansion of glass substrates can be changed relatively freely by changing the composition, but many of them contain alkali metals, so they are chemically sensitive to environmental conditions during use, especially changes in humidity. It is unstable, and it has not been possible to obtain a magnetic head with sufficient characteristics. Even glasses that do not contain alkali metals (including crystallized glass) contain alkaline earth metals such as Ca and Ba, which causes problems under the above-mentioned environmental conditions. When using non-magnetic Zn ferrite,
Its coefficient of thermal expansion is as small as 85×10 -7 1/℃,
The thermal expansion coefficient of metal magnetic material is 100 to 130×10 -7 1/
Due to the large temperature, it could not be used. In addition, BaTiO 3 materials with a perovskite structure have a small thermal expansion coefficient of 95×10 -7 1/℃, and when Ca is added to increase the thermal expansion coefficient, when used as a magnetic head, There were problems with moisture resistance. Furthermore, when a magnetic head is made using a substrate with a tetragonal perovskite structure, when it is slid on a magnetic recording medium (magnetic tape, etc.), the wear resistance of each crystal grain of the polycrystalline substrate changes depending on the crystal orientation. There was also the problem that uneven wear occurred due to the difference in the magnetic head, which resulted in a decrease in the output of the magnetic head.

発明の目的 本発明は、耐環境性に優れ、又、磁気記録媒体
との摺動に対しても、耐摩耗性を有する特性の安
定した磁気ヘツドを市場に提供する事を目的とす
るものである。
Purpose of the Invention The purpose of the present invention is to provide the market with a stable magnetic head that has excellent environmental resistance and is resistant to wear when sliding with a magnetic recording medium. be.

発明の構成 本発明は、Mgと1種類以上の遷移金属元素か
らなる複合酸化物を主成分とし、非磁性でかつ立
方晶系の結晶構造を有する基板を用い、この基板
に軟磁性金属もしくは軟磁性フエライトを、磁気
コアとして、接合もしくは接着又は薄膜形成法を
用いて、この基板上に単層もしくは絶縁層と交互
に積層した磁性膜を形成することにより構成した
事を特徴とする磁気ヘツドである。
Structure of the Invention The present invention uses a substrate that is mainly composed of a composite oxide consisting of Mg and one or more transition metal elements and has a non-magnetic cubic crystal structure, and the substrate is made of a soft magnetic metal or A magnetic head characterized in that it is constructed by forming a single layer or a magnetic film alternately laminated with insulating layers on this substrate using magnetic ferrite as a magnetic core using bonding, adhesion, or a thin film formation method. be.

実施例の説明 実施例 1 試薬特級の酸化マグネシウムと炭酸マンガンを
それぞれ40.5g、125.6g秤量し、湿式ボールミ
ルにて16時間混合し、その後、120℃で乾燥を行
つた。乾燥した混合粉に、原料粉に対し、10重量
%の純水を加え、造粒し、300Kg/cm2の圧力で、
金型成形した。成形体を、アルミナ粉に包んで、
SiC製の型に入れ、周囲からN2ガスを流しなが
ら、1200〜1300℃で1時間300Kg/cm2の圧力で、
ホツトプレスした。得られた焼結体から、X線回
折用試料を切り出し、粉末X線回折法により、相
の同定を行つた。焼結体は、立方晶系の
MgMnO2である事が、確認された。又、焼結体
の一部を、取り出し、走査型電子顕微鏡(SEM)
にて、焼結体内部の気孔を観察した。その結果、
他の標準試料体の気孔率等と比較することにより
焼結体は、気孔率が0.3%以下の高密度焼結体で
ある事が認められた。このMgMnO2焼結体を、
ダイヤモンドカツターにて切断し、SiC砥粒及
び、ダイヤモンド砥粒を順次用いて、表面平滑度
Ramax0.1μmにまで研磨した。このMgMnO2
板を用いて、第1図に示す様な磁気ヘツドを、薄
膜形成法を用いて作成した。図の1は基板、2
は、磁気ギヤツプ、3は絶縁層、4はアモルフア
スの金属磁性膜であり、5は巻数用の窓である。
磁気ヘツド作成の工程は、よく洗浄した清浄な基
板の上に、スパツター装置でSiO2を主成分とす
る絶縁層を約1μmの厚さで形成する。次にCoを
主成分としNb、Zr、W、Ta、Tiのうちから二
種類の金属を含む非晶質金属の軟磁性膜(熱膨張
係数は115×10-7/℃)を5〜10μmの膜厚になる
様に形成する。この操作を繰り返して、三層のア
モルフアス磁性膜を形成し、磁気コア材とし、図
−1のA,Bをつくる。Bには1−5の巻き線用
窓となる溝を形成し、更に、ギヤツプ形成用ガラ
スをA,B両部分の磁気ギヤツプ形成面側に、ス
パツターで、薄膜層をつくり、最後にA,B部分
を、熱間接合する。この接合体に巻き線をほどこ
して、磁気ヘツドを作成した。比較のため、基板
として、熱膨張係数が、110〜120×10-7/℃の、
アルカリ金属を含む結晶化ガラス(結晶化ガラス
a)と、アルカリ金属を含まず、アルカリ土類金
属のCaを含む結晶化ガラス(結晶化ガラス−
b)、CaO−SrO−TiO2系のセラミツクス基板
(セラミツクスc)をそれぞれ準備し、前述と同
様にして、磁気ヘツドを作成した。金属鉄粉を主
成分の磁気記録媒体とし、有機高分子のベースフ
イルムに塗布した、いわゆる「メタルラープ」を
用い、磁気ヘツドの、電気特性、及び耐摩耗性、
耐環境性を調べた。ラープ、ヘツドの相対速度を
約3.8rn/secとし、テープを磁気ヘツドに摺動さ
せて、特性を評価した。通常の環境、23℃、湿度
50%では、基板による磁気ヘツドの特性の差異は
認められなかつたが、測定条件が23℃、湿度10%
では、結晶化ガラスa,b、とセラミツクスcの
基板を用いた磁気ヘツドでは、測定開始後、数時
間でペツト出力が数dB低下した。しかるに、本
発明の基板を用いたものでは、出力の低下は認め
られなかつた。他の出下低下を生じた磁気ヘツド
を詳しく観察すると、基板表面上に、磁気テープ
の金属粉が付着し、表面に凹凸が生じていた。更
に、他の環境条件、高温多湿、高温低温低温高
湿、低温高湿でも、本発明のMgMnO2を基板と
した磁気ヘツドでは、電気特性、耐摩耗性、耐環
境性とも問題を生せず、安定した特性を示した。
一方、他の基板材料を用いた磁気ヘツドでは、前
述の例の様に、耐環境試験で、出力の低下の生じ
たり、耐摩耗性が劣下したり、又磁気テープと磁
気ヘツドの、摩擦が大きくなつて、磁気テープが
走行しなくなるなどの問題が生じた。なお、この
MgMnO2基板の熱膨張係数は120×10-7/℃であ
つた。本発明で用いる磁性材料は、その熱膨張係
数が100〜130×10-71/℃であるため、この熱膨
張係数の範囲以外の値を持つ基板材料は、使用で
きない。又、磁気テープとの摺動においては、通
常、材料の耐摩耗性が各結晶面と結晶方位によつ
て異なるため、出来るだけ、対称性の良い結晶構
造を持つものが好ましい。これらの点からも、本
発明で用いる基板材料は、要求条件にかなつたも
のである。通常、立方晶系の遷移金属酸化物は、
熱膨張係数が100×10-7/℃以下であり、上記の
要求熱膨張係数のものが得られにくかつた。しか
るに本発明では、Mgを含有させることにより、
熱膨張係数を大きくし、かつ、Mg含有酸化物
か、耐環境性においても、優れを特性を有するこ
とを見出し、本発明に致つたものである。
Description of Examples Example 1 40.5 g and 125.6 g of special reagent grade magnesium oxide and manganese carbonate were weighed, respectively, and mixed in a wet ball mill for 16 hours, and then dried at 120°C. Add 10% by weight of pure water based on the raw material powder to the dried mixed powder, granulate it, and granulate it at a pressure of 300Kg/ cm2 .
Molded in a mold. Wrap the molded body in alumina powder,
Place it in a SiC mold and heat it at 1200 to 1300℃ for 1 hour at a pressure of 300Kg/ cm2 while flowing N2 gas from the surrounding area.
Hot pressed. A sample for X-ray diffraction was cut out from the obtained sintered body, and the phases were identified by powder X-ray diffraction. The sintered body has a cubic crystal system.
It was confirmed that it was MgMnO 2 . In addition, a part of the sintered body was taken out and subjected to a scanning electron microscope (SEM).
The pores inside the sintered body were observed. the result,
By comparing the porosity of other standard specimens, the sintered body was found to be a high-density sintered body with a porosity of 0.3% or less. This MgMnO 2 sintered body is
Cut with a diamond cutter and use SiC abrasive grains and diamond abrasive grains sequentially to improve surface smoothness.
Polished to Ramax 0.1 μm. Using this MgMnO 2 substrate, a magnetic head as shown in FIG. 1 was fabricated using a thin film formation method. 1 in the figure is the board, 2
is a magnetic gap, 3 is an insulating layer, 4 is an amorphous metal magnetic film, and 5 is a window for the number of turns.
In the process of creating the magnetic head, an insulating layer mainly composed of SiO 2 is formed to a thickness of approximately 1 μm using a sputtering device on a well-washed clean substrate. Next, a soft magnetic film of amorphous metal (thermal expansion coefficient: 115×10 -7 /°C) with Co as the main component and two metals selected from Nb, Zr, W, Ta, and Ti is coated with a thickness of 5 to 10 μm. The film is formed to have a film thickness of . This operation is repeated to form a three-layer amorphous magnetic film, which is used as a magnetic core material to produce A and B in Figure 1. A groove is formed in B to serve as a window for winding wires 1-5, and a thin film layer is formed using a sputter on the gap forming glass on the magnetic gap forming surface side of both parts A and B. Finally, in A, Part B is hot bonded. A magnetic head was created by winding this bonded body with wire. For comparison, a substrate with a thermal expansion coefficient of 110 to 120×10 -7 /°C was used.
Crystallized glass that contains alkali metals (crystalline glass a) and crystallized glass that does not contain alkali metals but contains alkaline earth metal Ca (crystallized glass -
b) CaO-SrO-TiO 2 -based ceramic substrates (ceramics c) were prepared, and a magnetic head was fabricated in the same manner as described above. Using so-called "Metallarp", a magnetic recording medium whose main component is metallic iron powder and coated on an organic polymer base film, we investigated the electrical properties and abrasion resistance of the magnetic head.
Environmental resistance was investigated. The characteristics were evaluated by sliding the tape against the magnetic head at a relative speed of about 3.8 rn/sec. Normal environment, 23℃, humidity
At 50%, no difference was observed in the characteristics of the magnetic head depending on the substrate, but the measurement conditions were 23°C and 10% humidity.
In the case of magnetic heads using substrates of crystallized glasses A and B and ceramic C, the PET output decreased by several dB within several hours after the start of measurement. However, in the case of using the substrate of the present invention, no decrease in output was observed. When we closely observed other magnetic heads that suffered from a drop in head height, we found that metal powder from the magnetic tape had adhered to the surface of the substrate, creating irregularities on the surface. Furthermore, under other environmental conditions, such as high temperature and high humidity, high temperature, low temperature, low temperature and high humidity, and low temperature and high humidity, the magnetic head using the MgMnO 2 substrate of the present invention does not have any problems in electrical properties, wear resistance, and environmental resistance. , showed stable characteristics.
On the other hand, with magnetic heads using other substrate materials, as in the example mentioned above, environmental resistance tests have shown that output decreases, wear resistance deteriorates, and the friction between the magnetic tape and magnetic head increases. This caused problems such as the magnetic tape becoming unable to run. Furthermore, this
The thermal expansion coefficient of the MgMnO 2 substrate was 120×10 -7 /°C. Since the magnetic material used in the present invention has a coefficient of thermal expansion of 100 to 130×10 −7 1/° C., a substrate material having a coefficient of thermal expansion outside this range cannot be used. Furthermore, when sliding with a magnetic tape, since the wear resistance of the material usually differs depending on each crystal plane and crystal orientation, it is preferable to use a material with a crystal structure that is as symmetrical as possible. From these points as well, the substrate material used in the present invention meets the required conditions. Typically, cubic transition metal oxides are
The thermal expansion coefficient was 100×10 -7 /°C or less, making it difficult to obtain the above-mentioned required thermal expansion coefficient. However, in the present invention, by containing Mg,
It was discovered that the Mg-containing oxide has a large coefficient of thermal expansion and also has excellent environmental resistance, leading to the present invention.

実施例 2 試薬特級酸化マグネシウム40.5g、試薬特級酸
化ニツケル74.8gを実施例1と同様にして、混
合、乾燥、成形し、ホツトプレスして、高密度を
セラミツクスを作成した。このセラミツクスは、
X線解析により、立方晶系のMgNiO2と同定され
た。又、SEM観察熱分析等により、気孔率は0.2
%以下の高密度焼結体であり、熱膨張係数が125
×10-71/℃である事が確認された。この
MgNiO2を基板として、実施例1と同様にして、
Mn−Zn−フエライト(熱膨張係数120×10-7
℃)をスパツタにて、膜厚20〜30μmの膜を形成
した。比較のため、他の基板材料、結晶化ガラス
ペロブスカイト構造のBaTiO3系材料、等を用い
て、同様に磁気ヘツドを作成した。磁気テープと
して、金属Coを主成分とした蒸着テープを用い
て、磁気ヘツド特性の評価を行つた。その結果、
結晶化ガラスを基板に用いたものでは、磁気テー
プが磁気ヘツドと密着し、走行しなかつたり、走
行しても、出力のバラツキが生じる等の問題を生
じた。一方、ペロブスカイト構造のBaTiO3系材
料を、基板に用いた磁気ヘツドは、磁気ヘツド摺
動面に、基板の結晶粒子に凹凸が生じ、耐摩耗性
及び、いわゆるスペーシングロスによる出力低下
という問題を生じた。しかるに、本発明の
MgNiO2を基板に用いた磁気ヘツドでは、耐摩耗
性、耐環境性、電気特性等において、問題を生ぜ
す、安定した特性を示した。
Example 2 40.5 g of special reagent grade magnesium oxide and 74.8 g of special reagent grade nickel oxide were mixed, dried, molded, and hot pressed in the same manner as in Example 1 to produce high-density ceramics. This ceramics is
It was identified as cubic system MgNiO 2 by X-ray analysis. In addition, the porosity was found to be 0.2 by SEM observation and thermal analysis.
It is a high-density sintered body with a thermal expansion coefficient of 125% or less.
It was confirmed that the temperature was ×10 -7 1/℃. this
In the same manner as in Example 1 using MgNiO 2 as a substrate,
Mn−Zn−ferrite (thermal expansion coefficient 120×10 -7 /
℃) was sputtered to form a film with a thickness of 20 to 30 μm. For comparison, magnetic heads were similarly fabricated using other substrate materials, such as a BaTiO 3 -based material with a crystallized glass perovskite structure. The characteristics of the magnetic head were evaluated using a vapor-deposited tape whose main component was Co as a magnetic tape. the result,
In those using crystallized glass as a substrate, problems such as the magnetic tape coming into close contact with the magnetic head caused the magnetic tape not to run, or even if it did run, the output varied. On the other hand, magnetic heads using a BaTiO 3 material with a perovskite structure for the substrate have unevenness in the crystal grains of the substrate on the sliding surface of the magnetic head, which causes problems in wear resistance and a decrease in output due to so-called spacing loss. occured. However, the present invention
Magnetic heads using MgNiO 2 as a substrate have shown stable characteristics in terms of wear resistance, environmental resistance, electrical properties, etc., which can cause problems.

この様に本発明の磁気ヘツドでは、特に磁気テ
ープによる摺動に対して、安定な特性を有するも
のである。実施例1、実施例2では非晶質合金の
軟磁性膜とフエライト膜について述べたが、高磁
気記録密度用の、高保磁力を有する磁気テープ、
デイスク等を用いた場合では、信号を書き込むた
めの高磁界が必要となるため磁気ヘツドにも、高
磁束密度を有する金属磁性体を使用しなければな
らない。一方、磁気ヘツドには、記録媒体と摺動
させて信号を書き込んだり、再生したりするので
耐摩耗性を兼ねそなえなければならない。よつ
て、本発明者等は、これらの特性を持つ、Co−
M−M′で表わされる非晶質合金を、軟磁性膜と
して使用するものである。ここで、M−M′は、
Nb、Zr、W、Ta、Tiのうちから選ばれたもの
である。
As described above, the magnetic head of the present invention has stable characteristics, especially against sliding motion with a magnetic tape. In Examples 1 and 2, a soft magnetic film and a ferrite film of an amorphous alloy were described, but a magnetic tape with high coercive force for high magnetic recording density,
When a disk or the like is used, a high magnetic field is required to write signals, so a magnetic metal material with a high magnetic flux density must be used for the magnetic head as well. On the other hand, since the magnetic head writes and reproduces signals by sliding on the recording medium, it must also have wear resistance. Therefore, the present inventors have developed Co-
An amorphous alloy represented by M-M' is used as a soft magnetic film. Here, M−M′ is
It is selected from Nb, Zr, W, Ta, and Ti.

本発明は実施例1、実施例2に記載された、
MgMnO2、MgNiO2のみに言及するものではな
く、Mgとその他の遷移金属と組み合せた複合酸
化物についても、同様の効果が得られるものであ
る。さらに、本発明の磁気ヘツドは、実施例1実
施例2に述べた磁気ヘツド作成法のみに限定する
ものではない。
The present invention is described in Example 1 and Example 2,
The present invention does not refer only to MgMnO 2 and MgNiO 2 , but also applies to composite oxides in which Mg and other transition metals are combined to obtain similar effects. Furthermore, the magnetic head of the present invention is not limited to the magnetic head manufacturing method described in Embodiment 1 and Embodiment 2.

発明の効果 本発明は、磁気テープとの摺動において、問題
を生じることなく、安定した性能を有し、耐環境
性、耐摩耗性に優れ又高密度磁気記録に対応した
磁気ヘツドである。
Effects of the Invention The present invention provides a magnetic head that exhibits stable performance without causing any problems in sliding with a magnetic tape, has excellent environmental resistance and abrasion resistance, and is compatible with high-density magnetic recording.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明に関わる磁気ヘツドの一例を示す
図である。 1……基板、2……磁気ギヤツプ、3……絶縁
層、4……磁性膜、5……巻き線用の窓。
The figure shows an example of a magnetic head related to the present invention. 1... Substrate, 2... Magnetic gap, 3... Insulating layer, 4... Magnetic film, 5... Winding window.

Claims (1)

【特許請求の範囲】 1 Mgと1種類以上の遷移金属元素からなる複
合酸化物を主成分とし、非磁性でかつ立方晶系の
結晶構造を有する基板を用い、この基板に軟磁性
金属もしくは軟磁性フエライトを磁気コアとし
て、接合もしくは接着、又は、薄膜形成法を用い
て、この基板上に単層もしくは、絶縁層と交互に
積層した磁性膜を形成することにより構成したこ
とを特徴とする磁気ヘツド。 2 基板の熱膨長係数が100〜130×10-7/℃であ
ることを特徴とする特許請求の範囲第1項記載の
磁気ヘツド。 3 軟磁性金属としてCo−M−M′(M.M′はNb、
Zr、W、Ta、Tiの内から選ばれた金属)を主性
分とする非晶質合金膜を用いた事を特徴とする特
許請求の範囲第1項記載の磁気ヘツド。
[Scope of Claims] 1. A substrate that is mainly composed of a composite oxide consisting of Mg and one or more transition metal elements, is nonmagnetic, and has a cubic crystal structure, and is coated with a soft magnetic metal or soft A magnetic device characterized in that it is constructed by forming a single layer or a magnetic film alternately laminated with insulating layers on this substrate using magnetic ferrite as a magnetic core and using bonding, adhesion, or a thin film formation method. Head. 2. The magnetic head according to claim 1, wherein the substrate has a thermal expansion coefficient of 100 to 130×10 -7 /°C. 3 Co-M-M′ (MM′ is Nb,
2. A magnetic head according to claim 1, characterized in that an amorphous alloy film is used whose main component is a metal selected from among Zr, W, Ta, and Ti.
JP23262484A 1984-11-05 1984-11-05 Magnetic head Granted JPS61110310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23262484A JPS61110310A (en) 1984-11-05 1984-11-05 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23262484A JPS61110310A (en) 1984-11-05 1984-11-05 Magnetic head

Publications (2)

Publication Number Publication Date
JPS61110310A JPS61110310A (en) 1986-05-28
JPH051523B2 true JPH051523B2 (en) 1993-01-08

Family

ID=16942239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23262484A Granted JPS61110310A (en) 1984-11-05 1984-11-05 Magnetic head

Country Status (1)

Country Link
JP (1) JPS61110310A (en)

Also Published As

Publication number Publication date
JPS61110310A (en) 1986-05-28

Similar Documents

Publication Publication Date Title
US5168407A (en) Flying magnetic head
US5034285A (en) Magnetic head
JPH051523B2 (en)
JPH03165305A (en) Magnetic head
JPS61192006A (en) Magnetic head
US6136459A (en) Nonmagnetic substrate and magnetic head using the same
JPS61202310A (en) Composite type magnetic head
JP2586639B2 (en) Substrate material for magnetic head and magnetic head using the same
JPS58118015A (en) Magnetic head
JPS6337819A (en) Floating type magnetic head for magnetic disk device
JPS597130B2 (en) Method for manufacturing thin film magnetic head substrate
JPS62295207A (en) Floating type magnetic head for magnetic disk
JPH02154307A (en) Substrate material for magnetic head and magnetic head
JPH0580044B2 (en)
JP3272738B2 (en) Soft magnetic multilayer
JPH01233713A (en) Substrate material for magnetic head
JPH077491B2 (en) Flying magnetic head
JPH0637320B2 (en) Substrate material for magnetic head
JPH05319896A (en) Nonmagnetic ceramics
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH05128424A (en) Production of laminated magnetic head
JPS63279410A (en) Thin film magnetic head
JPH08255308A (en) Production of composite magnetic head
JPS6192408A (en) Magnetic head
JPH03116410A (en) Substrate material for magnetic head and magnetic head using the material