JPH03116410A - Substrate material for magnetic head and magnetic head using the material - Google Patents
Substrate material for magnetic head and magnetic head using the materialInfo
- Publication number
- JPH03116410A JPH03116410A JP25332089A JP25332089A JPH03116410A JP H03116410 A JPH03116410 A JP H03116410A JP 25332089 A JP25332089 A JP 25332089A JP 25332089 A JP25332089 A JP 25332089A JP H03116410 A JPH03116410 A JP H03116410A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- magnetic
- magnetic head
- tape
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 42
- 239000000463 material Substances 0.000 title claims abstract description 30
- 239000000696 magnetic material Substances 0.000 claims abstract description 22
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 9
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims abstract description 8
- 229910000702 sendust Inorganic materials 0.000 claims description 3
- 229910000889 permalloy Inorganic materials 0.000 claims description 2
- 239000011521 glass Substances 0.000 abstract description 10
- 239000000853 adhesive Substances 0.000 abstract description 4
- 230000001070 adhesive effect Effects 0.000 abstract description 4
- 125000006850 spacer group Chemical group 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 11
- 239000011162 core material Substances 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- WEUCVIBPSSMHJG-UHFFFAOYSA-N calcium titanate Chemical compound [O-2].[O-2].[O-2].[Ca+2].[Ti+4] WEUCVIBPSSMHJG-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は軟磁性金属膜を蒸着するための非fi性の磁
気ヘッド用基板材料およびそれを用いた磁気へラドに関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a non-fi magnetic head substrate material for depositing a soft magnetic metal film and a magnetic helad using the same.
従来の技術 従来より磁気ヘッド用コア材として、加工性。Conventional technology Traditionally, it has good workability as a core material for magnetic heads.
耐摩耗性が良いという特長からフェライトが広く使用さ
れているが、飽和磁束密度BSが合金材料に比べて30
〜50%低い、従って、近年登場してきた高保磁力の高
密度記録媒体に使用した場合、ヘッドコア材料の磁気飽
和が問題となりまた、フェライト材料は合金材料に比べ
、テープ走行時に摺動ノイズの発生が大きい為S/Nが
劣るという欠点がある。この様な観点から高密度記録媒
体の対応ヘッドとして、センダストや非晶質の金属磁性
材料がヘッド用コア材料に供されている。金属磁性材料
を使用したヘッドは第3図に示すようにギャップ5の形
成されたテープ摺動面の金属磁性材料4が非磁性の基板
材料3で挟まれたいわゆるサンドインチ構造をしている
。この時の非磁性の基板材料として、結晶化ガラスがあ
る。このとき問題となるのは第4図に模式図で示したよ
うにテープ走行したときの基板lと金属磁性材料2の段
差いわゆる偏摩耗が問題となる。即ち基板に対して磁性
材料が落ち込むことによるスペーシングロスによるヘッ
ド出力の低下である。Ferrite is widely used because of its good wear resistance, but its saturation magnetic flux density BS is 30% lower than that of alloy materials.
~50% lower. Therefore, when used in high-density recording media with high coercive force that has appeared in recent years, magnetic saturation of the head core material becomes a problem, and ferrite materials are less likely to generate sliding noise during tape running than alloy materials. Since it is large, it has the disadvantage of poor S/N ratio. From this point of view, sendust and amorphous metal magnetic materials are used as head core materials for heads compatible with high-density recording media. A head using a metal magnetic material has a so-called sand inch structure in which a metal magnetic material 4 on the tape sliding surface with a gap 5 formed therein is sandwiched between non-magnetic substrate materials 3, as shown in FIG. Crystallized glass is used as a non-magnetic substrate material at this time. In this case, as shown schematically in FIG. 4, a problem arises in that there is a difference in level between the substrate 1 and the metal magnetic material 2 when the tape runs, so-called uneven wear. That is, the head output is reduced due to spacing loss due to the magnetic material falling against the substrate.
この様な問題点の解決として高密度記録媒体として特に
金属蒸着テープ対応用磁気ヘッド基板材料として、チタ
ン酸カルシウム(CaTiO3)系のセラミック材料が
提案されていた。所がこのような材料で構成されたセラ
ミック基板は機械加工性が非常に悪く例えばダイヤモン
ドカッターによる切断速さは、フェライト材料の175
〜1/lOと悪く磁気ヘッドの量産が難しかった。As a solution to these problems, a calcium titanate (CaTiO3) based ceramic material has been proposed as a material for a magnetic head substrate for high-density recording media, particularly for metal-deposited tapes. However, ceramic substrates made of such materials have very poor machinability, and the cutting speed with a diamond cutter, for example, is 175 times faster than that of ferrite materials.
~1/1O, making mass production of magnetic heads difficult.
発明が解決しようとする課題
金属磁性材料が非磁性の基板材料で挟まれたいわゆるサ
ンドイッチ構造の磁気ヘッドにおいてテープ走行したと
きの基板と金属磁性材料の段差いわゆる偏摩耗が少なく
、即ち基板に対して磁性材料が落も込むことによるスペ
ーシングロスによるヘッド出力の低下がなく、機械加工
性の良い基板材料を得る。Problem to be Solved by the Invention In a magnetic head with a so-called sandwich structure in which a metal magnetic material is sandwiched between non-magnetic substrate materials, there is little level difference between the substrate and the metal magnetic material, so-called uneven wear, when the tape runs, that is, with respect to the substrate. To obtain a substrate material with good machinability without deterioration of head output due to spacing loss caused by magnetic material falling in.
課題を解決するための手段
磁気ヘッド用基板材料としてCuO−CoOを主体とし
た酸化物からなるセラミンク材料で構成する。Means for Solving the Problems The substrate material for the magnetic head is composed of a ceramic material made of an oxide mainly composed of CuO--CoO.
作用
基板が金属磁性材料と熱膨張係数が一致しているので、
薄膜作製装置を用いて磁性膜が作製でき、また、Mn−
Znフェライトに近い機械加工が可能であり、これを基
板に用いた磁気ヘッドはテープ走行しても基板と合金磁
性材料の段差いわゆる偏摩耗が少なくなるので、ヘッド
出力の低下がな(安定したヘッド出力が得られる。Since the working substrate has the same thermal expansion coefficient as the metal magnetic material,
A magnetic film can be produced using a thin film production device, and Mn-
It is possible to perform machining similar to that of Zn ferrite, and magnetic heads using Zn ferrite as a substrate will have fewer steps between the substrate and the alloy magnetic material, so-called uneven wear, even when the tape is running, so there will be no drop in head output (a stable head). I get the output.
実施例
以下本発明の一実施例の磁気ヘッド用基板材料について
図面を用いて説明する。EXAMPLE Hereinafter, a substrate material for a magnetic head according to an example of the present invention will be explained with reference to the drawings.
実施例1 第1表に示した組成になる様にCub、Co。Example 1 Cub, Co to have the composition shown in Table 1.
を秤量し、ボールミルで16時時間式混合した後、乾燥
後空気中800°C1時間仮焼した後再びボールミルで
16時時間式混合した後、乾燥後水をバインダーとして
加え、油圧プレスで金型を用い500 kg/cdで成
形した後、空気中で1CoO°C2時間300 kg/
cdで加圧保持しホットプレス焼結した。こうして得ら
れた焼結体の熱膨張係数および同一寸法の焼結体をダイ
ヤモンドカッターで切断した時のスピンドルモータの負
荷電流値を同一寸法のMn−Znフェライト切断時を1
に規格化した値を機械加工性として第1表に示す。いず
れの材料もチタン酸カルシウム(CaTiO3)よりも
小さく、切断が容易であり、フェライトに近い加工性を
示す。were weighed, mixed for 16 hours in a ball mill, dried, calcined in the air at 800°C for 1 hour, mixed again for 16 hours in a ball mill, added water as a binder after drying, and molded in a hydraulic press. After molding at 500 kg/cd using
Hot press sintering was carried out by holding pressure with CD. The thermal expansion coefficient of the sintered body obtained in this way and the load current value of the spindle motor when cutting the sintered body of the same size with a diamond cutter are 1 when cutting the Mn-Zn ferrite of the same size.
Table 1 shows the values normalized to machinability. Both materials are smaller than calcium titanate (CaTiO3), easy to cut, and exhibit workability close to that of ferrite.
(以 下 余 白)
第
表
実施例2
本発明の第2の実施例の磁気ヘッドについて第1図、第
2図を用いて説明する。第1表に示した組成の焼結体を
基板材料として鏡面研磨し十分洗浄して基板6として、
真空槽内を3 X 10” Torrに排気した後、A
rガスを導入して2X102Torrとし、ターゲット
組成として
COs+Nb+3Zraをスパツクして30μの非晶質
合金膜7を作製した。他方基板6と同し材料の基板9を
、接着用ガラス槽8を介して接着を行いコアを得た0次
にギヤツブ突き合わせ面に巻線窓10を加工した後、突
き合わせ面をダイヤモンドペーストで鏡面に加工した後
、この面にギャップスペーサ材とし5i02を所定の厚
みにスパツクして、ギャップ形成用の片側が完成する。(Margin below) Table Embodiment 2 A magnetic head according to a second embodiment of the present invention will be described with reference to FIGS. 1 and 2. A sintered body having the composition shown in Table 1 is used as a substrate material, mirror-polished and thoroughly cleaned to form a substrate 6.
After evacuating the vacuum chamber to 3 x 10” Torr,
An amorphous alloy film 7 having a thickness of 30 μm was prepared by introducing r gas to set the pressure to 2×10 2 Torr and sputtering COs+Nb+3Zra as a target composition. A substrate 9 made of the same material as the other substrate 6 was bonded through a glass bonding tank 8 to obtain a core. After processing a winding window 10 on the abutting surface of the gear gear, the abutting surface was mirror-finished with diamond paste. After processing this surface, 5i02 is spun as a gap spacer material to a predetermined thickness to complete one side for forming a gap.
このブロックと全く同じ構造6′〜9′からなる積層コ
ア半休を突き合わせ、接着用ガラス11によりギャップ
形成を行った。この1対のバーより所定のヘッドの切り
出しヘッドを完成した。なお比較例として結晶化ガラス
を基板として用いたヘッドも合わせて作製した。A half laminated core having exactly the same structure 6' to 9' as this block was butted against each other, and a gap was formed using adhesive glass 11. A predetermined head was cut out from this pair of bars. As a comparative example, a head using crystallized glass as a substrate was also produced.
これらのヘッドをビデオテープレコーダ(ヘッドテープ
相対速度3.8m/秒)に取り付け、金属蒸着テープを
用いてテープ走行試験をした所、結晶化ガラス基板を用
いたヘッドでは、ヘッド出力の大きな低下が見られたの
に対して、本発明の材料を基板に用いたヘッドでは、安
定した出力が得られた。金属蒸着テープ走行100時間
後の基板と金属磁性材料の段差及びヘッド出力を第2表
に示す。When these heads were attached to a video tape recorder (head-tape relative speed 3.8 m/sec) and a tape running test was conducted using metallized tape, it was found that the head output using the crystallized glass substrate was significantly reduced. In contrast, stable output was obtained with the head using the material of the present invention for the substrate. Table 2 shows the level difference between the substrate and the metal magnetic material and the head output after 100 hours of running the metal-deposited tape.
第2表
なおへンド出力は、初期値をOdBとした場合の値を示
した。第2表の基板材料は組成を限定しなかったが、特
許請求の範囲であればほぼ同じ結果であった。Table 2 shows the output values when the initial value is OdB. Although the composition of the substrate materials in Table 2 was not limited, almost the same results were obtained as long as the claims were within the scope of the claims.
本願でCuO20〜90モル%、CoO10〜80モル
%と限定したのはこの範囲を越えると熱膨張係数が13
0×107/°C以上もしくは100xlO”/”C以
下となり非晶質合金をスパッター装置等により蒸着する
と合金膜が剥離する恐れがある為である。又、CuOが
90モル%以上もしくはCoOが80モル%以上になる
と焼結性が悪(なり十分緻密な焼結体が得られない。な
お数%内のレベルでの他の酸化物や場合により窒化物や
炭化物等の混入は熱膨張係数及び機械加工性が損なわな
ければ許されるものである。又、非晶質合金膜としては
メタル−メタル系であるC0−M (MはNb、Ti、
Ta、Zr、W等の金属元素より選ばれる少なくとも一
種)やG o −M’−M” (M’ 、M”は上記M
で示された金属元素より選ばれる少なくとも一種)はも
とより Si。In this application, we have limited CuO to 20 to 90 mol% and CoO to 10 to 80 mol%, because if this range is exceeded, the thermal expansion coefficient will be 13.
This is because if the temperature is 0x107/°C or higher or 100xlO"/"C or lower and an amorphous alloy is deposited using a sputtering device or the like, the alloy film may peel off. In addition, if CuO exceeds 90 mol% or CoO exceeds 80 mol%, sintering properties will be poor (and a sufficiently dense sintered body will not be obtained. The inclusion of nitrides, carbides, etc. is permissible as long as it does not impair the coefficient of thermal expansion and machinability.Also, as an amorphous alloy film, C0-M (M is Nb, Ti,
at least one selected from metal elements such as Ta, Zr, W, etc.) or Go-M'-M"(M',M" are the above M
(at least one selected from the metal elements shown in ) as well as Si.
B、C,Pを含むメタル−メタロイド系等についても特
に不都合はない、なお、上記実施例中ではへラドコアが
一層の金属磁性材料について述べたが、磁性材料と眉間
m縁材を交互に構成した積層コアーについても同様の効
果があるものである。There is no particular disadvantage in metal-metalloid systems containing B, C, and P.Although in the above embodiment, the helad core is a layer of metal magnetic material, it is also possible to alternately configure the magnetic material and the glabella m-edge material. A similar effect can be obtained with the laminated core.
センダスト合金についても組成の限定は特になく、Fe
−3t −A1合金組成で効果がある。There is no particular limitation on the composition of sendust alloy, and Fe
-3t -A1 alloy composition is effective.
この事は同様に合金磁性材料であるパーマロイ(鉄ニツ
ケル系合金)についても、同様の効果が期待できる。Similar effects can be expected for permalloy (iron-nickel alloy), which is an alloy magnetic material.
発明の効果
CuO−CoOを主体とした酸化物からなるセラミック
材料を磁気ヘッドに用いる事により、従来のチタン酸カ
ルシウム(CaTiO9)に比べて機械加工性が良いの
で加工し易く、これを基板材料とした磁気へンドは、熱
膨張係数が非晶質合金とほぼ同じであるのでスパッター
装置等により蒸着しても合金膜が剥離する心配がない。Effects of the invention By using a ceramic material made of oxides mainly composed of CuO-CoO for the magnetic head, it has better machinability than the conventional calcium titanate (CaTiO9), making it easier to process. Since the thermal expansion coefficient of the magnetic head is almost the same as that of the amorphous alloy, there is no fear that the alloy film will peel off even if it is deposited using a sputtering device or the like.
金属磁性材料が非磁性の基板材料で挟まれたいわゆるサ
ンドインチ構造の磁気ヘッドにおいてテープ走行したと
きの基板と金属磁性材料の段差いわゆる偏摩耗が結晶化
ガラス基板に比べて少なく、即ち基板に対して磁性材料
が落ち込むことによるスペーシングロスによるヘッド出
力の低下がな(、したがって安定した出力が得られ、信
転の高い磁気ヘッドが供給できる。When a tape runs in a magnetic head with a so-called sand inch structure in which a metal magnetic material is sandwiched between non-magnetic substrate materials, there is less uneven wear between the substrate and the metal magnetic material than with a crystallized glass substrate. There is no drop in head output due to spacing loss due to the fall of the magnetic material (therefore, stable output can be obtained, and a magnetic head with high reliability can be provided).
第1図は本発明の一実施例における磁気ヘッドのテープ
摺動面を示す正面図、第2図はその側面図、第3図は従
来と本発明の磁気ヘッドのテープ摺動面を示す正面図、
第4図は従来の磁気ヘッドのテープ摺動面の断面図であ
る。
6.6゛・・・・・・基板、7,7°・・・・・・非晶
質合金、8,8゛・・・・・・接着用ガラス層、9,9
°・・・・・・基板、10・・・・・・巻線窓、11・
・・・・・接着用ガラス、12・・・・・・ギャップ。
第
1
図
第
図
IO−,4球も
+1−−−↑を1軍り′ラズ
5−−−ギヤノア
t−5級
2−−を属猶挫N糾FIG. 1 is a front view showing a tape sliding surface of a magnetic head according to an embodiment of the present invention, FIG. 2 is a side view thereof, and FIG. 3 is a front view showing a tape sliding surface of a conventional magnetic head and a magnetic head of the present invention. figure,
FIG. 4 is a sectional view of the tape sliding surface of a conventional magnetic head. 6.6゛...Substrate, 7,7°...Amorphous alloy, 8,8゛...Glass layer for adhesion, 9,9
°... Board, 10... Winding window, 11.
...Adhesive glass, 12...Gap. Figure 1 Figure IO-, 4th ball also +1---↑ in the 1st team'Raz 5---Giyanoa t-5 class 2-- belongs to N.
Claims (6)
を特徴とする磁気ヘッド用基板材料。(1) A substrate material for a magnetic head characterized by being made of an oxide mainly consisting of CuO-CoO.
%からなることを特徴とする磁気ヘッド用基板材料。(2) A substrate material for a magnetic head characterized by comprising 20-90 mol% of CuO and 10-80 mol% of CoO.
を有することを特徴とする請求項(1)記載の磁気ヘッ
ド用基板材料。(3) Thermal expansion coefficient is 100 to 130 x 10^-^7/℃
The substrate material for a magnetic head according to claim 1, characterized in that it has the following.
テープ摺動面が、磁性体を基板で挟んだサンドイッチ構
造からなり、前記基板材料が CuO−CoOを主体とした酸化物からなる材料で構成
された磁気ヘッド。(4) At least the tape sliding surface of the head chip that comes into contact with the magnetic tape has a sandwich structure in which a magnetic material is sandwiched between substrates, and the substrate material is made of a material consisting of an oxide mainly consisting of CuO-CoO. magnetic head.
の磁気ヘッド。(5) The magnetic head according to claim (4), wherein the magnetic material is made of an amorphous alloy.
金からなる請求項(4)記載の磁気ヘッド。(6) The magnetic head according to claim (4), wherein the magnetic material is made of Sendust alloy or Permalloy alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25332089A JPH03116410A (en) | 1989-09-28 | 1989-09-28 | Substrate material for magnetic head and magnetic head using the material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25332089A JPH03116410A (en) | 1989-09-28 | 1989-09-28 | Substrate material for magnetic head and magnetic head using the material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03116410A true JPH03116410A (en) | 1991-05-17 |
Family
ID=17249662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25332089A Pending JPH03116410A (en) | 1989-09-28 | 1989-09-28 | Substrate material for magnetic head and magnetic head using the material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03116410A (en) |
-
1989
- 1989-09-28 JP JP25332089A patent/JPH03116410A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0081239A2 (en) | Magnetic head | |
US5585984A (en) | Magnetic head | |
US3639701A (en) | Magnetic recording head having a nonmagnetic ferrite gap | |
US5168407A (en) | Flying magnetic head | |
US5034285A (en) | Magnetic head | |
JPH03116410A (en) | Substrate material for magnetic head and magnetic head using the material | |
JPS5888814A (en) | Magnetic head | |
JP2586639B2 (en) | Substrate material for magnetic head and magnetic head using the same | |
JPH02154307A (en) | Substrate material for magnetic head and magnetic head | |
JP3127075B2 (en) | Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film | |
JPS58118015A (en) | Magnetic head | |
JPS63112809A (en) | Magnetic head | |
JP2933638B2 (en) | Manufacturing method of magnetic head | |
JPS6337819A (en) | Floating type magnetic head for magnetic disk device | |
KR100232141B1 (en) | Manufacturing method of magnetic head | |
JPS6215805A (en) | Magnetic head | |
JPS61104412A (en) | Magnetic head | |
JPS63302406A (en) | Magnetic head | |
KR950011127B1 (en) | Magnetic head | |
EP1548708A1 (en) | Magnetic head and magnetic recording/reproducing device | |
JPS61208610A (en) | Magnetic metallic head consisting of soft magnetic metallic film | |
JPH05128424A (en) | Production of laminated magnetic head | |
JPH0386905A (en) | Magnetic head and production of magnetic head | |
JPS6267712A (en) | Production of alloy magnetic head | |
JPS6288112A (en) | Floating type magnetic head stable in reproducing output |