JPS6288112A - Floating type magnetic head stable in reproducing output - Google Patents

Floating type magnetic head stable in reproducing output

Info

Publication number
JPS6288112A
JPS6288112A JP22833085A JP22833085A JPS6288112A JP S6288112 A JPS6288112 A JP S6288112A JP 22833085 A JP22833085 A JP 22833085A JP 22833085 A JP22833085 A JP 22833085A JP S6288112 A JPS6288112 A JP S6288112A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic head
head
thin films
alloy thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22833085A
Other languages
Japanese (ja)
Inventor
Kazumi Noguchi
野口 一美
Shunichi Nishiyama
俊一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP22833085A priority Critical patent/JPS6288112A/en
Publication of JPS6288112A publication Critical patent/JPS6288112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a magnetic head whose reproducing output is scarcely varied against a variation of a floating quantity, by crossing diagonally alloy thin films at 30-120 deg., when joining the alloy thin films on a pair of V-shaped substrates through a gap part. CONSTITUTION:Alloy thin films 3, 4 having a high saturation magnetic flux density are formed on V-shaped substrates 1, 2, and the substrates 1, 2 are joined through a magnetic gap 6. In that case, the alloy thin films, 3, 4 are crossed diagonally at an angle of 30-120 deg.. When such a head is used, its reproducing output becomes stable extremely against a variation of a floating quantity. Its reason is not clear, but it is considered that it is caused by a fact that a distribution of a magnetic flux which leaks from the magnetic gap is different from that of a magnetic head of a conventional constitution. Therefore, a head whose reproducing output is stable against a variation of the floating quantity being indispensable for a high density recording can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ヘッド、特にコンビ、−ターの外部記憶装
置に用いられる、記録媒体に対して極めて僅かの間隙を
保って浮上させ記録、再生を行なう磁気ヘッドに関する
ものであり、浮上時に安定した再生出力を得る事を目的
とするものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a magnetic head used in an external storage device for a combination, in particular, a magnetic head that is levitated with an extremely small gap relative to a recording medium for recording and reproducing. This relates to a magnetic head that performs this, and its purpose is to obtain a stable reproduction output while flying.

(従来の技術) 従来磁気記録媒体を高速で回転させ、記録再生を行なう
磁気ヘッドを浮上させて用いるいわゆる浮上型磁気ヘッ
ドとしては1)Nl−ZaあるいはMn −Z aフェ
ライトで構成された一体型のモノリシック型2)Mu−
Znからなる磁気コア部を非磁性スライダー中に埋設し
ガラスで固着したコンポジット型および3) At20
3−Tic等の非磁性スライダーの側面に磁気コア部を
設けたいわゆる薄膜ヘッドが用いられている。第5図は
モノリシック型磁気ヘッドの概略を示す図で25.26
はNi−2116るいはMn−Znフェライトであり、
27が磁気ギヤラグである。また第6図はコンポジット
型磁気ヘッドの概略図であり28は非磁性スライダー、
29は埋設固着された磁気コアで30が磁気ギヤラグそ
して31は磁気コアを固着するガラスを表わす。
(Prior Art) Conventional so-called floating magnetic heads, which are used to rotate a magnetic recording medium at high speed and levitate a magnetic head for recording and reproducing, are as follows: 1) An integrated type made of Nl-Za or Mn-Za ferrite. Monolithic type 2) Mu-
Composite type in which a magnetic core made of Zn is embedded in a non-magnetic slider and fixed with glass, and 3) At20
A so-called thin film head is used in which a magnetic core portion is provided on the side surface of a nonmagnetic slider such as 3-Tic. Figure 5 is a diagram showing the outline of a monolithic magnetic head.25.26
is Ni-2116 or Mn-Zn ferrite,
27 is a magnetic gear lug. FIG. 6 is a schematic diagram of a composite magnetic head, and 28 is a non-magnetic slider;
Reference numeral 29 represents an embedded magnetic core, 30 represents a magnetic gear lug, and 31 represents a glass to which the magnetic core is secured.

このコンポジット型磁気コアの拡大図を第7図に示した
。32が磁気ギャップでありがラス33で接合されたC
型34および1型35のMn−Znフェライトより構成
されている。記録媒体に対向するフェライト部分に切除
部36を施したのは狭トラツクを実現するための手段で
あり第7図中37がトラック巾に相当する。さらに第8
図は薄膜ヘッドの概略図でおり、38は機械的強度の優
れた例えばAt20.−T i Cのごとき酸化物非磁
性材料よりなるスライダーで磁気コア部39.40は該
スライダーの一側面すなわち浮上時の空気流出端側の側
面に位置する。第9図はこの磁気コア部を媒体対向面側
より眺めた場合の磁気だャッ″7’41を介して配置さ
れた磁性体の形状を示す。42.43が磁性体で、磁性
体としてはF・−N1合金をスノッタあるいはメッキ法
により成膜したものが用いられる場合が多い。
An enlarged view of this composite magnetic core is shown in FIG. 32 is a magnetic gap, and C is joined by a lath 33.
It is composed of Mn-Zn ferrites of type 34 and type 1 35. Cutting portions 36 are provided in the ferrite portion facing the recording medium as a means for realizing a narrow track, and 37 in FIG. 7 corresponds to the track width. Furthermore, the eighth
The figure is a schematic diagram of a thin film head, and 38 is made of At20. - The magnetic core portion 39,40 of the slider made of an oxide non-magnetic material such as T i C is located on one side of the slider, that is, on the side of the air outflow end when flying. FIG. 9 shows the shape of the magnetic material arranged through the magnetic hole 7' 41 when this magnetic core section is viewed from the medium facing surface side. 42 and 43 are the magnetic materials. In many cases, a film formed from an F.-N1 alloy by a snotter or plating method is used.

以上の様に従来より浮上型磁気記録装置に用いられてき
た磁気ヘッドとしては大別して上記の3種類が挙げられ
るが、これらはいずれも磁気ギヤラグ部の構成が、磁気
ギヤラグの両側の磁性体が単に平面上に形成されている
。すなわち平面形状の磁性体で磁気ギヤラグが形成され
ているという構成である点において共通である。かかる
ギヤラグ構成の磁気ヘッドにおいては後に詳述する様に
浮上量の変動に対して再生出力の変化率が大きいという
欠点を有することが発明者の詳細な検討により明らかと
なった。
As mentioned above, the magnetic heads conventionally used in floating magnetic recording devices can be broadly classified into the above three types, but in all of these, the structure of the magnetic gear lug is such that the magnetic body on both sides of the magnetic gear lug is It is simply formed on a flat surface. That is, they have a common structure in that the magnetic gear lug is formed of a planar magnetic material. Detailed studies by the inventors have revealed that the magnetic head having such a gear lug configuration has a disadvantage in that the rate of change in reproduction output is large with respect to fluctuations in flying height, as will be described in detail later.

一方、高密度記録を達成するためには記録媒体の記録時
における減磁を少なくする目的で一層保磁力の大きな記
録媒体を用いる様になってきている。この傾向に対して
磁気ヘッドとしては記録時に磁性体が磁気的飽和をする
と充分な記録が不可能となる。従って磁性体を飽和磁束
密度がsoo。
On the other hand, in order to achieve high-density recording, recording media with higher coercive force are being used in order to reduce demagnetization during recording. In contrast to this tendency, when a magnetic head undergoes magnetic saturation during recording, sufficient recording becomes impossible. Therefore, the saturation magnetic flux density of a magnetic material is soo.

〜5500G(がウス)と小さいMローza7エライト
よりさら&C7000G以上と大きな合金磁性材料を精
密加工の容易な薄膜として基板上に成膜し磁気ヘッドを
構成する試みが行われ℃いる。かかる観点からは磁性体
として高飽和磁束密度の磁性材料を用い磁気回路を構成
することが望ましく上述の従来の磁気ヘッドのうち薄膜
ヘッドは飽和磁束密度が9〜10kGにも達するF・−
N1合金薄膜を用いている点で有利であるが、先に述べ
た様に磁性部の構成の点で、浮上量に対する再生出力の
変化率が大きく好ましくない。
Attempts have been made to construct a magnetic head by depositing an alloy magnetic material as large as 7000G or more on a substrate as a thin film that is easy to precisely process, compared to the small Mlow za7 elite of ~5500G (gauss). From this point of view, it is desirable to construct a magnetic circuit using a magnetic material with a high saturation magnetic flux density as the magnetic body.Among the conventional magnetic heads mentioned above, the thin film head has a saturation magnetic flux density of 9 to 10 kG.
Although it is advantageous in that it uses an N1 alloy thin film, it is undesirable because the rate of change in reproduction output with respect to the flying height is large due to the structure of the magnetic part as described above.

浮上量の変動に対する再生出力の変化率を小さくするこ
とが重要なことは容易に理解し得るがさらに詳述すると
以下である。すなわち高密度記録達成のためには極力浮
上量を小さくすることが必要であり、この浮上量の変遷
についてはDataquast社発行のCompute
r Storage fdustry 5ervice
(Rigld Disk Dr1v*編)1984年版
2.2−6頁に記載されている。この記載によれば浮上
量は10マイクロインチ(0,25μm)に迄低下して
いる鎗この様に極めて僅かの浮上量で常に安定に磁気ヘ
ッドを浮上させる事は困難でちり、安定浮上の努力も数
多くなされているもののある程度の浮上量の変動は避け
られない、従って磁気ヘッドとしては浮上量変動に対し
てより一定した再生出力の得られる方が好ましい事は容
易に理解出来る。
It is easy to understand that it is important to reduce the rate of change in reproduction output with respect to fluctuations in flying height, but this will be explained in more detail below. In other words, in order to achieve high-density recording, it is necessary to reduce the flying height as much as possible.
r Storage fdustry 5service
(edited by Rigld Disk Dr1v*), 1984 edition, pages 2.2-6. According to this description, the flying height has decreased to 10 microinches (0.25 μm).It is difficult to constantly levitate the magnetic head stably with an extremely small flying height like a spear, and efforts to stabilize the flying height are difficult. Although many attempts have been made to do so, some degree of variation in the flying height is unavoidable, and it is therefore easy to understand that it is preferable for a magnetic head to obtain a reproduction output that is more constant against variations in the flying height.

従って本発明は高飽和磁束密度の合金薄膜を磁性体とし
て用い、かつ低浮上量で用いるにおいて浮上量変動に対
して再生出力変化の小さな磁気ヘッドを得るための構成
に関するものである。
Therefore, the present invention relates to a configuration for obtaining a magnetic head that uses a thin alloy film with a high saturation magnetic flux density as a magnetic material and has a small change in reproduction output with respect to fluctuations in flying height when used at a low flying height.

(発明が解決しようとする問題点) 以上述べたごとぐ本発明は高保磁力の記録媒体に対して
も充分記録の可能な高飽和磁束密度の合金磁性薄膜を用
い、従来の磁気ヘッドの欠点であった浮上量変動に対し
再生出力の変化率が大きいことを解消せんとするもので
ある。
(Problems to be Solved by the Invention) As stated above, the present invention uses an alloy magnetic thin film with a high saturation magnetic flux density that can sufficiently record even on high coercive force recording media, and solves the drawbacks of conventional magnetic heads. This is intended to solve the problem that the rate of change in reproduction output is large with respect to fluctuations in flying height.

(問題点を解決するための手段) 本発明の構成はV字型形状を有する基板上に高飽和磁束
密度の合金薄膜を成膜し、この一対の基板をギヤラグ規
制膜を介し接合した磁気ヘッドにおいて、V字型部の角
度を適切に選ぶことにより上記問題点を解決せんとする
ものである。V字型部の斜交角度θを30〜120度と
することにより、浮上量変動に対して再生出力の安定化
を達成したものでおる。
(Means for Solving the Problems) The present invention has a magnetic head in which a thin alloy film with high saturation magnetic flux density is formed on a V-shaped substrate, and this pair of substrates are bonded via a gear lag regulating film. The above problem is attempted to be solved by appropriately selecting the angle of the V-shaped portion. By setting the oblique angle θ of the V-shaped portion to 30 to 120 degrees, the reproduction output can be stabilized against fluctuations in flying height.

第1図は本発明の一実施例の磁気コア部の概略図でおる
。1.2は基板、3.4は高飽和磁束密度の合金薄膜、
5は巻線窓、6は磁気ギヤラグ、7.8が接合ガラスで
ある。TVがトラック幅となる。かかる構成の磁気コア
を得るには巻線窓5のために第2図に示したC溝9を設
けた基板半対lOを用意する。基板にはV字状突起18
が設けてらる。基板上に高飽和磁束密度の合金薄膜11
をスパッタ、あるいはイオングレーティング等の物理的
手段あるいはメッキ等の化学的手段、望ましくはスパッ
タにより形成する。この後12および12′を結ぶ線迄
研摩等の手段により薄膜の一部を除去する。さらにC溝
部を設けない同様のコア半対を作成し、C溝を設けた、
あるいは設けないいずれかるるいは双方の研摩面上に所
定の厚さとなる様ギャップ規制膜を成膜する。
FIG. 1 is a schematic diagram of a magnetic core portion according to an embodiment of the present invention. 1.2 is a substrate, 3.4 is an alloy thin film with high saturation magnetic flux density,
5 is a wire-wound window, 6 is a magnetic gear lug, and 7.8 is a bonded glass. TV is the track width. In order to obtain a magnetic core having such a configuration, a half pair of substrates 10 having a C groove 9 shown in FIG. 2 for the winding window 5 is prepared. There is a V-shaped protrusion 18 on the board.
is provided. Alloy thin film 11 with high saturation magnetic flux density on the substrate
is formed by sputtering, physical means such as ion grating, or chemical means such as plating, preferably by sputtering. Thereafter, a portion of the thin film is removed by polishing or the like up to the line connecting 12 and 12'. Furthermore, a similar half core pair without the C groove part was created, and a C groove was provided.
Alternatively, a gap regulating film is formed to a predetermined thickness on either or both of the polished surfaces.

次にこれら両灯を対向させ溝部13にがラスを流入させ
接合する。接合後14.15を結ぶ線および16.17
を結ぶ線で切断することにより第1図に示した磁気コア
を得る。第1図でギャップを介した両側の合金薄膜は各
々角度θで斜交している。該磁気コアを浮上型磁気ヘッ
ドとするには、磁気コアを第6図に示した非磁性スライ
ダー28中に埋設しが2スあるいは樹脂で固着すること
により得ることが出来る。かかる構成による磁気コアは
特開昭58−175122等によりすでに提案されてい
る。しかしながらこれら先例は平坦なな基板上に7字溝
状の合金薄膜を形成し、その目的を擬似ギャップを生じ
せしめないためとしている。この擬似ギャップを防止す
るためのヘッド構成については種々の改良、工夫があり
例えば特公昭46−16353、特開昭54−9601
3、米国特許2,902.544号等に例を見ることが
出来る。従って特開昭58−175122等に提案され
た磁気コア構成は擬似ギャップを防止するための一構成
法であるが、本発明においては、かかる擬似ギャップの
現象発生とはかかわりなく、浮上量に対する再生出力の
安定な事を見い出したものである。
Next, these two lamps are made to face each other, and a lath is introduced into the groove 13 to join them. After joining, the line connecting 14.15 and 16.17
The magnetic core shown in FIG. 1 is obtained by cutting along the line connecting the two. In FIG. 1, the alloy thin films on both sides of the gap are obliquely intersecting each other at an angle θ. The magnetic core can be used as a floating magnetic head by embedding the magnetic core in the non-magnetic slider 28 shown in FIG. 6 or by fixing it with resin. A magnetic core having such a structure has already been proposed in Japanese Patent Application Laid-Open No. 58-175122. However, in these precedents, a 7-groove shaped alloy thin film is formed on a flat substrate, and the purpose thereof is to prevent the formation of a pseudo gap. There are various improvements and devices for the head structure to prevent this false gap, such as Japanese Patent Publication No. 46-16353 and Japanese Patent Publication No. 54-9601.
3. Examples can be found in U.S. Pat. No. 2,902.544. Therefore, the magnetic core configuration proposed in JP-A-58-175122 etc. is a configuration method for preventing pseudo gaps, but in the present invention, regardless of the occurrence of such pseudo gaps, the magnetic core configuration is It was discovered that the output was stable.

本発明において薄膜を成膜する基板としては磁性酸化物
であるフェライトや非磁性酸化物例えばT I O−C
a O−At20s −T I C−Mn0−N l 
Oの様な材料さらには結晶化ガラス等のがラス組成物い
ずれをも用いる事が出来る。また薄膜材料としてはFe
−At−8l 、 Fe−81、Fa−Niのごとき結
晶質材料あるいはCo −Nb−Zr # Co−T*
−Zr等のアモルファス材料いずれも可能である。これ
らの薄膜は単一層でもよいしまた高周波1cおける透磁
率の向上を図る目的で絶縁層を介し積層しても良い。F
・−kl−81を用いる場合組成はklが3〜7at%
、Siが7〜11at(iおよびF’eが82〜90 
at %さらに好ましくはAt4.5〜6.5at%、
 Si 8.0〜10.5 ate、 F*83〜87
 at %である。またアモルファス材であるCo −
Nb−Zrの場合Co81〜92 ate 、 Nb 
6〜12at% # Zr 2〜7 at %好ましく
はCo82〜86at%。
In the present invention, the substrate on which the thin film is formed may be a magnetic oxide such as ferrite or a non-magnetic oxide such as TIO-C.
a O-At20s-T I C-Mn0-N l
Any material such as O, or even a lath composition such as crystallized glass can be used. In addition, as a thin film material, Fe
-Crystalline materials such as At-8l, Fe-81, Fa-Ni or Co-Nb-Zr #Co-T*
- Any amorphous material such as Zr is possible. These thin films may be a single layer, or may be laminated with an insulating layer interposed therebetween for the purpose of improving magnetic permeability at high frequency 1c. F
- When using -kl-81, the composition is kl 3 to 7 at%
, Si is 7 to 11at (i and F'e are 82 to 90
at %, more preferably At 4.5 to 6.5 at %,
Si 8.0~10.5 ate, F*83~87
at %. Also, Co − is an amorphous material.
In the case of Nb-Zr, Co81-92 ate, Nb
6 to 12 at% #Zr 2 to 7 at%, preferably Co82 to 86 at%.

Nbl 1〜l 3 at’%、 Zr 3〜5 at
eである。
Nbl 1-l 3 at'%, Zr 3-5 at
It is e.

第3図は本発明の他の実施例を示す図である。FIG. 3 is a diagram showing another embodiment of the present invention.

19はスライダーを兼ねた基板、20はギャップ。19 is a board that also serves as a slider, and 20 is a gap.

21は合金薄膜、22は巻線窓、23はジンノ々ルを取
りつけるためのつめ溝である。ギャップ部は第1図と同
様に角度θで斜交した一対の合金薄膜がイヤツブを介し
てプラスで固着されている。
21 is an alloy thin film, 22 is a winding window, and 23 is a pawl groove for attaching a gin nozzle. In the gap part, a pair of alloy thin films obliquely crossed at an angle θ are fixed in a positive direction through an ear, as in FIG.

第4図は第3図のギャップ部分を拡大した図であり角度
θで斜交した一対の薄膜はがラス24でギャップ20を
介して接合される。
FIG. 4 is an enlarged view of the gap portion in FIG. 3, in which a pair of thin films obliquely crossed at an angle θ are joined by a lath 24 via a gap 20.

第1図および第3図の構成は磁気コアをあらかじめ作製
しておきスライダー中に固定するかまたは、スライダー
を兼ねた磁気コアとするかの差であり、いずれも角度θ
で斜交した一対の合金薄膜を接合した構成、という点で
同一である。従って第3図における構成でスライダー(
基板)材、合金薄膜材としてどの様なものを用いる事が
可能かについても同様である。
The configurations shown in Figures 1 and 3 differ depending on whether the magnetic core is prepared in advance and fixed in the slider, or whether the magnetic core also serves as the slider.
They are the same in that they have a structure in which a pair of diagonal alloy thin films are bonded together. Therefore, with the configuration shown in Figure 3, the slider (
The same applies to what materials can be used as the substrate material and the alloy thin film material.

以下に実施例を示す。Examples are shown below.

〔実施例1〕 第2図に示す形状のMn−Znフェライト基板上にAA
5.1at%、 819.Oate 、 Fa 85.
9 atqbの組成で厚さ5μmの膜をス・ぐツタにて
単層成膜した。斜交角θは60度である。該一対を第2
図を用いて説明した工程に従がい、トラック幅15μm
、イヤッゾ長0.85μmの磁気コアに加工した後Tl
0−CaOのスライダー中に埋設がラスで固着し磁気ヘ
ッドを得た。該磁気ヘッドをHe 7000sのCo−
Ni合金薄膜を磁性層とする5、25インチのス・4ツ
タデイスクを用い浮上量と再生出力の関係を他の磁気ヘ
ッドと周波数2.5 MHzで比較測定した結果を第1
表に示す。
[Example 1] AA was deposited on a Mn-Zn ferrite substrate having the shape shown in Fig.
5.1at%, 819. Oate, Fa 85.
A single-layer film having a composition of 9 atqb and a thickness of 5 μm was formed using Su-Gutsuta. The oblique angle θ is 60 degrees. the pair as the second
Following the process explained with the diagram, the track width is 15 μm.
, after processing into a magnetic core with an Iazzo length of 0.85 μm, Tl
The embedded material was fixed in the 0-CaO slider with laths to obtain a magnetic head. The magnetic head was made of He 7000s Co-
The first report compares the relationship between the flying height and the reproduction output with other magnetic heads at a frequency of 2.5 MHz using a 5.25-inch S-4 disk with a Ni alloy thin film as its magnetic layer.
Shown in the table.

第1賢 第1表では浮上量0.25μmの場合の再生出力を各々
100として浮上量を変えた場合の再生出力を上記に対
する百分率表示で記しである。比較に供したMu −Z
 aモノリシック型ヘッドおよび薄膜ヘッドのトラック
幅は各々22および18μm、ギャップ長は各々0.8
3 、0.85μmである。第1賢より明白な様に本実
施による磁気ヘッドは他に比べ浮上量変動に対して再生
出力の変化が小さい。
In Table 1, the reproduction output when the flying height is 0.25 μm is set as 100, and the reproduction output when the flying height is changed is expressed as a percentage of the above. Mu-Z used for comparison
aThe track widths of the monolithic head and thin film head are 22 and 18 μm, respectively, and the gap length is 0.8, respectively.
3, 0.85 μm. As is clear from the first example, the magnetic head according to this embodiment has a smaller change in reproduction output with respect to fluctuations in flying height than other magnetic heads.

〔実施例2〕 実施例1と同一組成のFe−At−8i膜をTl0−C
aO基板上に斜交角045度で成膜した。この後実施例
1と同様の加工を施しトラック幅18μm、ギャップ長
0.75〜0.8μmの磁気ヘッドを得た。膜厚および
積層数を変え作製した試料を実施例1の媒体を用い2.
5MHzで測定した結果を第2表に百分率で示す。なお
積層は絶縁層とし′C,0,1μmのsio□膜をスノ
イツタした。
[Example 2] A Fe-At-8i film with the same composition as in Example 1 was coated with Tl0-C
A film was formed on an aO substrate at an oblique angle of 045 degrees. Thereafter, the same processing as in Example 1 was performed to obtain a magnetic head having a track width of 18 μm and a gap length of 0.75 to 0.8 μm. 2. Using the medium of Example 1, samples were prepared with different film thicknesses and number of laminated layers.
The results measured at 5 MHz are shown in percentages in Table 2. Incidentally, the laminated layer was an insulating layer, and a 0.1 μm sio□ film was used as an insulating layer.

第2表 〔実施例3〕 Ma−Za 7 エライト基板上にCo84atチ、 
Nb13at’% e Zn 3 a t%の組成の合
金薄膜を斜交角075度で3μmの厚さで3層積層した
。この後実施例1と同様の加工を行ないトラック幅13
μmでイヤクプ長を変えた磁気コアを得た。該磁気コア
をT1ω00のスライダー中に2成分系エポキシ樹脂を
用い加熱固着し磁気ヘッドを得た。上記実施例と同一測
定の結果を表3に記す。
Table 2 [Example 3] Co84at film on Ma-Za 7 elite substrate,
Three layers of alloy thin films having a composition of Nb13at'% e Zn3at% were laminated with a thickness of 3 μm at an oblique angle of 075 degrees. After that, the same processing as in Example 1 was performed, and the track width was 13.
Magnetic cores with earcup lengths varied in μm were obtained. The magnetic core was heated and fixed in a T1ω00 slider using a two-component epoxy resin to obtain a magnetic head. Table 3 shows the results of the same measurements as in the above example.

第3茂 〔実施例4〕 T10−CaO基板上に斜交角θを変え実施例3のCo
−Nb−Zr薄膜を5μm2層成膜し、該一対をガラス
で固着し第2図に示した磁気コアを得た。ギャップ長は
0.80μms)ラック幅は19μmである。
3rd Shigeru [Example 4] Co of Example 3 was deposited on a T10-CaO substrate by changing the oblique angle θ.
-Nb-Zr thin films were formed in two layers with a thickness of 5 μm, and the pair was fixed with glass to obtain the magnetic core shown in FIG. 2. The gap length is 0.80 μm) and the rack width is 19 μm.

該磁気コアを同一材のT10−CaOスライダー中に実
施例3の樹脂を用い固着し磁気ヘッドを得た。同様の測
定結果を第4表に記す。
The magnetic core was fixed in a T10-CaO slider made of the same material using the resin of Example 3 to obtain a magnetic head. Similar measurement results are shown in Table 4.

第  4  表 第4表より明らかな様に斜交角θが30〜120度では
安定した再生出力を示すがこれ以外ではMIl−Znモ
ノリシック型および薄膜ヘッドと同程度に再生出力の変
化が著しい。
Table 4 As is clear from Table 4, when the oblique angle θ is between 30 and 120 degrees, the reproduction output is stable, but at other times the reproduction output changes significantly to the same extent as the MIl-Zn monolithic type and thin film head.

〔実施例5〕 実施例4のCo −Nb−Zr薄膜を5μm2層斜交角
θ=90度でMn0−Ni0非磁性基板上に成膜した。
[Example 5] The Co-Nb-Zr thin film of Example 4 was formed on a Mn0-Ni0 nonmagnetic substrate with a two-layer diagonal angle of 5 μm and an oblique angle θ=90 degrees.

該一対を第3図に示した磁気ヘッドとして加工し、同一
測定を行なった結果を第5茨に示す。
The pair was processed into the magnetic head shown in FIG. 3, and the same measurements were carried out. The results are shown in the fifth thorn.

第 5  表 以上詳述したごとく本発明による磁気ヘッドは合金薄膜
をV字状基板に斜交させて成膜し、該一対を磁気イヤラ
グを介して接合した構成とすることにより、従来知られ
ていなかった再生出力が浮上量変動に対して安定である
という利点が判明し高密度記録だ適した浮上型磁気ヘッ
ドである。この理由は明確でないが、斜交角に対して再
生出力変化が依存することを考慮すると磁気ギャップよ
り洩れる磁束の分布が従来の構成の磁気ヘッドと異なる
ためではないかと推測される。基板をV字状に加工を施
す場合、V字状突起の頂点が欠は等によりやや平坦にな
り易いが数μm程度欠けを生じても、合金薄膜が明瞭に
斜交していると認められる程度の状態であれば同様の効
果を有する。
Table 5 As detailed above, the magnetic head according to the present invention has a structure in which alloy thin films are formed diagonally on a V-shaped substrate, and the pair is joined via a magnetic ear lug, thereby achieving a magnetic head that is not conventionally known. This flying type magnetic head is suitable for high-density recording because it has been found that the reproduction output is stable against fluctuations in flying height. The reason for this is not clear, but considering that the change in reproduction output depends on the oblique angle, it is presumed that the distribution of magnetic flux leaking from the magnetic gap is different from that of a magnetic head with a conventional configuration. When processing a substrate into a V-shape, the apex of the V-shaped protrusion tends to become somewhat flat due to chipping, etc., but even if a chip of several μm occurs, the alloy thin film is clearly recognized to be diagonal. The same effect can be obtained if the condition is moderate.

また実施例では左右一対が同じ角度θで斜交している場
合を示したが、すでに述べた点から明らかな様に左右一
対が異なる角度で斜交していても同様の効果を有するこ
とは明白である。
In addition, although the example shows the case where the left and right pairs are obliquely intersecting at the same angle θ, as is clear from the points already mentioned, the same effect cannot be obtained even if the left and right pair are obliquely intersecting at different angles. It's obvious.

〔発明の効果〕〔Effect of the invention〕

以上より明らかなごとく本発明による磁気ヘッドは高密
度記録に必須の浮上量変動に対して再生出力の変化が小
さいという効果を示し工業上の利用価値大である。
As is clear from the above, the magnetic head according to the present invention exhibits the effect that the change in reproduction output is small in response to fluctuations in flying height, which are essential for high-density recording, and has great industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の磁気コアの概観図、第2図
は第1図の磁気コアを得るための薄膜成膜状態を示す説
明図、第3図は他の実施例を示す概観図である。第4図
は第3図におけるギャップ部分の拡大図を示し、第5図
はモノリシック型磁気ヘッドの概観図を示す。第6図は
コンポジット型磁気ヘッドの概観図を、第7図は第6図
のスライダー中に埋設固着される磁気コアの拡大図を示
す。 第8図は薄膜ヘッドの概観図を、第9図は第8図の磁気
コア部を浮上面より眺めた場合のギヤラグ構成の模式図
を示す。 1.2:基板、3,4:合金磁性薄膜、5:巻線窓、6
:磁気ギャップ、θ:斜斜交 角 箱1図 第2図 ll 第3図 第4図 第5図 第6図
FIG. 1 is an overview diagram of a magnetic core according to one embodiment of the present invention, FIG. 2 is an explanatory diagram showing the state of thin film formation to obtain the magnetic core of FIG. 1, and FIG. 3 is a diagram showing another embodiment. It is an overview diagram. FIG. 4 shows an enlarged view of the gap portion in FIG. 3, and FIG. 5 shows an overview of the monolithic magnetic head. FIG. 6 shows an overview of a composite magnetic head, and FIG. 7 shows an enlarged view of a magnetic core embedded and fixed in the slider of FIG. FIG. 8 is a general view of the thin film head, and FIG. 9 is a schematic diagram of the gear lug configuration when the magnetic core portion of FIG. 8 is viewed from the air bearing surface. 1.2: Substrate, 3, 4: Alloy magnetic thin film, 5: Winding window, 6
: Magnetic gap, θ: Oblique angle box Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 磁性および非磁性酸化物あるいはガラス組成物でV字状
突起を有する基板上に高飽和磁束密度の合金薄膜を成膜
し、この一対を磁気ギャップ層を介して接合した構成の
磁気ヘッドにおいて、該合金薄膜が角度30〜120度
で斜交することを特徴とする浮上量変動に対して再生出
力の安定な浮上型磁気ヘッド。
In a magnetic head, a thin alloy film of high saturation magnetic flux density is formed on a substrate having V-shaped protrusions made of magnetic and non-magnetic oxides or glass compositions, and a pair of these are bonded via a magnetic gap layer. A flying magnetic head whose reproduction output is stable despite fluctuations in flying height, characterized in that alloy thin films are obliquely crossed at an angle of 30 to 120 degrees.
JP22833085A 1985-10-14 1985-10-14 Floating type magnetic head stable in reproducing output Pending JPS6288112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22833085A JPS6288112A (en) 1985-10-14 1985-10-14 Floating type magnetic head stable in reproducing output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22833085A JPS6288112A (en) 1985-10-14 1985-10-14 Floating type magnetic head stable in reproducing output

Publications (1)

Publication Number Publication Date
JPS6288112A true JPS6288112A (en) 1987-04-22

Family

ID=16874762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22833085A Pending JPS6288112A (en) 1985-10-14 1985-10-14 Floating type magnetic head stable in reproducing output

Country Status (1)

Country Link
JP (1) JPS6288112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283805A (en) * 1988-09-14 1990-03-23 Seagate Technol Magnetic head of vertical magnetic recording system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283805A (en) * 1988-09-14 1990-03-23 Seagate Technol Magnetic head of vertical magnetic recording system

Similar Documents

Publication Publication Date Title
KR0160663B1 (en) Magnetic head for magnetic recording and reproducing
US4868698A (en) Magnetic head
JPS6341127B2 (en)
JP3394266B2 (en) Method of manufacturing magnetic write / read head
KR930002393B1 (en) Magnetic transducer head
US4811142A (en) Magnetic head for vertical magnetic recording and method of producing same
US4821134A (en) Magnetic alloy R/W head with centrally pinched and end slotted core
JPS6288112A (en) Floating type magnetic head stable in reproducing output
US4731299A (en) Composite magnetic material
JP2933638B2 (en) Manufacturing method of magnetic head
KR0155468B1 (en) Magnetic head and method of fabrication thereof
JPS6015807A (en) Magnetic head
JP3028109B2 (en) Magnetic head
JP2591109B2 (en) Magnetic head
JP2977112B2 (en) Manufacturing method of magnetic head
JPS59203210A (en) Magnetic core and its production
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
KR940011674B1 (en) Magnetic head
KR100200809B1 (en) Magnetic head and method of manufacturing the same
JPH05282619A (en) Magnetic head
JPS6295710A (en) Composite magnetic head
JP2003203307A (en) Magnetic head and its manufacturing method
JP2004013941A (en) Magnetic head and its manufacturing method
JPH0253212A (en) Joint ferrite magnetic head
JPH0553006B2 (en)