JPH05152019A - Anisotropic conduction connector - Google Patents

Anisotropic conduction connector

Info

Publication number
JPH05152019A
JPH05152019A JP34038091A JP34038091A JPH05152019A JP H05152019 A JPH05152019 A JP H05152019A JP 34038091 A JP34038091 A JP 34038091A JP 34038091 A JP34038091 A JP 34038091A JP H05152019 A JPH05152019 A JP H05152019A
Authority
JP
Japan
Prior art keywords
hole
fine
holes
insulating film
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34038091A
Other languages
Japanese (ja)
Inventor
Munekazu Tanaka
宗和 田中
Masakazu Sugimoto
正和 杉本
Kazuo Ouchi
一男 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP34038091A priority Critical patent/JPH05152019A/en
Publication of JPH05152019A publication Critical patent/JPH05152019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an anisotropic conduction connecter, which allows no falling-out of a metallic substance filled in a fine though hole, possesses high electrical connection reliability, and also has capability of fining pitches. CONSTITUTION:A fine through hole 2 is made in an insulating film 1, such as a polyimide film, in the direction of the thickness thereof, and a metallic substance 3 is filled in the through hole 2 by means of plating or the like. The inside diameter of the through hole 2 is small so as to prevent the falling- out of the metallic substance 3. Metallic protrusions 4 are formed in the shape of a bump on both end portions of the through hole so as to facilitate connection operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は異方導電コネクターに関
する。
FIELD OF THE INVENTION The present invention relates to anisotropic conductive connectors.

【0002】[0002]

【従来の技術】近年の電子機器の多機能化と小型軽量化
に伴い、半導体分野においては配線回路のパターンが高
集積化され、多ピンおよび狭ピッチのファインパターン
が採用されている。このような回路のファインパターン
化に対応すべく、基板上に形成された複数の導体パター
ンとそれと接続する導体パターンまたはIC,LSIと
の接続に、異方導電コネクターを介在させる方法が試み
られている。
2. Description of the Related Art In recent years, electronic devices have become more multifunctional and smaller and lighter. In the semiconductor field, wiring circuit patterns have been highly integrated and fine patterns with a large number of pins and a narrow pitch have been adopted. In order to cope with such fine patterning of a circuit, a method of interposing an anisotropic conductive connector in a connection between a plurality of conductor patterns formed on a substrate and a conductor pattern or IC or LSI connected to the conductor patterns has been attempted. There is.

【0003】例えば、特開昭55−161306号公報
には絶縁性多孔体シートの選択領域内の孔部に金属メッ
キを施こし異方導電化したシートが開示されている。し
かし、このようなシートは表面に金属突出部がないの
で、ICなどの接続に際してはIC側の接続パッド部に
突起電極(バンプ)を形成しておく必要があり、接続工
程が煩雑となる。
For example, Japanese Unexamined Patent Publication No. 55-161306 discloses a sheet in which holes in selected regions of an insulating porous sheet are plated with metal to provide anisotropic conductivity. However, since such a sheet does not have a metal protrusion on the surface, it is necessary to form bump electrodes (bumps) on the connection pads on the IC side when connecting an IC or the like, which complicates the connection process.

【0004】そこで、これを解決するために絶縁性フィ
ルムの厚み方向に設けた微細孔に金属物質を充填して異
方導電化し、さらにフィルム表面からバンプ状に金属物
質を突出させて接続を容易にしたコネクターが、特開昭
62−43008号公報や特開昭63−40218号公
報、特開昭63−94504号公報に提案されている。
しかし、このような異方導電コネクターは一般に図5に
示すような構造であるので、充填された金属物質と絶縁
性フィルムとの密着性が充分ではなく、金属物質が脱落
して本来導電性を有さなければならない微細孔が導電性
を発揮せず、電気的接続信頼性に欠ける恐れがある。
Therefore, in order to solve this problem, fine holes provided in the thickness direction of the insulating film are filled with a metal substance to make it anisotropically conductive, and the metal substance is projected in a bump shape from the film surface to facilitate connection. The above-mentioned connector is proposed in JP-A-62-43008, JP-A-63-40218, and JP-A-63-94504.
However, since such an anisotropic conductive connector generally has a structure as shown in FIG. 5, the adhesiveness between the filled metallic substance and the insulating film is not sufficient, and the metallic substance may fall off to cause the original conductive property. The fine holes that must be provided do not exhibit conductivity, and the electrical connection reliability may be poor.

【0005】そこで、上記金属物質の脱落を防止するも
のとして、本発明者らは図6に示すようなバンプ形状を
有する異方導電コネクターを提案している。
Therefore, the present inventors have proposed an anisotropic conductive connector having a bump shape as shown in FIG. 6 as a means for preventing the metal substance from falling off.

【0006】[0006]

【発明が解決しようとする課題】ところが、図6のバン
プ形状を有する異方導電コネクターでは、絶縁性フィル
ムに設けた貫通孔の開口部面積よりもフィルム表裏面上
に設けたバンプ状金属突出物の底面積の方を大きくする
必要があり、独立して隣りあった貫通孔部(異方導電
部)のピッチは貫通孔のピッチではなく、隣りあうバン
プ状金属突出物が接触しないように制限され、微細ピッ
チ化する場合、製造時において厳密な制御を行なう必要
がある。
However, in the anisotropic conductive connector having the bump shape shown in FIG. 6, bump-shaped metal protrusions provided on the front and back surfaces of the film rather than the opening area of the through hole provided in the insulating film. It is necessary to increase the bottom area of the through holes, and the pitch of the independently adjacent through holes (anisotropic conductive parts) is not the pitch of the through holes, but is limited so that adjacent bump-shaped metal protrusions do not contact. In the case of fine pitching, it is necessary to perform strict control during manufacturing.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは従
来の異方導電コネクターが有する上記課題を解決し、確
実に異方導電化できて接続信頼性が高く、しかも微細ピ
ッチ化が可能な異方導電コネクターを提供すべく鋭意検
討を重ね、本発明を完成するに至った。
Therefore, the present inventors have solved the above-mentioned problems of the conventional anisotropic conductive connector, can reliably achieve anisotropic conductivity, have high connection reliability, and can achieve fine pitch. The present invention has been completed through intensive studies to provide a anisotropic conductive connector.

【0008】即ち、本発明は独立して表裏面に導通した
微細貫通孔を有する異方導電コネクターであって、微細
貫通孔には金属物質が充填されており、しかも該貫通孔
が内部において孔径が狭くなっていることを特徴とする
異方導電コネクターを提供するものである。
That is, the present invention is an anisotropic conductive connector having fine through-holes independently conducted on the front and back surfaces, wherein the fine through-holes are filled with a metal substance, and the through-holes have a hole diameter inside. The present invention provides an anisotropic conductive connector having a narrowed area.

【0009】以下、本発明を図面を用いて説明する。図
1〜図4は本発明の異方導電コネクターの様々な断面形
状を示している。
The present invention will be described below with reference to the drawings. 1 to 4 show various cross-sectional shapes of the anisotropic conductive connector of the present invention.

【0010】図1〜図4において絶縁性フィルム1には
厚み方向に微細貫通孔2が設けられており、金属物質3
を充填した導通路が表裏面に達している。この貫通孔2
は隣りあう貫通孔同士が連通しておらず、独立してい
る。本発明の異方導電コネクターにおいて貫通孔2の両
端部に、各図に示すようなバンプ状の金属突出物4を形
成しておくことによって、コネクターとして接続に用い
る場合に接続操作が容易となり好ましいものである。な
お、図1〜図3はバンプ状金属突出物4を絶縁性フィル
ム1の表裏面共に形成し、図4は片面にのみ形成した実
例である。
1 to 4, the insulating film 1 is provided with fine through holes 2 in the thickness direction, and the metal substance 3
The conductive path filled with reaches the front and back surfaces. This through hole 2
The adjacent through holes do not communicate with each other and are independent. In the anisotropic conductive connector of the present invention, by forming bump-shaped metal protrusions 4 at both ends of the through hole 2 as shown in the drawings, the connection operation becomes easy when used as a connector, which is preferable. It is a thing. 1 to 3 show bump-shaped metal protrusions 4 formed on both sides of the insulating film 1, and FIG. 4 shows an example in which the bump-shaped metal protrusions 4 are formed on only one side.

【0011】上記微細貫通孔2の直径(孔径)は絶縁性
フィルム1の表裏面上で通常、5〜100μm、好まし
くは10〜50μmとし、ピッチは5〜200μm、好
ましくは10〜100μmとする。また、微細貫通孔2
は内部(つまり、絶縁性フィルム1内)において孔径が
狭くなっており、最も狭い部分での孔径は上記表裏面上
における孔径の5〜90%、好ましくは10〜80%程
度に設定する。5%より狭い場合、金属物質の充填、特
にメッキ法の場合に成長が阻害されて導通路が形成され
ない恐れがあり、また、90%を超えると、貫通孔内に
充填された金属物質が脱落する恐れがあり好ましくな
い。
The diameter (pore diameter) of the fine through holes 2 is usually 5 to 100 μm, preferably 10 to 50 μm on the front and back surfaces of the insulating film 1, and the pitch is 5 to 200 μm, preferably 10 to 100 μm. Also, the fine through holes 2
Has a narrow pore diameter inside (that is, inside the insulating film 1), and the pore diameter at the narrowest portion is set to 5 to 90%, preferably 10 to 80% of the pore diameter on the front and back surfaces. If it is narrower than 5%, the metal substance may be filled, especially in the case of the plating method, and the growth may be hindered so that a conductive path may not be formed. If it exceeds 90%, the metal substance filled in the through hole may fall off. It is not preferable because it may occur.

【0012】本発明において絶縁性フィルム1は電気絶
縁特性を有するフィルムであればその素材に制限はな
く、ポリエステル系樹脂、エポキシ系樹脂、ウレタン系
樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリ
アミド系樹脂、ポリイミド系樹脂、ABS樹脂、ポリカ
ーボネート樹脂、シリコーン系樹脂など熱硬化性樹脂や
熱可塑性樹脂を問わず目的に応じて選択できる。例え
ば、可撓性を要求される場合はシリコーンゴム、ウレタ
ンゴム、フッ素ゴムなどの弾性体を使用することが好ま
しく、耐熱性が要求される場合はポリイミド、ポリエー
テルスルホン、ポリフェニレンスルフィドなどの耐熱性
樹脂を用いることが好ましい。また、絶縁性フィルム1
の厚さは任意に選択できるが、フィルム厚の精度(バラ
ツキ)や形成する貫通孔の孔径精度の点からは通常、5
〜200μm、好ましくは10〜100μmとする。
In the present invention, the insulating film 1 is not limited in its material as long as it is a film having electric insulating properties, and may be a polyester resin, an epoxy resin, a urethane resin, a polystyrene resin, a polyethylene resin, a polyamide resin. Any of thermosetting resins and thermoplastic resins such as polyimide resin, ABS resin, polycarbonate resin, and silicone resin can be selected according to the purpose. For example, when flexibility is required, it is preferable to use an elastic body such as silicone rubber, urethane rubber, or fluororubber, and when heat resistance is required, heat resistance such as polyimide, polyether sulfone, polyphenylene sulfide, etc. It is preferable to use a resin. Insulating film 1
Although the thickness of the film can be arbitrarily selected, it is usually 5 in terms of the accuracy (variation) of the film thickness and the accuracy of the diameter of the through hole to be formed.
To 200 μm, preferably 10 to 100 μm.

【0013】上記絶縁性フィルム1に設ける微細貫通孔
に充填して導通路となる金属物質3およびバンプ状の金
属突出物4となる金属物質としては、例えば金、銀、
銅、錫、鉛、ニッケル、コバルト、インジウムなどの各
種金属、またはこれらを成分とする各種合金が用いられ
る。導通路の形成方法としては、スパッタリング、各種
蒸着、各種メッキなどの方法が採用できる。なお、メッ
キ法による場合は、メッキ時間を長くすることによっ
て、バンプ状に金属突出物4を成長させることができる
のである。
Examples of the metal substance 3 which fills the fine through holes provided in the insulating film 1 and serves as a conduction path and the bump-shaped metal protrusion 4 are gold, silver, and the like.
Various metals such as copper, tin, lead, nickel, cobalt and indium, or various alloys containing these are used. As a method of forming the conductive path, a method such as sputtering, various vapor depositions, various platings can be adopted. In the case of using the plating method, it is possible to grow the metal protrusion 4 in a bump shape by prolonging the plating time.

【0014】上記絶縁性フィルム1に設ける微細貫通孔
2は、パンチングなどの機械的加工法、レーザー、プラ
ズマなどによるドライエッチング法などがある。エッチ
ング法の場合は絶縁性フィルム1に所望の孔形状、例え
ば丸、四角、菱形などを有するマスクを密着させ、マス
クの上から処理する間接的エッチング法、スポットを絞
ったレーザー光をフィルムに当てたり、マスクを通して
レーザー光をフィルム上に結像させるドライエッチング
法、感光性レジストを用いて予め微細孔をパターニング
したのちウエットエッチングする直接エッチング法など
がある。なお、回路のファインパターン化に対応するに
はドライエッチング法やウエットエッチング法が好まし
く、特にエキシマレーザーの如き紫外線レーザーによる
アブレーションを用いたドライエッチング法の場合は、
高いアスペクト比が得られるので好ましいものである。
The fine through holes 2 provided in the insulating film 1 may be formed by a mechanical processing method such as punching, a dry etching method using laser, plasma or the like. In the case of the etching method, a mask having a desired hole shape, for example, a circle, a square, or a rhombus is brought into close contact with the insulating film 1, and an indirect etching method in which treatment is performed from above the mask; Alternatively, there are a dry etching method in which a laser beam is imaged on a film through a mask, and a direct etching method in which fine holes are patterned in advance using a photosensitive resist and then wet etching is performed. Incidentally, in order to correspond to the fine patterning of the circuit, a dry etching method or a wet etching method is preferable, and particularly in the case of a dry etching method using ablation with an ultraviolet laser such as an excimer laser,
This is preferable because a high aspect ratio can be obtained.

【0015】本発明の異方導電コネクターを得るための
方法としては、例えば図1の形状の異方導電コネクター
の場合、以下の工程からなる方法で作製される。
As a method for obtaining the anisotropic conductive connector of the present invention, for example, in the case of the anisotropic conductive connector having the shape shown in FIG. 1, the anisotropic conductive connector is produced by the following steps.

【0016】絶縁性フィルムの表裏面の相対する位置
に表裏面に貫通しないように、表裏面側からそれぞれ絶
縁性フィルムをハーフエッチングして微細な穴を形成す
る。次いで、形成した径よりも小さい孔径で先に形成し
た穴内に貫通孔を設けて表裏面に貫通させる。このよう
にして貫通孔を形成した絶縁性フィルムに導電層を積層
し、導電層表面にレジスト層を形成して表面を絶縁後、
貫通孔部をエッチングして貫通孔部に接する導電層部分
に貫通孔径と同等もしくはそれ以下の溝部(凹部)を形
成する工程と、
Fine holes are formed by half-etching the insulating film from the front and back sides, respectively, so as not to penetrate the front and back sides at opposite positions on the front and back sides of the insulating film. Next, a through hole is formed in the previously formed hole with a hole diameter smaller than the formed diameter to penetrate the front and back surfaces. In this way, the conductive layer is laminated on the insulating film having the through-holes formed, and a resist layer is formed on the surface of the conductive layer to insulate the surface,
A step of etching the through-hole portion to form a groove portion (recess) having a diameter equal to or smaller than the through-hole diameter in the conductive layer portion in contact with the through-hole portion,

【0017】微細貫通孔に電解メッキや無電解メッキ
などのメッキ法により金属物質を充填して絶縁性フィル
ムの表裏面に導通させる工程。
A step of filling the fine through holes with a metal substance by a plating method such as electrolytic plating or electroless plating so as to conduct electricity to the front and back surfaces of the insulating film.

【0018】絶縁性フィルム全域を厚み方向にハーフ
エッチングして導通路を露出させ、バンプ状の金属突出
物として金属物質の一部を露出させる工程と、
Half-etching the entire area of the insulating film in the thickness direction to expose the conductive path and expose a part of the metal substance as a bump-shaped metal protrusion.

【0019】絶縁性フィルムに積層していた導電層お
よびレジスト層を化学的エッチング液または電解腐食に
よって除去する工程、とから得られる。
The step of removing the conductive layer and the resist layer laminated on the insulating film by a chemical etching solution or electrolytic corrosion.

【0020】なお、上記の工程においてバンプ状の金
属突出物の形成は、の工程後に行なってもよく、ま
た、の工程において導電層部分に溝部を形成する工程
を省略し、の工程後にの工程と同様にしてバンプ状
の金属突出物を形成することもできる。
In the above step, the bump-shaped metal protrusion may be formed after the step, or in the step, the step of forming the groove portion in the conductive layer portion may be omitted and the step after the step may be omitted. It is also possible to form a bump-shaped metal protrusion in the same manner as in.

【0021】本発明においてはバンプ状に金属突出物4
は、微細結晶の金属結晶として形成することが好まし
い。なお、高電流密度で電解メッキを行なった場合は、
樹枝状の結晶が形成されるのでバンプ状とならない場合
がある。また、金属結晶の析出速度を調整したり、メッ
キ液の種類やメッキ浴の温度を調整することによって平
滑、均一な突出物を得ることができる。
In the present invention, the metal protrusion 4 is formed in a bump shape.
Is preferably formed as a fine crystal metal crystal. If electrolytic plating is performed at a high current density,
Since dendritic crystals are formed, it may not be bump-shaped. In addition, a smooth and uniform protrusion can be obtained by adjusting the deposition rate of metal crystals, the type of plating solution, and the temperature of the plating bath.

【0022】[0022]

【実施例】以下に本発明の実施例を示し、さらに具体的
に説明する。
EXAMPLES Examples of the present invention will be shown below and will be described more specifically.

【0023】公知のキャスティング法によってポリイミ
ド前駆体溶液を、乾燥後厚みが50μmとなるように塗
工し、加熱イミド化してポリイミドフィルムを作製し
た。
A polyimide precursor solution was applied by a known casting method so as to have a thickness of 50 μm after drying, and heat imidized to produce a polyimide film.

【0024】次に、ポリイミドフィルムの表面に、発振
波長248nmのKrFエキシマレーザー光を、マスク
を通して照射してハーフドライエッチングを施こし、ポ
リイミドフィルム層に60μmφ、ピッチ200μm、
深さ15μmの微細穴を5個/mmで8cm2 の領域に設け
た。一方、上記穴部に相当する裏面側から同様にエキシ
マレーザー光を照射してハーフドライエッチングを施
し、60μmφ、ピッチ200μm、深さ15μmの微
細穴を5個/mmで8cm2 の領域に設けた。
Next, the surface of the polyimide film is irradiated with KrF excimer laser light having an oscillation wavelength of 248 nm through a mask to perform half dry etching, and the polyimide film layer is 60 μmφ in pitch 200 μm.
Fine holes having a depth of 15 μm were formed in an area of 8 cm 2 at 5 holes / mm. On the other hand, half-dry etching was similarly performed by irradiating an excimer laser beam from the back surface side corresponding to the above-mentioned holes, and fine holes having a diameter of 60 μm, a pitch of 200 μm and a depth of 15 μm were formed in an area of 8 cm 2 at 5 holes / mm. ..

【0025】次いで、上記にて形成した穴部に表裏面の
いずれか一方側から、同様のエキシマレーザー光を照射
して40μmの孔径で貫通させた。
Next, the same excimer laser beam was applied to the hole formed above from either side of the front and back surfaces to penetrate the hole with a hole diameter of 40 μm.

【0026】微細貫通孔を設けた上記絶縁フィルムの表
裏面のいずれか一方に導電層として銅箔を積層して銅箔
上にレジスト層を形成後、水洗したのち、銅箔部を電極
に接続して60℃のシアン化金メッキ浴に浸漬し、貫通
孔内に金メッキ層を成長させて充填して、絶縁性フィル
ム表面にまで金メッキ層が成長した時にメッキを中断し
た。
A copper foil is laminated as a conductive layer on either one of the front and back surfaces of the insulating film having the fine through holes, a resist layer is formed on the copper foil, and after washing with water, the copper foil portion is connected to an electrode. Then, it was immersed in a gold cyanide plating bath at 60 ° C., a gold plating layer was grown and filled in the through holes, and the plating was stopped when the gold plating layer was grown to the surface of the insulating film.

【0027】そののち、絶縁性フィルムの表面全域にわ
たって、上記エキシマレーザー光を照射して、絶縁性フ
ィルムの表面を5μmの深さに除去し、微細貫通孔内に
充填された金メッキ層部分を高さ5μm、60μmφの
バンプ状に露出させた。
After that, the entire surface of the insulating film is irradiated with the excimer laser light to remove the surface of the insulating film to a depth of 5 μm, and the gold plating layer portion filled in the fine through holes is raised. It was exposed in the form of bumps of 5 μm and 60 μmφ.

【0028】最後に、塗工したレジスト層を剥離して銅
箔を塩化第二銅溶液にて溶解除去し、さらに、上記と同
様の方法で銅箔が除去された絶縁性フィルム面をエキシ
マレーザー光により5μmの深さに除去し、微細貫通孔
内に充填された金メッキ層部分を高さ5μm、60μm
φのバンプ状に露出させて、表裏面にバンプ状金属突出
物を有する図1に示す形状の異方導電コネクターを得
た。
Finally, the coated resist layer is peeled off, the copper foil is dissolved and removed with a cupric chloride solution, and the insulating film surface from which the copper foil has been removed is excimer laser-treated in the same manner as above. Removed to a depth of 5 μm by light, and the gold plating layer portion filled in the fine through-holes was 5 μm in height and 60 μm
Exposed as φ-shaped bumps, an anisotropic conductive connector having the shape shown in FIG. 1 having bump-shaped metal protrusions on the front and back surfaces was obtained.

【0029】[0029]

【発明の効果】本発明の異方導電コネクターは以上のよ
うな構造からなるので、導通路として充填された金属物
質は、絶縁性フィルムから脱落することがなく、本来、
導電性を有さなければならない微細導通路が充分に導電
性を発揮し、電気的接続信頼性が高いコネクターであ
る。また、バンプ状金属突出物の底面積も絶縁性フィル
ム内の貫通孔の端部面積よりも大きくする必要がないの
で、微細ピッチの異方導電コネクターとすることができ
る。
EFFECT OF THE INVENTION Since the anisotropic conductive connector of the present invention has the above-mentioned structure, the metallic substance filled as the conducting path does not fall off from the insulating film, and originally,
This is a connector with a highly reliable electrical connection because the fine conductive paths that must have conductivity exhibit sufficient conductivity. Further, since it is not necessary to make the bottom area of the bump-shaped metal protrusion larger than the end area of the through hole in the insulating film, it is possible to obtain an anisotropic conductive connector having a fine pitch.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の異方導電コネクターの一実例を示す
断面図である。
FIG. 1 is a sectional view showing an example of an anisotropic conductive connector of the present invention.

【図2】 本発明の異方導電コネクターの他の実例を示
す断面図である。
FIG. 2 is a cross-sectional view showing another example of the anisotropic conductive connector of the present invention.

【図3】 本発明の異方導電コネクターの他の実例を示
す断面図である。
FIG. 3 is a sectional view showing another example of the anisotropic conductive connector of the present invention.

【図4】 本発明の異方導電コネクターの他の実例を示
す断面図である。
FIG. 4 is a cross-sectional view showing another example of the anisotropic conductive connector of the present invention.

【図5】 従来の異方導電コネクターの断面図である。FIG. 5 is a cross-sectional view of a conventional anisotropic conductive connector.

【図6】 従来の異方導電コネクターの断面図である。FIG. 6 is a cross-sectional view of a conventional anisotropic conductive connector.

【符号の説明】[Explanation of symbols]

1 絶縁性フィルム 2 微細貫通孔 3 金属物質 4 バンプ状金属突出物 1 Insulating Film 2 Micro Through Hole 3 Metallic Material 4 Bump-shaped Metal Projection

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 独立して表裏面に導通した微細貫通孔を
有する異方導電コネクターであって、微細貫通孔には金
属物質が充填されており、しかも該貫通孔が内部におい
て孔径が狭くなっていることを特徴とする異方導電コネ
クター。
1. An anisotropic conductive connector having fine through-holes electrically connected to the front and back surfaces independently of each other, wherein the fine through-holes are filled with a metal substance, and the through-holes have a narrow hole diameter inside. An anisotropic conductive connector characterized in that
【請求項2】 貫通孔の両端部の少なくとも一端部に接
続用のバンプ状金属突出物が形成されている請求項1記
載の異方導電コネクター。
2. The anisotropic conductive connector according to claim 1, wherein bump-shaped metal projections for connection are formed on at least one end of both ends of the through hole.
JP34038091A 1991-11-28 1991-11-28 Anisotropic conduction connector Pending JPH05152019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34038091A JPH05152019A (en) 1991-11-28 1991-11-28 Anisotropic conduction connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34038091A JPH05152019A (en) 1991-11-28 1991-11-28 Anisotropic conduction connector

Publications (1)

Publication Number Publication Date
JPH05152019A true JPH05152019A (en) 1993-06-18

Family

ID=18336399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34038091A Pending JPH05152019A (en) 1991-11-28 1991-11-28 Anisotropic conduction connector

Country Status (1)

Country Link
JP (1) JPH05152019A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051880A1 (en) * 2004-11-11 2006-05-18 Jsr Corporation Sheet-form probe and probe card and wafer inspection method
WO2006051878A1 (en) * 2004-11-11 2006-05-18 Jsr Corporation Sheet-shaped probe, probe card and wafer inspecting method
US7446545B2 (en) 2003-05-08 2008-11-04 Unitechno Inc. Anisotropically conductive sheet
JP2011018654A (en) * 2000-08-24 2011-01-27 High Connection Density Inc Carrier for land grid array connector
WO2015182996A1 (en) * 2014-05-29 2015-12-03 주식회사 아이에스시 Connection connector and connection connector manufacturing method
WO2022124134A1 (en) * 2020-12-11 2022-06-16 三井化学株式会社 Anisotropic conductive sheet and electrical inspection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018654A (en) * 2000-08-24 2011-01-27 High Connection Density Inc Carrier for land grid array connector
US7446545B2 (en) 2003-05-08 2008-11-04 Unitechno Inc. Anisotropically conductive sheet
WO2006051880A1 (en) * 2004-11-11 2006-05-18 Jsr Corporation Sheet-form probe and probe card and wafer inspection method
WO2006051878A1 (en) * 2004-11-11 2006-05-18 Jsr Corporation Sheet-shaped probe, probe card and wafer inspecting method
WO2015182996A1 (en) * 2014-05-29 2015-12-03 주식회사 아이에스시 Connection connector and connection connector manufacturing method
TWI550980B (en) * 2014-05-29 2016-09-21 Isc股份有限公司 Connection connector and method of manufacturing the same
WO2022124134A1 (en) * 2020-12-11 2022-06-16 三井化学株式会社 Anisotropic conductive sheet and electrical inspection method

Similar Documents

Publication Publication Date Title
EP0433996B1 (en) Process for producing an anisotropic conductive film
US5438223A (en) Anisotropic electrically conductive adhesive film and connection structure using the same
US7887899B2 (en) Anisotropic conductive sheet, production method thereof, connection method and inspection method
JP3352705B2 (en) Mounting structure using anisotropic conductive adhesive film
US5188702A (en) Process for producing an anisotropic conductive film
JPH05152019A (en) Anisotropic conduction connector
JP2984205B2 (en) Anisotropic conductive film
JP2984064B2 (en) Method for producing anisotropic conductive film
JP3442403B2 (en) Method of forming a metal conductor track pattern on an electrically insulating support
JP2981057B2 (en) Flexible printed circuit board for hard disk driver
JPH05152021A (en) Anisotropic conduction connector
JPH06231818A (en) Anisotropic conductive connector with elasticity
JPH05258790A (en) Anisotropically conductive adhesion film and connecting structure using it
KR100752016B1 (en) Method for manufacturing printed circuit board
JPH05226054A (en) Manufacture of anisotropic conductive film
JPH05258791A (en) Anisotropically conductive connector and its manufacture
JPH09243661A (en) Manufacture of probe and circuit board used therefor
JPH05152020A (en) Anisotropic conduction connector
JPH05325669A (en) Manufacture of anisotropic conductive film
JP3015709B2 (en) Film carrier, semiconductor device using the same, and semiconductor element mounting method
JPH10125372A (en) Anisotropic conductive connector and manufacture thereof
JP2004072027A (en) Method of manufacturing wiring board with bump electrode
JPH09260430A (en) Manufacture of probe and circuit board used therefor
JPH0669634A (en) Manufacture of printed wiring board
JPH06139825A (en) Anisotropic conducting sheet and it manufacture