JP2984205B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JP2984205B2
JP2984205B2 JP8002081A JP208196A JP2984205B2 JP 2984205 B2 JP2984205 B2 JP 2984205B2 JP 8002081 A JP8002081 A JP 8002081A JP 208196 A JP208196 A JP 208196A JP 2984205 B2 JP2984205 B2 JP 2984205B2
Authority
JP
Japan
Prior art keywords
hole
film
anisotropic conductive
fine
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8002081A
Other languages
Japanese (ja)
Other versions
JPH08235935A (en
Inventor
嘉也 高山
周 望月
敦司 日野
一男 大内
正和 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP8002081A priority Critical patent/JP2984205B2/en
Publication of JPH08235935A publication Critical patent/JPH08235935A/en
Application granted granted Critical
Publication of JP2984205B2 publication Critical patent/JP2984205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は異方導電フィルムに
関する。
TECHNICAL FIELD The present invention relates to an anisotropic conductive film.

【0002】[0002]

【従来の技術】近年の電子機器の多機能化と小型軽量化
に伴い、半導体分野においては配線回路のパターンが高
集積化され、多ピンおよび狭ピッチのファインパターン
が採用されている。このような回路のファインパターン
化に対応すべく、基板上に形成された複数の導体パター
ンとそれと接続する導体パターンまたはIC,LSIと
の接続に、異方導電フィルムを介在させる方法が試みら
れている。
2. Description of the Related Art In recent years, as electronic devices have become more multifunctional and smaller and lighter, in the field of semiconductors, wiring circuit patterns have been highly integrated, and fine patterns with multiple pins and narrow pitches have been adopted. In order to cope with such circuit fine patterning, a method of interposing an anisotropic conductive film in connection between a plurality of conductor patterns formed on a substrate and conductor patterns or ICs and LSIs connected thereto has been attempted. I have.

【0003】例えば、特開昭55−161306号公報
には絶縁性多孔体シートの選択領域内の孔部に金属メッ
キを施こし異方導電化したシートが開示されている。し
かし、このようなシートは表面に金属突出部がないの
で、ICなどの接続に際してはIC側の接続パッド部に
突起電極(バンプ)を形成しておく必要があり、接続工
程が煩雑となる。
For example, Japanese Unexamined Patent Publication (Kokai) No. 55-161306 discloses a sheet in which a hole in a selected area of an insulating porous sheet is plated with metal to make it anisotropically conductive. However, since such a sheet does not have a metal protrusion on the surface, it is necessary to form a projection electrode (bump) on a connection pad portion on the IC side when connecting an IC or the like, and the connection process becomes complicated.

【0004】また、特開昭62−43008号公報や特
開昭63−40218号公報、特開昭63−94504
号公報には絶縁性フィルムの厚み方向に設けた微細孔に
金属物質を充填して異方導電化し、さらにフィルム表面
からバンプ状に金属物質を突出させて接続を容易にした
ものが開示されている。
Further, JP-A-62-43008, JP-A-63-40218, and JP-A-63-94504
Japanese Patent Application Laid-Open Publication No. H11-163873 discloses a method in which a metal material is filled into micropores provided in the thickness direction of an insulating film to make it anisotropically conductive, and a metal material protrudes in a bump shape from the film surface to facilitate connection. I have.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような異
方導電性フィルムは一般に図3に示すような構造である
ために、充填された金属物質と絶縁性フィルムとの密着
性が充分ではなく、金属物質が脱落して本来導電性を有
さなければならない微細孔が導電性を発揮せず、電気的
接続信頼性に欠ける恐れがある。
However, since such an anisotropic conductive film generally has a structure as shown in FIG. 3, the adhesion between the filled metal substance and the insulating film is not sufficient. In addition, the metal material may fall off, and the micropores, which must have conductivity, do not exhibit conductivity, and may lack electrical connection reliability.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは従
来の異方導電フィルムが有する上記課題を解決し、確実
に異方導電化できて接続信頼性が高い異方導電フィルム
を提供すべく鋭意検討を重ね、本発明を完成するに至っ
た。
Therefore, the present inventors have solved the above-mentioned problems of the conventional anisotropic conductive film and provided an anisotropic conductive film which can be reliably made anisotropic conductive and has high connection reliability. After intensive studies, the present invention was completed.

【0007】即ち、本発明は非感光性ポリイミドフィル
ムの厚み方向に、金属物質のメッキ充填によって独立し
て導通する微細貫通孔がレーザー光の照射によって設け
られており、かつ該フィルムの表裏面上の貫通孔両端部
のうち少なくとも一端部が貫通孔の開口部面積よりも大
きな底面積を有するバンプ状の金属突出物によって閉塞
されていることを特徴とする異方導電フィルムを提供す
るものである。
That is, according to the present invention, in the thickness direction of the non-photosensitive polyimide film, a fine through-hole that is independently conducted by plating with a metal substance is provided by laser light irradiation, and is provided on the front and back surfaces of the film. At least one end of both ends of the through hole is closed by a bump-shaped metal protrusion having a bottom area larger than the opening area of the through hole. .

【0008】[0008]

【発明の実施の形態】以下、本発明を図面を用いて説明
する。図1は本発明の異方導電フィルムの一実例を示す
断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an example of the anisotropic conductive film of the present invention.

【0009】図1においてポリイミドフィルム1には厚
み方向に微細貫通孔2が設けられており、金属物質3を
充填した導通路が表裏面に達している。貫通孔2の両端
部には貫通孔2の開口部面積よりも大きな底面積を有す
るバンプ状の金属突出物4が形成されており、所謂リベ
ット状に貫通孔2を閉塞している。
In FIG. 1, a fine through hole 2 is provided in a thickness direction in a polyimide film 1, and a conduction path filled with a metal substance 3 reaches the front and back surfaces. At both ends of the through hole 2, a bump-shaped metal protrusion 4 having a bottom area larger than the area of the opening of the through hole 2 is formed, and closes the through hole 2 in a so-called rivet shape.

【0010】また、図2は本発明の異方導電性フィルム
の他の実例を示す断面図であり、ポリイミドフィルム1
に設けられた貫通孔2の片端部にバンプ状の金属突出物
4が形成されてなるものである。
FIG. 2 is a sectional view showing another example of the anisotropic conductive film of the present invention.
A bump-shaped metal protrusion 4 is formed at one end of the through hole 2 provided in the substrate.

【0011】上記微細貫通孔2の直径は通常15〜10
0μm、好ましくは20〜50μmとし、ピッチは15
〜200μm、好ましくは40〜100μmとする。
The diameter of the fine through-hole 2 is usually 15 to 10
0 μm, preferably 20 to 50 μm, and the pitch is 15 μm.
To 200 μm, preferably 40 to 100 μm.

【0012】本発明においてポリイミドフィルム1は電
気絶縁特性を有するものであって、その構造に制限はな
く、熱硬化性ポリイミドや熱可塑性ポリイミドを問わず
目的に応じて選択できる。また、ポリイミドフィルム1
の厚さは任意に選択できるが、フィルム厚の精度(バラ
ツキ)や形成する貫通孔の孔径精度の点からは通常、5
〜200μm、好ましくは10〜100μmとする。
In the present invention, the polyimide film 1 has electrical insulating properties, and its structure is not limited, and it can be selected according to the purpose irrespective of thermosetting polyimide or thermoplastic polyimide. In addition, polyimide film 1
Can be arbitrarily selected. However, from the viewpoint of the accuracy (variation) of the film thickness and the accuracy of the diameter of the through hole to be formed, the thickness is usually 5 mm.
To 200 μm, preferably 10 to 100 μm.

【0013】上記ポリイミドフィルム1に設ける微細貫
通孔に充填する導通路となる金属物質3およびバンプ状
の金属突出物4となる金属物質としては、例えば金、
銀、銅、錫、鉛、ニッケル、コバルト、インジウムなど
の各種金属、またはこれらを成分とする各種合金が用い
られる。このような金属物質は純度が高すぎるとバンプ
状となりにくいので、自体公知の有機物や無機物を微量
混入した金属物質や合金を用いることが好ましい。導通
路の形成方法としては、メッキ法を採用するが、この場
合、メッキ時間を長くすることによって、ポリイミドフ
ィルム1の表裏面の貫通孔形成部にバンプ状に金属突出
物4を成長させることができるのである。
The metal material 3 serving as a conductive path and the metal material serving as a bump-shaped metal protrusion 4 filling the fine through-holes provided in the polyimide film 1 are, for example, gold,
Various metals such as silver, copper, tin, lead, nickel, cobalt and indium, or various alloys containing these metals are used. If such a metal substance is too high in purity, it is difficult to form a bump. Therefore, it is preferable to use a known metal substance or alloy containing a small amount of an organic substance or an inorganic substance. As a method of forming the conductive path, a plating method is employed. In this case, by extending the plating time, it is possible to grow the metal protrusions 4 in a bump shape on the through hole forming portions on the front and back surfaces of the polyimide film 1. You can.

【0014】上記ポリイミドフィルム1に設ける微細貫
通孔2は、パンチングなどの機械的加工法、レーザー、
プラズマなどによるドライエッチング法、薬品、溶剤な
どによる化学的なウエットエッチング法などがあるが、
本発明では、微細貫通孔2の形成角度、所謂テーパー角
を小さくするためにレーザーによるドライエッチング法
を採用する。エッチング法の場合はポリイミドフィルム
1に所望の孔形状、例えば丸、四角、菱形などの形状を
有するマスクを密着させ、マスクの上から処理する間接
的エッチング法や、スポットを絞ったレーザー光をフィ
ルムに当てたり、マスクを通してレーザー光をフィルム
上に結像させる直接的エッチング法などを用いることが
できる。本発明では回路のファインパターン化に対応す
るために、エキシマレーザーの如き紫外線レーザーによ
るアブレーションを用いたドライエッチングを採用し、
このようにすることによって、高いアスペクト比も得ら
れるので好ましいものである。
The fine through-hole 2 provided in the polyimide film 1 is formed by a mechanical processing method such as punching, a laser,
There are dry etching method using plasma, chemical wet etching method using chemicals and solvents, etc.
In the present invention, a dry etching method using a laser is employed in order to reduce the formation angle of the fine through hole 2, that is, the so-called taper angle. In the case of the etching method, a mask having a desired hole shape, for example, a round shape, a square shape, a rhombus shape, or the like is brought into close contact with the polyimide film 1, and an indirect etching method in which the mask is processed from above or a laser beam with a narrowed spot is applied to the film Or a direct etching method in which a laser beam is focused on a film through a mask. In the present invention, in order to respond to fine patterning of the circuit, dry etching using ablation by an ultraviolet laser such as an excimer laser is adopted,
This is preferable because a high aspect ratio can be obtained.

【0015】例えば、レーザー光によってフィルム1に
微細貫通孔4を設ける場合、図2に示すようにレーザー
光を照射した側のフィルム表面の貫通孔直径は、反対側
のフィルム表面に形成される貫通孔直径よりも大きくな
る。また、図1および図2において貫通孔2の形成角度
αは90±20度とし、貫通孔2の平面形状の面積を
〔フィルム厚×5/4〕2 よりも大きくすることによっ
て、孔部へのメッキ液の濡れ性の点で後の金属充填の際
に効果的となる。
For example, when the fine through-holes 4 are formed in the film 1 by a laser beam, as shown in FIG. Larger than the hole diameter. In FIGS. 1 and 2, the formation angle α of the through-hole 2 is 90 ± 20 degrees, and the area of the planar shape of the through-hole 2 is larger than [film thickness × 5/4] 2 , so that In terms of wettability of the plating solution, it is effective at the time of metal filling later.

【0016】上記貫通孔2の開口部に形成されたバンプ
状金属突出物4は、貫通孔2の平面面積よりも大きな底
面積、好ましくは1.1倍以上の大きさとする。本発明
においてはこのように底面積を大きくすることによっ
て、貫通孔2内に形成された導通路が脱落することもな
く、ポリイミドフィルム1の厚み方向に対する剪断力に
対しても充分な強度を有し、電気的接続信頼性が向上す
る。
The bump-shaped metal protrusion 4 formed in the opening of the through hole 2 has a bottom area larger than the plane area of the through hole 2, preferably 1.1 times or more. In the present invention, by increasing the bottom area in this way, the conduction path formed in the through hole 2 does not fall off, and the polyimide film 1 has sufficient strength against shearing force in the thickness direction. As a result, electrical connection reliability is improved.

【0017】本発明の異方導電フィルムを得るための方
法としては、例えば以下の工程からなる方法が挙げられ
る。
The method for obtaining the anisotropic conductive film of the present invention includes, for example, a method comprising the following steps.

【0018】ポリイミドフィルムと導電層との積層フ
ィルム(接着剤を介した3層フィルムまたは直接積層し
た2層フィルム)のポリイミドフィルムのみに微細貫通
孔を設けるか、或いは微細貫通孔を設けたポリイミドフ
ィルムに導電層を積層(但し、導電層は微細孔が貫通す
るように積層するか、積層後除去する)し、導電層表面
にレジスト層を形成して表面を絶縁後、貫通孔部をエッ
チングして貫通孔部に接する導電層部分にリベット状の
溝部を形成する工程。
Fine through holes are provided only in a polyimide film of a laminated film of a polyimide film and a conductive layer (a three-layer film via an adhesive or a two-layer film directly laminated), or a polyimide film provided with a fine through hole A conductive layer is laminated on the conductive layer (however, the conductive layer is laminated so that the fine holes penetrate or is removed after the lamination), a resist layer is formed on the conductive layer surface, the surface is insulated, and the through-hole portion is etched. Forming a rivet-shaped groove in the conductive layer portion in contact with the through hole.

【0019】微細貫通孔に電解メッキや無電解メッキ
などのメッキ法により金属物質を充填し、バンプ状の金
属突出物を形成する工程。
A step of filling the fine through holes with a metal substance by a plating method such as electrolytic plating or electroless plating to form bump-shaped metal protrusions.

【0020】ポリイミドフィルムに積層されていた導
電層およびレジスト層を化学的エッチング液または電解
腐食によって除去する工程。
A step of removing the conductive layer and the resist layer laminated on the polyimide film by a chemical etching solution or electrolytic corrosion.

【0021】なお、上記の工程においてバンプ状の金
属突出物の形成はの工程後に行なってもよい。
In the above step, the bump-shaped metal protrusion may be formed after the step.

【0022】本発明の異方導電フィルムにおいて、ポリ
イミドフィルムの一方の側にバンプ状の金属突出物を形
成する場合は、図2に示すように貫通孔の孔径が小さい
側のフィルム表面にバンプ状の金属突出物を形成するこ
とが好ましい。従って、図2のようなポリイミドフィル
ム1においてはバンプ状の金属突出物4の形成側(図
中、下面側)に上記工程における導電層が形成されて
いる。
In the anisotropic conductive film of the present invention, when a bump-shaped metal protrusion is formed on one side of the polyimide film, as shown in FIG. It is preferable to form a metal protrusion of the above. Therefore, in the polyimide film 1 as shown in FIG. 2, the conductive layer in the above step is formed on the formation side (the lower surface side in the figure) of the bump-shaped metal protrusion 4.

【0023】バンプ状に金属突出物を形成するには金属
結晶の状態を微細結晶とすることが好ましい。なお、高
電流密度で電解メッキを行なった場合は、樹枝状の結晶
が形成されるのでバンプ状とならない場合がある。ま
た、金属結晶の析出速度を調整したり、メッキ液の種類
やメッキ浴の温度を調整することによって平滑、均一な
突出物を得ることもできる。
In order to form a metal protrusion in the form of a bump, it is preferable that the state of the metal crystal be a fine crystal. When electrolytic plating is performed at a high current density, dendritic crystals are formed, and thus, may not be bump-shaped. Further, by adjusting the deposition rate of metal crystals, or by adjusting the type of plating solution and the temperature of the plating bath, a smooth and uniform protrusion can be obtained.

【0024】本発明においてバンプ状金属突出物を貫通
孔の開口部面積よりも大きな底面積を有するようにする
には、上記メッキの際にメッキ皮膜を開口部表面、即ち
ポリイミドフィルム面よりも高く成長させ、かつリベッ
ト状に貫通孔から横にも成長させる必要があり、その高
さは孔ピッチや用途によって任意に設定することがで
き、通常5μm以上、好ましくは5〜100μmの範囲
に調整される。
In the present invention, in order to make the bump-shaped metal protrusion have a bottom area larger than the opening area of the through-hole, the plating film must be higher than the opening surface, that is, the polyimide film surface during the plating. It is necessary to grow, and also to grow laterally from the through hole in the form of a rivet, the height of which can be arbitrarily set depending on the hole pitch and application, and is usually adjusted to 5 μm or more, preferably 5 to 100 μm. You.

【0025】さらに、貫通孔底面の導電層を除去してリ
ベット状のバンプを形成する場合(両側にバンプを形成
する場合)も、エッチングを貫通孔直径の1.1倍以上
とすることが好ましい。1.1倍に満たないと、リベッ
ト状のバンプとしての効果が乏しくなり、所望の効果を
発揮しない場合がある。
Further, also in the case where the conductive layer on the bottom of the through hole is removed to form a rivet-shaped bump (in the case where bumps are formed on both sides), it is preferable that the etching be performed at 1.1 times or more the diameter of the through hole. . If the ratio is less than 1.1 times, the effect as a rivet-shaped bump is poor, and the desired effect may not be exhibited.

【0026】[0026]

【実施例】以下に本発明の実施例を示し、さらに具体的
に説明する。
EXAMPLES Examples of the present invention will be shown below, and will be described more specifically.

【0027】銅箔上にポリイミド前駆体溶液を乾燥後の
厚さ1mil となるように塗工、硬化させ、銅箔とポリイ
ミドフィルムとの2層フィルムを作製した。
A polyimide precursor solution was applied on a copper foil so as to have a thickness of 1 mil after drying, and was cured to prepare a two-layer film of a copper foil and a polyimide film.

【0028】次に、ポリイミドフィルム表面に発振波長
248nmのKrF エキシマレーザー光を、マスクを通して
照射してドライエッチングを施こし、ポリイミドフィル
ム層に60μmφ、ピッチ200μmの微細貫通孔を5
個/mmで8cm2 の領域に設けた。
Next, the surface of the polyimide film is irradiated with KrF excimer laser light having an oscillation wavelength of 248 nm through a mask and dry-etched to form fine through-holes having a diameter of 60 μm and a pitch of 200 μm in the polyimide film layer.
Each piece / mm was provided in an area of 8 cm 2 .

【0029】次いで、銅箔表面にレジストを塗工、硬化
させて絶縁し、化学研磨溶液中に50℃で2分間浸漬し
た。
Next, a resist was applied to the surface of the copper foil, cured, insulated, and immersed in a chemical polishing solution at 50 ° C. for 2 minutes.

【0030】これを水洗したのち、銅箔部を電極に接続
して60℃のシアン化金メッキ浴に浸漬し、銅箔をマイ
ナス極とし、2層フィルムの貫通孔部に金メッキを成長
させ、ポリイミドフィルム表面からやや金結晶が突出し
たとき(突出高さ5μm)にメッキ処理を中断した。
After washing with water, the copper foil portion was connected to the electrode, immersed in a gold cyanide plating bath at 60 ° C., the copper foil was used as a negative electrode, and gold plating was grown in the through-hole portion of the two-layer film. When the gold crystal slightly protruded from the film surface (projection height: 5 μm), the plating treatment was interrupted.

【0031】最後に、塗工したレジスト層を剥離して2
層フィルムの銅箔を塩化第二銅で溶解除去し、本発明の
異方導電フィルムを得た。
Finally, the coated resist layer is peeled off to remove 2
The copper foil of the layer film was dissolved and removed with cupric chloride to obtain the anisotropic conductive film of the present invention.

【0032】[0032]

【発明の効果】本発明の異方導電フィルムは以上のよう
な構造からなるので、導通路として充填された金属物質
は、ポリイミドフィルムと充分に密着しており、金属物
質の脱落もなく本来、導電性を有さなければならない微
細孔が充分に導電性を発揮し、電気的接続信頼性が高い
ものである。
Since the anisotropic conductive film of the present invention has the above-mentioned structure, the metal material filled as the conductive path is sufficiently adhered to the polyimide film, and the metal material does not fall off. The micropores, which must have conductivity, exhibit sufficient conductivity and have high electrical connection reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方導電フィルムの一実例を示す断面
図である。
FIG. 1 is a cross-sectional view showing one example of the anisotropic conductive film of the present invention.

【図2】本発明の異方導電フィルムの他の実例を示す断
面図である。
FIG. 2 is a cross-sectional view showing another example of the anisotropic conductive film of the present invention.

【図3】従来のバンプ付異方導電フィルムの断面図であ
る。
FIG. 3 is a sectional view of a conventional bumped anisotropic conductive film.

【符号の説明】[Explanation of symbols]

1 ポリイミドフィルム 2 微細貫通孔 3 金属物質 4 バンプ状の金属突出物 DESCRIPTION OF SYMBOLS 1 Polyimide film 2 Fine through hole 3 Metal substance 4 Bump-shaped metal protrusion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 正和 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 審査官 小川 進 (56)参考文献 特開 平3−182081(JP,A) 特開 平2−49385(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01B 5/16 H01B 13/00 501 H01L 21/60 311 H01R 43/00 H05K 3/36 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masakazu Sugimoto 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nippon Denko Co., Ltd. Examiner Susumu Ogawa (56) References JP-A-3-182081 (JP, A) JP-A-2-49385 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01B 5/16 H01B 13/00 501 H01L 21/60 311 H01R 43/00 H05K 3 / 36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非感光性ポリイミドフィルムの厚み方向
に、金属物質のメッキ充填によって独立して導通する微
細貫通孔がレーザー光の照射によってポリイミドフィル
ムの表裏面における貫通孔径が異なるように設けられて
おり、かつ該フィルムの表裏面上の貫通孔両端部のうち
少なくとも貫通孔の孔径の小さい側の一端部が貫通孔の
開口部面積よりも大きな底面積を有するバンプ状の金属
突出物によって閉塞されており、金属突出物が微細金属
結晶から形成されていることを特徴とする異方導電フィ
ルム。
1. A in the thickness direction of the non-photosensitive polyimide film, polyimide film by irradiation of the fine through-hole is laser light to conduct independently by plating filler metal material
The diameters of the through holes on the front and back surfaces of the film are different from each other, and at least one end of the both ends of the through hole on the front and back surfaces of the film on the side where the hole diameter of the through hole is smaller than the opening area of the through hole. Blocked by a bump-shaped metal protrusion with a large bottom area , the metal protrusion is a fine metal
An anisotropic conductive film characterized by being formed from crystals .
【請求項2】 ポリイミドフィルムに形成する微細貫通
孔が、90±20度の形成角度で設けられている請求項
1記載の異方導電フィルム。
2. The anisotropic conductive film according to claim 1, wherein the fine through holes formed in the polyimide film are provided at a forming angle of 90 ± 20 degrees.
【請求項3】 バンプ状の金属突出物が貫通孔直径の
1.1倍以上の直径を有するリベット状である請求項1
記載の異方導電フィルム。
3. The bump-shaped metal protrusion has a rivet shape having a diameter of 1.1 times or more the diameter of the through hole.
The anisotropic conductive film according to the above.
JP8002081A 1996-01-10 1996-01-10 Anisotropic conductive film Expired - Fee Related JP2984205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8002081A JP2984205B2 (en) 1996-01-10 1996-01-10 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8002081A JP2984205B2 (en) 1996-01-10 1996-01-10 Anisotropic conductive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2410852A Division JP2984064B2 (en) 1989-12-19 1990-12-14 Method for producing anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH08235935A JPH08235935A (en) 1996-09-13
JP2984205B2 true JP2984205B2 (en) 1999-11-29

Family

ID=11519408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002081A Expired - Fee Related JP2984205B2 (en) 1996-01-10 1996-01-10 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2984205B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075064A (en) * 2000-08-23 2002-03-15 Tdk Corp Anisotropic conductive film and its manufacturing method, and display using anisotropic conductive film
JP2004172588A (en) 2002-10-28 2004-06-17 Jsr Corp Sheet-like connector, its manufacturing method, and probe device
JP4589009B2 (en) * 2004-01-09 2010-12-01 三菱電機株式会社 Power semiconductor device
JP4852236B2 (en) 2004-10-08 2012-01-11 パナソニック株式会社 Membrane with bump, manufacturing method thereof, and wafer inspection method
JP5694888B2 (en) * 2011-09-26 2015-04-01 富士フイルム株式会社 Anisotropic conductive member and manufacturing method thereof
KR101572325B1 (en) * 2013-11-27 2015-11-26 단국대학교 산학협력단 Fabrication method for organic-metal mesh composite sheet
US11800643B2 (en) 2021-04-05 2023-10-24 Japan Aviation Electronics Industry, Limited Device having closed space between overlapping sealing members
JP2022159909A (en) 2021-04-05 2022-10-18 日本航空電子工業株式会社 device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2702507B2 (en) * 1988-05-31 1998-01-21 キヤノン株式会社 Electrical connection member and method of manufacturing the same

Also Published As

Publication number Publication date
JPH08235935A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
US5438223A (en) Anisotropic electrically conductive adhesive film and connection structure using the same
JP3015712B2 (en) Film carrier and semiconductor device using the same
JP3154713B2 (en) Anisotropic conductive film and method for manufacturing the same
EP0433996B1 (en) Process for producing an anisotropic conductive film
US6469394B1 (en) Conductive interconnect structures and methods for forming conductive interconnect structures
US20020150838A1 (en) Structure and method for forming a multilayered structure
JPH1012677A (en) Manufacture of double-side wiring tape carrier for semiconductor device
JP3352705B2 (en) Mounting structure using anisotropic conductive adhesive film
TWI294760B (en)
JP2984205B2 (en) Anisotropic conductive film
JPH0621142A (en) Bonding method of semiconductor chip and semiconductor integrated circuit device
JPH11238959A (en) Circuit board
US5188702A (en) Process for producing an anisotropic conductive film
JP3855320B2 (en) Semiconductor device substrate manufacturing method and semiconductor device manufacturing method
JP2002343931A (en) Wiring board, manufacturing method thereof, multi-chip module, manufacturing method thereof, and multi-chip module mounting structure body
JP4369684B2 (en) Multilayer wiring board and manufacturing method thereof
JP4155434B2 (en) Manufacturing method of semiconductor package substrate having pads subjected to partial electrolytic plating treatment
JP2984064B2 (en) Method for producing anisotropic conductive film
JPH05152019A (en) Anisotropic conduction connector
JPH0727789A (en) Circuit wiring board and its manufacture
JP2001156453A (en) Forming method for embedded via at printed wiring board
JPH06231818A (en) Anisotropic conductive connector with elasticity
JPH05258790A (en) Anisotropically conductive adhesion film and connecting structure using it
JP4464790B2 (en) Wiring board manufacturing method
JPH05226054A (en) Manufacture of anisotropic conductive film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees