JPH05258790A - Anisotropically conductive adhesion film and connecting structure using it - Google Patents

Anisotropically conductive adhesion film and connecting structure using it

Info

Publication number
JPH05258790A
JPH05258790A JP4090045A JP9004592A JPH05258790A JP H05258790 A JPH05258790 A JP H05258790A JP 4090045 A JP4090045 A JP 4090045A JP 9004592 A JP9004592 A JP 9004592A JP H05258790 A JPH05258790 A JP H05258790A
Authority
JP
Japan
Prior art keywords
film
hole
anisotropic conductive
polyimide resin
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4090045A
Other languages
Japanese (ja)
Inventor
Kazumi Azuma
一美 東
Shu Mochizuki
周 望月
Masako Maeda
雅子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP4090045A priority Critical patent/JPH05258790A/en
Priority to EP19930102182 priority patent/EP0560072A3/en
Priority to TW082101467A priority patent/TW274620B/zh
Priority to KR1019930003608A priority patent/KR100260478B1/en
Priority to US08/030,865 priority patent/US5438223A/en
Publication of JPH05258790A publication Critical patent/JPH05258790A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an anisotropically conductive adhesion film, which is free from risk of slipping-off of a metal substance put fully in each minute through hole, can seal the connection part certainly with resin, and ensures a high reliance upon the electric connection. CONSTITUTION:Minute through hole 2 is provided in the direction across the width of an insulative film 1, for example made of polyimide, and filled with 21 metal substance 3 using a means such as plating, and bump--shaped metal protrusions 4 are made in rivet form at the two ends of this through hole 2. A layer 5 of thermoplastic polyimide resin whose melt viscosity at 400 deg.C is below 10<8> poise is formed at least, on one surface of this insulative film 1, and thereby an anisotropic conductive adhesion film is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は異方導電性接着フィル
ム、およびこれを用いてなる接続構造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive adhesive film and a connection structure using the same.

【0002】[0002]

【従来の技術】近年の電子機器の多機能化と小型軽量化
に伴い、半導体分野においては配線回路のパターンが高
集積化され、多ピンおよび狭ピッチのファインパターン
が採用されている。このような回路のファインパターン
化に対応すべく、基板上に形成された複数の導体パター
ンとそれと接続する導体パターンまたはIC,LSIと
の接続に、異方導電フィルムを介在させる方法が試みら
れている。
2. Description of the Related Art In recent years, electronic devices have become more multifunctional and smaller and lighter. In the semiconductor field, wiring circuit patterns have been highly integrated and fine patterns with a large number of pins and a narrow pitch have been adopted. In order to cope with such fine patterning of circuits, a method of interposing an anisotropic conductive film in the connection between a plurality of conductor patterns formed on a substrate and the conductor patterns or ICs or LSIs connected thereto has been attempted. There is.

【0003】例えば、特開昭55−161306号公報
には絶縁性多孔体シートの選択領域内の孔部に金属メッ
キを施こし異方導電化したシートが開示されている。し
かし、このようなシートは表面に金属突出部がないの
で、ICなどの接続に際してはIC側の接続パッド部に
突起電極(バンプ)を形成しておく必要があり、接続工
程が煩雑となる。
For example, Japanese Unexamined Patent Publication No. 55-161306 discloses a sheet in which holes in selected regions of an insulating porous sheet are plated with metal to provide anisotropic conductivity. However, since such a sheet does not have a metal protrusion on the surface, it is necessary to form bump electrodes (bumps) on the connection pads on the IC side when connecting an IC or the like, which complicates the connection process.

【0004】また、特開昭62−43008号公報や特
開昭63−40218号公報、特開昭63−94504
号公報には絶縁性フィルムの厚み方向に設けた微細孔に
金属物質を充填して異方導電化し、さらにフィルム表面
からバンプ状に金属物質を突出させて接続を容易にした
ものが開示されている。さらに、特開昭54−6320
号公報には絶縁性フィルムの厚み方向に多数の導電体を
配向させて異方導電化し、さらに作業性を向上させるた
めに該フィルムの両面に接着剤層を形成したものが開示
されている。
Further, JP-A-62-43008, JP-A-63-40218, and JP-A-63-94504.
Japanese Patent Laid-Open Publication No. 2004-242242 discloses a structure in which fine holes provided in the thickness direction of an insulating film are filled with a metal substance to make it anisotropically conductive, and the metal substance is projected in bumps from the film surface to facilitate connection. There is. Furthermore, JP-A-54-6320
The publication discloses that a large number of conductors are oriented in the thickness direction of an insulating film to make it anisotropically conductive, and an adhesive layer is formed on both sides of the film in order to improve workability.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような異
方導電性フィルムは充填されている金属物質が一般に図
5に示すような構造であるために、充填された金属物質
と絶縁性フィルムとの密着性が充分ではなく、金属物質
が脱落して本来導電性を有さなければならない微細孔が
導電性を発揮せず、電気的接続信頼性に欠ける恐れがあ
る。
However, in such an anisotropically conductive film, since the metal substance filled is generally structured as shown in FIG. 5, the filled metal substance and the insulating film are There is a risk that the electrical connection reliability will be poor due to the lack of sufficient adhesion, the metal substance falling off, and the fine pores that must originally have conductivity, not exhibiting conductivity.

【0006】また、異方導電性の接着フィルムとしては
図6に示すように、接着性を有する熱可塑性樹脂や熱硬
化性樹脂からなる接合材13中に、導電性粉体12を分
散させたものが知られている。しかしながら、このフィ
ルムを用いて被接続体を接続すると、加圧や加熱によっ
て接合材13中に分散している導電性粉体12が流動し
て異方導電性不良、接続不良を起こす恐れがある。さら
に、このような異方導電性フィルムでは液晶ディスプレ
イ駆動用ICやLSIなどの半導体素子を実装する際に
用いると、フィルムに充分な自己保持性(保形性)がな
いので、実装部の封止材としては充分に機能せず、実用
的には未だ不充分なものである。また、上記従来の接着
フィルムは通常、耐熱性に乏しいために耐熱用途への適
用に難点がある。
As the anisotropic conductive adhesive film, as shown in FIG. 6, the conductive powder 12 is dispersed in a bonding material 13 made of an adhesive thermoplastic resin or thermosetting resin. Things are known. However, when connecting a connected object using this film, the conductive powder 12 dispersed in the bonding material 13 may flow due to pressurization or heating to cause anisotropic conductivity failure or connection failure. .. Further, when such an anisotropic conductive film is used when mounting a semiconductor element such as a liquid crystal display driving IC or LSI, the film does not have sufficient self-holding property (shape retaining property), so that the mounting part is sealed. It does not function sufficiently as a stopping material, and is still insufficient in practical use. In addition, since the above-mentioned conventional adhesive film usually has poor heat resistance, it is difficult to apply it to heat resistant applications.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは従
来の異方導電性フィルムが有する上記課題を解決し、確
実に異方導電化できて接続信頼性が高く、さらに、接着
性を有して接続部の封止も確実に行える異方導電性接着
フィルムを提供すべく鋭意検討を重ね、本発明を完成す
るに至った。
Therefore, the present inventors have solved the above-mentioned problems of the conventional anisotropic conductive film, and are capable of surely making the anisotropic conductive film to have high connection reliability, and further to improve the adhesiveness. The present invention has been completed through intensive studies in order to provide an anisotropic conductive adhesive film which has a sealing function for surely sealing the connection part.

【0008】即ち、本発明は絶縁性フィルムの厚み方向
に独立して導通する微細貫通孔を有し、かつ該フィルム
の表裏面上の貫通孔両端部のうち少なくとも一端部が貫
通孔の開口部面積よりも大きな底面積を有するバンプ状
の金属突出物によって閉塞されており、さらに該フィル
ムの少なくとも一方の面に400℃における溶融粘度が
1×108 ポイズ以下である熱可塑性ポリイミド樹脂層
が形成されていることを特徴とする異方導電性接着フィ
ルムを提供することを第1の要旨とし、また、このフィ
ルムを被接続体間に介在させてなる異方導電性接着フィ
ルムを用いた接続構造を提供することを第2の要旨とす
るものである。
That is, according to the present invention, the insulating film has fine through holes which are independently conducted in the thickness direction, and at least one end of both ends of the through hole on the front and back surfaces of the film is an opening of the through hole. A thermoplastic polyimide resin layer which is closed by bump-like metal protrusions having a bottom area larger than the area and has a melt viscosity at 400 ° C. of 1 × 10 8 poise or less is formed on at least one surface of the film. A first gist of the present invention is to provide an anisotropic conductive adhesive film, and a connection structure using an anisotropic conductive adhesive film in which this film is interposed between connected bodies. The second gist is to provide.

【0009】以下、本発明を図面を用いて説明する。図
1は本発明の異方導電性接着フィルムの一実例を示す拡
大断面図である。
The present invention will be described below with reference to the drawings. FIG. 1 is an enlarged sectional view showing an example of the anisotropic conductive adhesive film of the present invention.

【0010】図1において絶縁性フィルム1には厚み方
向に微細貫通孔2が設けられており、金属物質3を充填
した導通路が表裏面に達している。貫通孔2の両端部に
は貫通孔2の開口部面積よりも大きな底面積を有するバ
ンプ状の金属突出物4が形成されており、所謂リベット
状に貫通孔2を閉塞している。この絶縁性フィルム1に
は熱可塑性ポリイミド樹脂層5が両面(表裏面)に形成
されており、被接着体へ加熱接着させて接続部を封止す
るのに効果を発揮する。なお、本発明においては熱可塑
性ポリイミド樹脂層5は両面にだけでなく片面のみに形
成(図示、省略)していてもよいものである。また、図
1(A)は熱可塑性ポリイミド樹脂層5がバンプ状の金
属突出物4を全面覆って形成されている場合を、図1
(B)は絶縁性フィルム1に予め熱可塑性ポリイミド樹
脂層5を形成しておき、該樹脂層5を含めて微細貫通孔
2を形成し、金属物質3を貫通孔2に充填して表裏面に
金属突出物4を露出させた導通路を形成したものであ
る。
In FIG. 1, the insulating film 1 is provided with fine through holes 2 in the thickness direction, and the conductive paths filled with the metal substance 3 reach the front and back surfaces. Bump-shaped metal protrusions 4 having a bottom area larger than the opening area of the through hole 2 are formed at both ends of the through hole 2, and close the through hole 2 in a so-called rivet shape. Thermoplastic polyimide resin layers 5 are formed on both surfaces (front and back surfaces) of this insulating film 1, and it is effective in heating and adhering to an adherend to seal the connection part. In the present invention, the thermoplastic polyimide resin layer 5 may be formed not only on both sides but also on one side (not shown). Further, FIG. 1A shows a case where the thermoplastic polyimide resin layer 5 is formed so as to entirely cover the bump-shaped metal protrusions 4.
(B) shows that the thermoplastic polyimide resin layer 5 is formed in advance on the insulating film 1, the fine through holes 2 are formed including the resin layer 5, and the metal substance 3 is filled in the through holes 2 to form the front and back surfaces. A conductive path exposing the metal protrusion 4 is formed on the surface.

【0011】また、図2(A)および図2(B)は本発
明の異方導電性接着フィルムの他の実例を示す拡大断面
図であり、絶縁性フィルム1に設けられた貫通孔2の片
端部にのみ貫通孔2の開口部面積よりも大きな底面積を
有するバンプ状の金属突出物4が形成されてなるもので
あり、図1と同様、両面に熱可塑性ポリイミド樹脂層5
が形成されている。なお、図2中の(A)および(B)
は図1(A)および(B)と同じ熱可塑性ポリイミド樹
脂層5の形成状態(金属突出物の非露出状態および露出
状態)を示す。
2 (A) and 2 (B) are enlarged cross-sectional views showing another example of the anisotropic conductive adhesive film of the present invention, showing the through holes 2 formed in the insulating film 1. A bump-shaped metal protrusion 4 having a bottom area larger than the opening area of the through hole 2 is formed only on one end portion, and the thermoplastic polyimide resin layer 5 is formed on both surfaces as in FIG.
Are formed. Note that (A) and (B) in FIG.
Shows the formation state (non-exposed state and exposed state of metal protrusion) of the same thermoplastic polyimide resin layer 5 as in FIGS. 1 (A) and 1 (B).

【0012】上記各図において微細貫通孔2の直径は、
使用目的に応じて設定することができるが、通常15〜
100μm、好ましくは20〜50μmとし、ピッチは
15〜200μm、好ましくは40〜100μmとす
る。
In each of the above figures, the diameter of the fine through hole 2 is
It can be set according to the purpose of use, but usually 15 to
The pitch is 100 μm, preferably 20 to 50 μm, and the pitch is 15 to 200 μm, preferably 40 to 100 μm.

【0013】本発明の異方導電性接着フィルムに自己支
持性および絶縁性を付与する絶縁性フィルム1は、電気
絶縁特性を有するフィルムであればその素材に制限はな
く、ポリエステル系樹脂、エポキシ系樹脂、ウレタン系
樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリ
アミド系樹脂、ポリイミド系樹脂、ABS樹脂、ポリカ
ーボネート樹脂、シリコーン系樹脂など熱硬化性樹脂や
熱可塑性樹脂を問わず目的に応じて選択できる。これら
の樹脂のうち耐熱性が良好な樹脂としてポリイミド、ポ
リエーテルスルホン、ポリフェニレンスルフィドなどの
耐熱性樹脂、特にポリイミド樹脂を用いることが好まし
い。また、この絶縁性フィルム1の厚さは任意に設定で
きるが、フィルム厚の精度(バラツキ)や形成する貫通
孔の孔径精度の点からは通常、5〜200μm、好まし
くは10〜100μmとする。
The insulating film 1 for imparting self-supporting property and insulating property to the anisotropic conductive adhesive film of the present invention is not limited in its material as long as it is a film having electric insulating properties, and it may be a polyester resin or an epoxy resin. Resins, urethane resins, polystyrene resins, polyethylene resins, polyamide resins, polyimide resins, ABS resins, polycarbonate resins, silicone resins and other thermosetting resins or thermoplastic resins can be selected according to the purpose. Of these resins, heat-resistant resins such as polyimide, polyether sulfone, and polyphenylene sulfide, particularly polyimide resins, are preferably used as the resin having good heat resistance. Although the thickness of the insulating film 1 can be set arbitrarily, it is usually 5 to 200 μm, preferably 10 to 100 μm from the viewpoint of accuracy (variation) of film thickness and hole diameter accuracy of formed through holes.

【0014】上記絶縁性フィルム1に設ける微細貫通孔
2は、パンチングなどの機械的加工法、レーザー、プラ
ズマなどによるドライエッチング法、薬品、溶剤などに
よる化学的なウエットエッチング法などがある。エッチ
ング法の場合は絶縁性フィルム1に所望の孔形状、例え
ば丸、四角、菱形などを有するマスクを密着させ、マス
クの上から処理する間接的エッチング法、スポットを絞
ったレーザー光をフィルムに当てたり、マスクを通して
レーザー光をフィルム上に結像させるさせるドライエッ
チング法、感光性レジストを用いて、予め微細孔をパタ
ーニングしたのちウエットエッチングする直接エッチン
グ法などがある。なお、回路のファインパターン化に対
応するにはドライエッチング法やウエットエッチング法
が好ましく、特にエキシマレーザーの如き紫外線レーザ
ーによるアブレーションを用いたドライエッチング法の
場合は、高いアスペクト比が得られるので好ましい。
The fine through holes 2 provided in the insulating film 1 may be formed by a mechanical processing method such as punching, a dry etching method using laser or plasma, or a chemical wet etching method using chemicals or a solvent. In the case of the etching method, a mask having a desired hole shape, for example, a circle, a square, or a rhombus is brought into close contact with the insulating film 1, and an indirect etching method in which the mask is processed, or a laser beam with a narrowed spot is applied to the film. Alternatively, there are a dry etching method in which a laser beam is imaged on a film through a mask, a direct etching method in which fine holes are patterned in advance using a photosensitive resist and then wet etching is performed. Incidentally, a dry etching method or a wet etching method is preferable in order to correspond to a fine pattern of a circuit, and particularly a dry etching method using ablation by an ultraviolet laser such as an excimer laser is preferable since a high aspect ratio can be obtained.

【0015】例えば、レーザー光によってフィルム1に
微細貫通孔4を設ける場合、図2に示すようにレーザー
光を照射した側のフィルム表面の貫通孔直径は、反対側
のフィルム表面に形成される貫通孔直径よりも大きくな
る。また、図1および図2において貫通孔2の形成角度
αは90±20度とし、貫通孔2の平面形状の面積を
〔フィルム厚×1/1〕2 よりも大きくすることによっ
て、孔部へのメッキ液の濡れ性の点で後の金属充填の際
に効果的となる。
For example, when the fine through holes 4 are formed in the film 1 by laser light, the diameter of the through hole on the film surface on the side irradiated with the laser light is the same as the through hole formed on the film surface on the opposite side as shown in FIG. It is larger than the hole diameter. In addition, in FIGS. 1 and 2, the formation angle α of the through hole 2 is set to 90 ± 20 degrees, and the area of the planar shape of the through hole 2 is made larger than [film thickness × 1/1] 2 . In terms of the wettability of the plating solution, it becomes effective in the subsequent metal filling.

【0016】上記のように絶縁性フィルム1に設けられ
た微細貫通孔4には、導通路となる金属物質3が充填さ
れ、さらに、その両端部にはバンプ状の金属突出物4が
形成されている。このような金属物質としては、例えば
金、銀、銅、錫、鉛、ニッケル、コバルト、インジウム
などの各種金属、またはこれらを成分とする各種合金が
用いられる。この金属物質は純度が高すぎるとバンプ状
となりにくいので、自体公知の有機物や無機物を微量混
入した金属物質や合金を用いることが好ましい。導通路
の形成方法としては、スパッタリング、各種蒸着、各種
メッキなどの各種方法が採用できる。なお、メッキ法に
よる場合は、メッキ時間を長くすることによって、バン
プ状に金属突出物4を成長させることができるのであ
る。
As described above, the fine through holes 4 provided in the insulating film 1 are filled with the metal substance 3 serving as a conduction path, and bump-shaped metal protrusions 4 are formed at both ends thereof. ing. As such a metal substance, for example, various metals such as gold, silver, copper, tin, lead, nickel, cobalt and indium, or various alloys containing these as components are used. If the purity of this metal substance is too high, it is difficult to form bumps. Therefore, it is preferable to use a metal substance or an alloy containing a known amount of an organic substance or an inorganic substance. Various methods such as sputtering, various vapor depositions, and various platings can be adopted as the method of forming the conductive path. In the case of using the plating method, it is possible to grow the metal protrusion 4 in a bump shape by prolonging the plating time.

【0017】上記貫通孔2の開口部に形成されたバンプ
状の金属突出物4は、貫通孔2の平面面積よりも大きな
底面積、好ましくは1.1倍以上の大きさとする。本発
明においてはこのように底面積を大きくすることによっ
て、貫通孔2内に形成された導通路が脱落することもな
く、絶縁性フィルム1の厚み方向に対する剪断力に対し
ても充分な強度を有し、電気的接続信頼性が向上するの
である。
The bump-like metal protrusion 4 formed in the opening of the through hole 2 has a bottom area larger than the plane area of the through hole 2, preferably 1.1 times or more. In the present invention, by increasing the bottom area in this way, the conductive path formed in the through hole 2 does not fall off, and sufficient strength against shearing force in the thickness direction of the insulating film 1 is obtained. Therefore, the reliability of electrical connection is improved.

【0018】また、上記絶縁フィルムの少なくとも一方
の面には、被接着体への仮接着およひ接続部を樹脂封止
するための熱可塑性ポリイミド樹脂層5が形成されてい
る。該層を形成する熱可塑性ポリイミド樹脂は耐熱特性
の点から、400℃における溶融粘度が1×108 ポイ
ズ以下、好ましくは1×103 〜1×107 ポイズのも
のが採用され、この特性を満足しポリイミド骨格を有す
るものであれば特にその構造は限定されない。溶融粘度
が108 ポイズを超えるような高粘性のものでは被接続
体との接着の際に、充分に溶融することができず、確実
な接続構造を得ることができない。また、ガラス転移温
度は耐熱性の点から473K以上のものを用いることが
好ましい。このような熱可塑性ポリイミド樹脂として
は、例えばウルテム1000(ジェネラルエレクトリッ
ク社製、ポリエーテルイミド)、LARC−TPI(三
井東圧社製ポリイミド)、4,4’−オキシジフタル酸
二無水物と3,3’−ジアミノジフェニルスルホンから
得られるポリイミドなどが挙げられ、これらは一種また
は二種以上混合して用いることができる。また、上記熱
可塑性ポリイミド樹脂層5には接着性や耐熱性などの特
性を阻害しない範囲で、必要に応じて着色剤、接着性改
良剤、無機質充填剤(シリカ、カーボンなど)などの添
加剤を任意量配合してもよい。
A thermoplastic polyimide resin layer 5 is formed on at least one surface of the insulating film for temporarily adhering to the adherend and for sealing the connection portion with resin. The thermoplastic polyimide resin forming the layer has a melt viscosity at 400 ° C. of 1 × 10 8 poise or less, preferably 1 × 10 3 to 1 × 10 7 poise, from the viewpoint of heat resistance. The structure is not particularly limited as long as it has a satisfactory polyimide skeleton. If the melt viscosity is high such that it exceeds 10 8 poise, it cannot be melted sufficiently at the time of bonding with a body to be connected, and a reliable connection structure cannot be obtained. Further, it is preferable to use a glass transition temperature of 473 K or higher from the viewpoint of heat resistance. Examples of such a thermoplastic polyimide resin include Ultem 1000 (polyether imide manufactured by General Electric Co.), LARC-TPI (polyimide manufactured by Mitsui Toatsu Co., Ltd.), 4,4′-oxydiphthalic acid dianhydride and 3,3. Examples include polyimide obtained from'-diaminodiphenyl sulfone, and these may be used alone or in combination of two or more. In addition, additives such as a colorant, an adhesion improver, and an inorganic filler (silica, carbon, etc.) are added to the thermoplastic polyimide resin layer 5 as needed, as long as characteristics such as adhesiveness and heat resistance are not impaired. May be blended in any amount.

【0019】また、被接続体に半導体素子を用いる場
合、上記熱可塑性ポリイミド樹脂層5と半導体素子との
密着性を向上させるために、シランカップリング剤やシ
ラン化合物を熱可塑性ポリイミド樹脂層5中に含有もし
くは該層5表面へ塗布することが好ましい。
When a semiconductor element is used as the object to be connected, a silane coupling agent or a silane compound is added to the thermoplastic polyimide resin layer 5 in order to improve the adhesion between the thermoplastic polyimide resin layer 5 and the semiconductor element. It is preferable to contain or apply to the surface of the layer 5.

【0020】このような熱可塑性ポリイミド樹脂層5の
厚みは特に制限されないが、厚み精度(バラツキ)や接
続信頼性の点からは通常、3〜500μm、好ましくは
5〜100μmとする。
The thickness of such a thermoplastic polyimide resin layer 5 is not particularly limited, but is usually 3 to 500 μm, preferably 5 to 100 μm from the viewpoint of thickness accuracy (variation) and connection reliability.

【0021】本発明の異方導電性接着フィルムを得るた
めの方法としては、例えば以下の工程からなる方法が挙
げられる。
The method for obtaining the anisotropic conductive adhesive film of the present invention includes, for example, a method comprising the following steps.

【0022】熱可塑性ポリイミド樹脂層を積層した絶
縁性フィルムの積層面と反対の面に、接着剤を用いるか
または用いずに導電層を積層し、絶縁性フィルムおよび
熱可塑性ポリイミド樹脂層に微細貫通孔を設けるか、或
いは微細貫通孔を設けた絶縁性フィルムと熱可塑性ポリ
イミド重層との積層フィルムに導電層を積層(但し、導
電層は微細孔が貫通するように積層するか、積層後除去
する)し、導電層表面にレジスト層を形成して表面を絶
縁後、貫通孔部をエッチングして貫通孔部に接する導電
層部分にリベット状の溝部を形成する工程。
A conductive layer is laminated on the surface opposite to the laminated surface of the insulating film on which the thermoplastic polyimide resin layer is laminated, with or without an adhesive, to finely penetrate the insulating film and the thermoplastic polyimide resin layer. Laminating a conductive layer on a laminated film of an insulating film having holes or fine through holes and a thermoplastic polyimide multilayer (provided that the conductive layer is laminated so that the fine holes penetrate or is removed after lamination) ), A resist layer is formed on the surface of the conductive layer to insulate the surface, and then the through hole is etched to form a rivet-shaped groove in the conductive layer portion in contact with the through hole.

【0023】微細貫通孔に電解メッキや無電解メッキ
などのメッキ法により金属物質を充填し、バンプ状の金
属突出物を形成する工程。
A step of filling the fine through holes with a metal substance by a plating method such as electrolytic plating or electroless plating to form bump-shaped metal protrusions.

【0024】絶縁性フィルムに積層されていた導電層
およびレジスト層を化学的エッチング液または電解腐食
によって除去する工程。
A step of removing the conductive layer and the resist layer laminated on the insulating film by a chemical etching solution or electrolytic corrosion.

【0025】なお、上記の工程における熱可塑性ポリ
イミド樹脂層は絶縁性フィルムに予め積層しておかず
に、の工程後に積層してもよい。
The thermoplastic polyimide resin layer in the above step may be laminated after the step without being laminated on the insulating film in advance.

【0026】また、上記の工程においてバンプ状金属
突出物の形成はの工程後に行なってもよく、上記の
工程後、熱可塑性ポリイミド樹脂層の表面(露出側)に
は汚染を防止するために、保存中はセパレータにて被覆
しておくことが好ましい。
In the above step, the bump-shaped metal protrusion may be formed after the step, and after the above step, the surface (exposed side) of the thermoplastic polyimide resin layer may be prevented from being contaminated. It is preferable to coat with a separator during storage.

【0027】本発明の異方導電性接着フィルムにおいて
絶縁性フィルムの一方の側にバンプ状の金属突出物を形
成する場合は、図2に示すように貫通孔の孔径が小さい
側のフィルム表面にバンプ状の金属突出物を形成するこ
とが好ましい。従って、図2のような絶縁性フィルム1
においてはバンプ状の金属突出物4の形成側(図中、下
面側)に上記工程における導電層が形成されている。
When a bump-shaped metal protrusion is formed on one side of the insulating film in the anisotropic conductive adhesive film of the present invention, it is formed on the film surface on the side where the through-hole has a small hole diameter as shown in FIG. It is preferable to form bump-shaped metal protrusions. Therefore, the insulating film 1 as shown in FIG.
In, the conductive layer in the above step is formed on the side where the bump-shaped metal protrusion 4 is formed (the lower surface side in the figure).

【0028】バンプ状に金属突出物を形成するには金属
結晶の状態を微細結晶とすることが好ましい。なお、高
電流密度で電解メッキを行なった場合は、樹枝状の結晶
が形成されるのでバンプ状とならない場合がある。ま
た、金属結晶の析出速度を調整したり、メッキ液の種類
やメッキ浴の温度を調整することによって平滑、均一な
突出物を得ることもできる。
In order to form a bump-shaped metal protrusion, it is preferable that the state of the metal crystal is a fine crystal. Note that when electrolytic plating is performed at a high current density, a dendritic crystal is formed, so that the bump may not be formed. In addition, a smooth and uniform protrusion can be obtained by adjusting the deposition rate of metal crystals, adjusting the type of plating solution and the temperature of the plating bath.

【0029】本発明においてバンプ状金属突出物を貫通
孔の開口部面積よりも大きな底面積を有するようにする
には、上記メッキの際にメッキ皮膜を開口部表面、即ち
絶縁性フィルム面よりも高く成長させ、かつリベット状
に貫通孔から横にも成長させる必要があり、その高さは
孔ピッチや用途によって任意に設定することができ、通
常5μm以上、好ましくは5〜100μmの範囲に調整
される。
In the present invention, in order to make the bump-shaped metal protrusion have a bottom area larger than the opening area of the through hole, the plating film is formed at the time of the plating as compared with the opening surface, that is, the insulating film surface. It is necessary to grow high and also to grow laterally from the through-hole like a rivet, and the height can be arbitrarily set according to the hole pitch and the application, and is usually adjusted to 5 μm or more, preferably 5 to 100 μm. To be done.

【0030】さらに、貫通孔底面の導電層を除去してリ
ベット状のバンプを形成する場合(両側にバンプを形成
する場合)も、エッチングを貫通孔直径の1.1倍以上
とすることが好ましい。1.1倍に満たないと、リベッ
ト状のバンプとしての効果が乏しくなり、所望の効果を
発揮しない場合がある。
Further, when the conductive layer on the bottom surface of the through hole is removed to form rivet-shaped bumps (when bumps are formed on both sides), the etching is preferably performed at 1.1 times or more the diameter of the through hole. .. If it is less than 1.1 times, the effect as a rivet-shaped bump becomes poor and the desired effect may not be exhibited.

【0031】図3および図4は本発明の異方導電性接着
フィルムを用いてフレキシブルプリント基板(FPC)
10のリード部11を、プリント配線基板9上の電極8
上に実装する前および実装後の接続構造を示す断面図で
ある。例えば熱可塑性ポリイミド樹脂としてポリエーテ
ルイミド(ジェネラルエレクトリック社製、ウルテム1
000)を用いた場合、熱プレスによって320℃で1
0kg/cm2 の条件下、約10分間加熱圧着すること
で図4に示すような接続構造が得られる。
3 and 4 show a flexible printed circuit (FPC) using the anisotropic conductive adhesive film of the present invention.
The lead portion 11 of the electrode 10 is connected to the electrode 8 on the printed wiring board 9.
It is sectional drawing which shows the connection structure before mounting and after mounting. For example, as a thermoplastic polyimide resin, polyetherimide (Ultem 1 manufactured by General Electric Co., Ltd.)
000) is used by hot pressing at 320 ° C.
The connection structure as shown in FIG. 4 is obtained by heating and pressure bonding for about 10 minutes under the condition of 0 kg / cm 2 .

【0032】[0032]

【実施例】以下に本発明の実施例を示し、さらに具体的
に説明する。
EXAMPLES Examples of the present invention will be shown below and will be described more specifically.

【0033】銅箔上にポリイミド前駆体溶液を乾燥後の
厚さ1mil となるように塗工、硬化させ、銅箔とポリイ
ミドフィルムとの2層フィルムを作製した。次に、ポリ
イミドフィルム表面に発振波長248nmのKrF エキシマ
レーザー光を、マスクを通して照射してドライエッチン
グを施こし、ポリイミドフィルム層に60μmφ、ピッ
チ200μmの微細貫通孔を5個/mmで8cm2 の領域に
設けた。
A polyimide precursor solution was applied onto a copper foil so as to have a thickness of 1 mil after drying and cured to prepare a two-layer film of a copper foil and a polyimide film. Then, the surface of the polyimide film is irradiated with KrF excimer laser light with an oscillation wavelength of 248 nm through a mask to perform dry etching, and the polyimide film layer has a fine through hole of 60 μmφ and a pitch of 200 μm in an area of 5 cm / mm and 8 cm 2 . Set up in.

【0034】次いで、銅箔表面にレジストを塗工、硬化
させて絶縁し、化学研磨溶液中に50℃で2分間浸漬し
た。
Next, a resist was applied to the surface of the copper foil, cured to insulate it, and immersed in a chemical polishing solution at 50 ° C. for 2 minutes.

【0035】これを水洗したのち、銅箔部を電極に接続
して60℃のシアン化金メッキ浴に浸漬し、銅箔をマイ
ナス極とし、2層フィルムの貫通孔部に金メッキを成長
させ、ポリイミドフィルム表面からやや金結晶が突出し
たとき(突出高さ5μm)にメッキ処理を中断した。
After washing this with water, the copper foil portion was connected to the electrode and immersed in a cyanide gold plating bath at 60 ° C., the copper foil was used as a negative electrode, and gold plating was grown in the through-hole portion of the two-layer film. The plating process was interrupted when the gold crystals were slightly projected from the film surface (projection height was 5 μm).

【0036】そして、塗工したレジスト層を剥離して2
層フィルムの銅箔を塩化第二銅で溶解除去した。
Then, the coated resist layer is peeled off, and 2
The copper foil of the layer film was dissolved and removed with cupric chloride.

【0037】最後に、LARC−TPI(三井東圧社製
ポリイミド)からなる熱可塑性ポリイミド樹脂層(40
0℃における溶融粘度8.3×105 ポイズ、ガラス転
移温度451K)を絶縁性フィルムの片面もしくは両面
に形成して、本発明の異方導電性接着フィルムを得た。
Finally, a thermoplastic polyimide resin layer (40 made of LARC-TPI (polyimide manufactured by Mitsui Toatsu) is used.
A melt viscosity at 0 ° C. of 8.3 × 10 5 poise and a glass transition temperature of 451 K) was formed on one side or both sides of the insulating film to obtain an anisotropic conductive adhesive film of the present invention.

【0038】[0038]

【発明の効果】本発明の異方導電性接着フィルムは以上
のような構造からなるので、導通路として充填された金
属物質は、絶縁性フィルムと充分に密着しており、金属
物質の脱落もなく本来、導電性を有さなければならない
微細孔が充分に導電性を発揮し、電気的接続信頼性が高
いものである。
EFFECT OF THE INVENTION Since the anisotropic conductive adhesive film of the present invention has the above-mentioned structure, the metal substance filled as the conductive path is sufficiently adhered to the insulating film, and the metal substance does not drop off. Originally, the micropores that originally have to have conductivity exhibit sufficient conductivity, and the electrical connection reliability is high.

【0039】さらに、本発明の異方導電性接着フィルム
には熱可塑性ポリイミド樹脂層を絶縁性フィルムの少な
くとも片面に形成しているので、実装に際しては接続時
の加圧および加熱にて該ポリイミド樹脂層が流動、変形
しても、絶縁性フィルムによって導通路となる金属物質
層が固定維持され、しかも熱可塑性ポリイミド樹脂層に
よって接続部も樹脂封止されているので、接続不良を起
こすことがないという効果を発揮する。また、耐熱性が
良好な特定の性質を有するポリイミド樹脂層を用いてい
るので、半導体素子だけでなく各種FPC、TABなど
を外部回路基板上に実装することができ、しかも実装時
の接続信頼性も格段に向上するものである。
Furthermore, since the thermoplastic polyimide resin layer is formed on at least one surface of the insulating film in the anisotropic conductive adhesive film of the present invention, the polyimide resin is applied by pressure and heat during connection during mounting. Even if the layer flows or deforms, the insulating material keeps the metal material layer serving as a conductive path fixed and the thermoplastic polyimide resin layer also seals the connection part so that no connection failure occurs. Exerts the effect. Also, because a polyimide resin layer having a specific property with good heat resistance is used, various FPCs, TABs, etc. as well as semiconductor elements can be mounted on an external circuit board, and the connection reliability during mounting is high. Will be much improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の異方導電性接着フィルムの一実例を示
す拡大断面図である。
FIG. 1 is an enlarged cross-sectional view showing an actual example of an anisotropic conductive adhesive film of the present invention.

【図2】本発明の異方導電性接着フィルムの他の実例を
示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing another example of the anisotropic conductive adhesive film of the present invention.

【図3】本発明の異方導電性接着フィルムを用いてFP
Cを外部配線基板上に実装する前の状態を示す断面図で
ある。
FIG. 3 shows an FP using the anisotropic conductive adhesive film of the present invention.
It is sectional drawing which shows the state before mounting C on an external wiring board.

【図4】図3の状態のものを実装、接続した後の状態を
示す断面図である。
FIG. 4 is a cross-sectional view showing a state after mounting and connecting the state shown in FIG.

【図5】従来の異方導電性フィルムの拡大断面図であ
る。
FIG. 5 is an enlarged cross-sectional view of a conventional anisotropic conductive film.

【図6】従来の他の異方導電性フィルムの断面図であ
る。
FIG. 6 is a cross-sectional view of another conventional anisotropic conductive film.

【符号の説明】[Explanation of symbols]

1 絶縁性フィルム 2 微細貫通孔 3 金属物質 4 バンプ状金属突出物 5 熱可塑性ポリイミド樹脂層 DESCRIPTION OF SYMBOLS 1 Insulating film 2 Micro through-hole 3 Metal substance 4 Bump-shaped metal protrusion 5 Thermoplastic polyimide resin layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性フィルムの厚み方向に独立して導
通する微細貫通孔を有し、かつ該フィルムの表裏面上の
貫通孔両端部のうち少なくとも一端部が貫通孔の開口部
面積よりも大きな底面積を有するバンプ状の金属突出物
によって閉塞されており、さらに該フィルムの少なくと
も一方の面に400℃における溶融粘度が1×108
イズ以下である熱可塑性ポリイミド樹脂層が形成されて
いることを特徴とする異方導電性接着フィルム。
1. An insulating film having fine through holes that conduct independently in the thickness direction, and at least one end of both ends of the through hole on the front and back surfaces of the film is larger than the opening area of the through hole. It is closed by a bump-shaped metal protrusion having a large bottom area, and a thermoplastic polyimide resin layer having a melt viscosity at 400 ° C. of 1 × 10 8 poise or less is formed on at least one surface of the film. An anisotropic conductive adhesive film characterized in that
【請求項2】 請求項1記載の異方導電性接着フィルム
を被接続体間に介在させてなる異方導電性接着フィルム
を用いた接続構造。
2. A connection structure using an anisotropic conductive adhesive film having the anisotropic conductive adhesive film according to claim 1 interposed between objects to be connected.
JP4090045A 1992-03-13 1992-03-13 Anisotropically conductive adhesion film and connecting structure using it Pending JPH05258790A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4090045A JPH05258790A (en) 1992-03-13 1992-03-13 Anisotropically conductive adhesion film and connecting structure using it
EP19930102182 EP0560072A3 (en) 1992-03-13 1993-02-11 Anisotropic electrically conductive adhesive film and connection structure using the same
TW082101467A TW274620B (en) 1992-03-13 1993-03-01
KR1019930003608A KR100260478B1 (en) 1992-03-13 1993-03-11 Anisotropic electrically conductive adhesive film and connection structure using the same
US08/030,865 US5438223A (en) 1992-03-13 1993-03-12 Anisotropic electrically conductive adhesive film and connection structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4090045A JPH05258790A (en) 1992-03-13 1992-03-13 Anisotropically conductive adhesion film and connecting structure using it

Publications (1)

Publication Number Publication Date
JPH05258790A true JPH05258790A (en) 1993-10-08

Family

ID=13987667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090045A Pending JPH05258790A (en) 1992-03-13 1992-03-13 Anisotropically conductive adhesion film and connecting structure using it

Country Status (1)

Country Link
JP (1) JPH05258790A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503836A (en) * 1998-02-17 2002-02-05 サーノフ コーポレイション Large area display structure seal
JP2002075064A (en) * 2000-08-23 2002-03-15 Tdk Corp Anisotropic conductive film and its manufacturing method, and display using anisotropic conductive film
JP2008537839A (en) * 2005-03-28 2008-09-25 スリーエム イノベイティブ プロパティズ カンパニー Anisotropic conductive structure
JP2010278026A (en) * 2010-08-31 2010-12-09 Sony Chemical & Information Device Corp Conductive particles, manufacturing method thereof, anisotropic conductive film, joined body, and connecting method
JP2011018654A (en) * 2000-08-24 2011-01-27 High Connection Density Inc Carrier for land grid array connector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503836A (en) * 1998-02-17 2002-02-05 サーノフ コーポレイション Large area display structure seal
JP2009288810A (en) * 1998-02-17 2009-12-10 Transpacific Infinity Llc Sealing of large area display structure
JP2002075064A (en) * 2000-08-23 2002-03-15 Tdk Corp Anisotropic conductive film and its manufacturing method, and display using anisotropic conductive film
US6680517B2 (en) 2000-08-23 2004-01-20 Tdk Corporation Anisotropic conductive film, production method thereof, and display apparatus using anisotropic film
JP2011018654A (en) * 2000-08-24 2011-01-27 High Connection Density Inc Carrier for land grid array connector
JP2008537839A (en) * 2005-03-28 2008-09-25 スリーエム イノベイティブ プロパティズ カンパニー Anisotropic conductive structure
US8008582B2 (en) 2005-03-28 2011-08-30 3M Innovative Properties Company Anisotropic electrically conductive structure
JP2010278026A (en) * 2010-08-31 2010-12-09 Sony Chemical & Information Device Corp Conductive particles, manufacturing method thereof, anisotropic conductive film, joined body, and connecting method
WO2012029587A1 (en) * 2010-08-31 2012-03-08 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particle, method for producing same, anisotropic conductive film, assembly and connection method
KR101385330B1 (en) * 2010-08-31 2014-04-14 데쿠세리아루즈 가부시키가이샤 Conductive particle, method for producing same, anisotropic conductive film, assembly and connection method
US8987607B2 (en) 2010-08-31 2015-03-24 Dexerials Corporation Conductive particle, and anisotropic conductive film, bonded structure, and bonding method

Similar Documents

Publication Publication Date Title
KR100260478B1 (en) Anisotropic electrically conductive adhesive film and connection structure using the same
US5822850A (en) Circuit devices and fabrication Method of the same
US5374469A (en) Flexible printed substrate
KR100391022B1 (en) Film carrier, method of mounting semiconductor device and semiconductor device using film carrier
US6555762B2 (en) Electronic package having substrate with electrically conductive through holes filled with polymer and conductive composition
EP0433996B1 (en) Process for producing an anisotropic conductive film
CN101123852A (en) Circuit substrate and manufacturing method thereof
JP2001111227A (en) Flexible wiring board and method of manufacturing the same
JP3352705B2 (en) Mounting structure using anisotropic conductive adhesive film
US6977349B2 (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
JPH11238959A (en) Circuit board
JP2000058996A (en) Flexible printed wiring board and its manufacture
US5188702A (en) Process for producing an anisotropic conductive film
JPH05258790A (en) Anisotropically conductive adhesion film and connecting structure using it
JPH10303561A (en) Multi-layer wiring board and its manufacture
JP2984064B2 (en) Method for producing anisotropic conductive film
JP3339422B2 (en) Wiring board and manufacturing method thereof
JPH08235935A (en) Anisotropic conductive film
JP3455602B2 (en) Manufacturing method of semiconductor device mounting substrate
JPH0727789A (en) Circuit wiring board and its manufacture
JPH05258789A (en) Anisotropically conductive adhesion film and connecting structure using it
KR101278784B1 (en) Method for manufacturing printed wiring board, printed wiring board, and electronic device
JPH05152019A (en) Anisotropic conduction connector
JPH06231818A (en) Anisotropic conductive connector with elasticity
JP2004006572A (en) Method for manufacturing element built-in substrate and element built-in substrate, and method for manufacturing printed wiring board and the printed wiring board