JPH05152021A - Anisotropic conduction connector - Google Patents

Anisotropic conduction connector

Info

Publication number
JPH05152021A
JPH05152021A JP34038291A JP34038291A JPH05152021A JP H05152021 A JPH05152021 A JP H05152021A JP 34038291 A JP34038291 A JP 34038291A JP 34038291 A JP34038291 A JP 34038291A JP H05152021 A JPH05152021 A JP H05152021A
Authority
JP
Japan
Prior art keywords
insulating film
hole
fine
anisotropic conductive
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34038291A
Other languages
Japanese (ja)
Inventor
Masayuki Kaneto
正行 金戸
Yoshinari Takayama
嘉也 高山
Hitoshi Ishizaka
整 石坂
Toshiki Naito
俊樹 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP34038291A priority Critical patent/JPH05152021A/en
Publication of JPH05152021A publication Critical patent/JPH05152021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an anisotropic conduction connector, capable of becoming surely anisotropically conductive, high in electrical connection reliability, and also adequately cushiony. CONSTITUTION:Fine through hole 2 is made in a tilting direction so as to pass through the front face and the back face of a insulating film 1, such as a polyimide film, and metallic material 3 is filled in the through hole. It is desirable to form bump-like metallic protrusions 4 on both end portions of the through hole 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は異方導電コネクターに関
する。
FIELD OF THE INVENTION The present invention relates to anisotropic conductive connectors.

【0002】[0002]

【従来の技術】近年の電子機器の多機能化と小型軽量化
に伴い、半導体分野においては配線回路のパターンが高
集積化され、多ピンおよび狭ピッチのファインパターン
が採用されている。このような回路のファインパターン
化に対応すべく、基板上に形成された複数の導体パター
ンとそれと接続する導体パターンまたはIC,LSIと
の接続に、異方導電コネクターを介在させる方法が試み
られている。
2. Description of the Related Art In recent years, electronic devices have become more multifunctional and smaller and lighter. In the semiconductor field, wiring circuit patterns have been highly integrated and fine patterns with a large number of pins and a narrow pitch have been adopted. In order to cope with such fine patterning of a circuit, a method of interposing an anisotropic conductive connector in a connection between a plurality of conductor patterns formed on a substrate and a conductor pattern or IC or LSI connected to the conductor patterns has been attempted. There is.

【0003】例えば、特開昭55−161306号公報
には絶縁性多孔体シートの選択領域内の孔部に金属メッ
キを施こし異方導電化したシートが開示されている。し
かし、このようなシートは表面に金属突出部がないの
で、ICなどの接続に際してはIC側の接続パッド部に
突起電極(バンプ)を形成しておく必要があり、接続工
程が煩雑となる。
For example, Japanese Unexamined Patent Publication No. 55-161306 discloses a sheet in which holes in selected regions of an insulating porous sheet are plated with metal to provide anisotropic conductivity. However, since such a sheet does not have a metal protrusion on the surface, it is necessary to form bump electrodes (bumps) on the connection pads on the IC side when connecting an IC or the like, which complicates the connection process.

【0004】そこで、これを解決するために絶縁性フィ
ルムの厚み方向に設けた微細孔に金属物質を充填して異
方導電化し、さらにフィルム表面からバンプ状に金属物
質を突出させて接続を容易にしたコネクターが、特開昭
62−43008号公報や特開昭63−40218号公
報、特開昭63−94504号公報に提案されている。
Therefore, in order to solve this problem, fine holes provided in the thickness direction of the insulating film are filled with a metal substance to make it anisotropically conductive, and the metal substance is projected in a bump shape from the film surface to facilitate connection. The above-mentioned connector is proposed in JP-A-62-43008, JP-A-63-40218, and JP-A-63-94504.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような異
方導電コネクターは一般に図4に示すような構造である
ので、充填された金属物質と絶縁性フィルムとの密着性
が充分ではなく、金属物質が脱落して本来導電性を有さ
なければならない微細孔が導電性を発揮せず、電気的接
続信頼性に欠ける恐れがある。さらに、一般に金属物質
には柔軟性がないので、図4のように絶縁性フィルムの
厚み方向に金属物質を充填した場合、絶縁性フィルムの
厚み方向にはクッション性を有さず、接続後に外部応力
が加わった場合に応力を充分に緩和できず、接続部がは
ずれて接続不良を起こす可能性がある。
However, since such an anisotropically conductive connector generally has a structure as shown in FIG. 4, the adhesion between the filled metal substance and the insulating film is not sufficient, and the metal There is a risk that the substance may drop off and the fine pores that should originally have conductivity may not exhibit conductivity, resulting in a lack of reliability in electrical connection. Furthermore, since a metal substance is generally not flexible, when the metal substance is filled in the thickness direction of the insulating film as shown in FIG. When stress is applied, the stress cannot be relaxed sufficiently, and the connection part may come off and a connection failure may occur.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは従
来の異方導電コネクターが有する上記課題を解決し、確
実に異方導電化できて接続信頼性が高く、かつ適度なク
ッション性を有する異方導電コネクターを提供すべく鋭
意検討を重ね、本発明を完成するに至った。
Therefore, the inventors of the present invention have solved the above-mentioned problems of the conventional anisotropic conductive connector, and are capable of reliably providing anisotropic conductivity, high connection reliability, and appropriate cushioning property. The inventors of the present invention have made extensive studies to provide the anisotropic conductive connector, and completed the present invention.

【0007】即ち、本発明は独立して絶縁性フィルムの
表裏面に導通した微細貫通孔を有する異方導電コネクタ
ーであって、微細貫通孔には金属物質が充填されてお
り、しかも該貫通孔が絶縁性フィルムの表裏面にわたっ
て斜め方向に形成されていることを特徴とする異方導電
コネクターを提供するものである。
That is, the present invention is an anisotropic conductive connector having fine through-holes electrically connected to the front and back surfaces of an insulating film, wherein the fine through-holes are filled with a metal substance, and the through-holes are also provided. Is provided in an oblique direction over the front and back surfaces of the insulating film.

【0008】以下、本発明を図面を用いて説明する。図
1は本発明の異方導電コネクターの一実例を示す断面図
である。
The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an example of the anisotropic conductive connector of the present invention.

【0009】図1において絶縁性フィルム1には表裏面
にわたって斜め方向に微細貫通孔2が設けられており、
金属物質3を充填した導通路が表裏面に達している。こ
の貫通孔2は隣り合う貫通孔同士が連通しておらず、独
立している。本発明の異方導電コネクターにおいて貫通
孔2の両端部に、図示するようなバンプ状の金属突出物
4を形成しておくことによって、コネクターとして接続
に用いる場合に接続操作が容易となり好ましいものであ
る。さらに、該バンプ状金属突出物4の底面積を絶縁性
フィルム1表面の貫通孔面積よりも好ましくは1.1倍
以上大きくする、所謂リベット状に形成することで、充
填した金属物質3が脱落することがなく、絶縁性フィル
ム1の厚み方向に対する応力に対しても充分な機械的強
度を有するので電気的接続信頼性が高まり好ましい。ま
た、バンプ状金属突出物4の高さは通常、5μm以上、
好ましくは5〜100μmの範囲に設定する。
In FIG. 1, the insulating film 1 is provided with fine through-holes 2 in an oblique direction over the front and back surfaces.
The conductive paths filled with the metal substance 3 reach the front and back surfaces. In this through hole 2, adjacent through holes do not communicate with each other, but are independent. In the anisotropic conductive connector of the present invention, by forming bump-shaped metal protrusions 4 at both ends of the through hole 2 as shown in the drawing, the connection operation becomes easy when used as a connector, which is preferable. is there. Further, by forming the so-called rivet shape in which the bottom area of the bump-shaped metal projection 4 is preferably 1.1 times or more larger than the through-hole area of the surface of the insulating film 1, the filled metal substance 3 is dropped. Since it has sufficient mechanical strength against stress in the thickness direction of the insulating film 1, the electrical connection reliability is improved, which is preferable. The height of the bump-shaped metal protrusion 4 is usually 5 μm or more,
It is preferably set in the range of 5 to 100 μm.

【0010】上記微細貫通孔2の直径(孔径)は微細ピ
ッチ化に対応するために通常、5〜100μm、好まし
くは10〜50μmとし、ピッチは5〜200μm、好
ましくは10〜100μmとする。
The diameter (hole diameter) of the fine through holes 2 is usually 5 to 100 μm, preferably 10 to 50 μm, and the pitch is 5 to 200 μm, preferably 10 to 100 μm in order to cope with the fine pitch.

【0011】本発明において用いる絶縁性フィルム1は
電気絶縁特性を有するフィルムであればその素材に制限
はなく、ポリエステル系樹脂、エポキシ系樹脂、ウレタ
ン系樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、
ポリアミド系樹脂、ポリイミド系樹脂、ABS樹脂、ポ
リカーボネート樹脂、シリコーン系樹脂など熱硬化性樹
脂や熱可塑性樹脂を問わず目的に応じて選択できる。例
えば、可撓性を要求される場合はシリコーンゴム、ウレ
タンゴム、フッ素ゴムなどの弾性体を使用することが好
ましく、耐熱性が要求される場合はポリイミド、ポリエ
ーテルスルホン、ポリフェニレンスルフィドなどの耐熱
性樹脂を用いることが好ましい。また、絶縁性フィルム
1の厚さは任意に選択できるが、フィルム厚の精度(バ
ラツキ)や形成する貫通孔の孔径精度の点からは通常、
5〜200μm、好ましくは10〜100μmとする。
The insulating film 1 used in the present invention is not limited in its material as long as it is a film having electric insulation properties, and may be a polyester resin, an epoxy resin, a urethane resin, a polystyrene resin, a polyethylene resin,
Any thermosetting resin or thermoplastic resin such as polyamide resin, polyimide resin, ABS resin, polycarbonate resin, or silicone resin can be selected according to the purpose. For example, when flexibility is required, it is preferable to use an elastic body such as silicone rubber, urethane rubber, or fluororubber, and when heat resistance is required, heat resistance such as polyimide, polyether sulfone, polyphenylene sulfide, etc. It is preferable to use a resin. Further, the thickness of the insulating film 1 can be arbitrarily selected, but from the viewpoint of film thickness accuracy (variation) and hole diameter accuracy of the through holes to be formed, it is usually
The thickness is 5 to 200 μm, preferably 10 to 100 μm.

【0012】上記絶縁性フィルム1に設ける微細貫通孔
に充填して導通路となる金属物質3およびバンプ状の金
属突出物4となる金属物質としては、例えば金、銀、
銅、錫、鉛、ニッケル、コバルト、インジウムなどの各
種金属、またはこれらを成分とする各種合金が用いられ
る。導通路の形成方法としては、スパッタリング、各種
蒸着、各種メッキなどの方法が採用できる。なお、メッ
キ法による場合は、メッキ時間を長くすることによっ
て、バンプ状に金属突出物4を成長させることができる
のである。
Examples of the metal substance 3 which fills the fine through holes provided in the insulating film 1 and serves as a conduction path and the bump-shaped metal protrusion 4 are gold, silver, and the like.
Various metals such as copper, tin, lead, nickel, cobalt and indium, or various alloys containing these are used. As a method of forming the conductive path, a method such as sputtering, various vapor depositions, various platings can be adopted. In the case of using the plating method, it is possible to grow the metal protrusion 4 in a bump shape by prolonging the plating time.

【0013】上記絶縁性フィルム1に設ける微細貫通孔
2は、パンチングなどの機械的加工法、レーザー、プラ
ズマなどによるドライエッチング法などがある。エッチ
ング法の場合は絶縁性フィルム1に所望の孔形状、例え
ば丸、四角、菱形などを有するマスクを密着させ、マス
クの上から処理する間接的エッチング法、スポットを絞
ったレーザー光をフィルムに当てたり、マスクを通して
レーザー光をフィルム上に結像させるドライエッチング
法、感光性レジストを用いて予め微細孔をパターニング
したのちウエットエッチングする直接エッチング法など
がある。特に、エキシマレーザーの如き紫外線レーザー
によるアブレーションを用いたドライエッチング法の場
合は、絶縁性フィルムに対して照射角度を設定し、微細
貫通孔の形成角度を任意に制御、設定することができる
ので好ましいものである。
The fine through holes 2 provided in the insulating film 1 may be formed by a mechanical processing method such as punching, a dry etching method using laser, plasma or the like. In the case of the etching method, a mask having a desired hole shape, for example, a circle, a square, or a rhombus is brought into close contact with the insulating film 1, and an indirect etching method in which treatment is performed from above the mask; Alternatively, there are a dry etching method in which a laser beam is imaged on a film through a mask, and a direct etching method in which fine holes are patterned in advance using a photosensitive resist and then wet etching is performed. Particularly, in the case of a dry etching method using ablation with an ultraviolet laser such as an excimer laser, it is preferable because the irradiation angle can be set with respect to the insulating film and the formation angle of the fine through holes can be arbitrarily controlled and set. It is a thing.

【0014】図2は本発明の異方導電コネクターの他の
実例を示す断面図であり、貫通孔2は絶縁性フィルム1
内で屈曲して斜め方向に形成され、貫通孔内部に金属物
質3が充填されている。このようなコネクターを得る方
法としては、まず所定パルス数のレーザー光を絶縁性フ
ィルムの片面から斜め照射してハーフエッチングを施し
て未貫通孔を形成し、次いで、他面側から上記にて形成
した未貫通孔の底部に合わせてレーザー光を斜め照射し
て貫通させる。そののち、金属物質を充填することによ
って得ることができる。
FIG. 2 is a sectional view showing another example of the anisotropic conductive connector of the present invention, in which the through hole 2 is an insulating film 1.
The metal substance 3 is filled in the through hole by being bent and formed in an oblique direction. As a method for obtaining such a connector, first, a laser beam having a predetermined pulse number is obliquely irradiated from one surface of the insulating film to perform half etching to form a non-through hole, and then the other surface side is formed as described above. Laser light is obliquely irradiated to penetrate the bottom of the unpenetrated hole. After that, it can be obtained by filling with a metal substance.

【0015】本発明の異方導電コネクターは、絶縁性フ
ィルム1内に斜め方向に導通路としての金属物質3が充
填されて異方導電化しているので、金属物質が従来のも
のと比べて脱落しにくく、また、図3に示すように外部
電極5および6との接続をする場合、金属物質3を斜め
方向に充填しているので、クッション効果が生じて接続
不良も起こしにくいものとなる。なお、上記クッション
効果を充分に発揮するためには、貫通孔2の形成角度
(図1中、α)は10度以上、好ましくは20度以下の
範囲に設定する。
In the anisotropic conductive connector of the present invention, the insulating film 1 is filled with the metal substance 3 as a conducting path in an oblique direction to make it anisotropically conductive, so that the metal substance is detached as compared with the conventional one. In addition, when connecting to the external electrodes 5 and 6 as shown in FIG. 3, since the metal substance 3 is obliquely filled, a cushioning effect is produced and connection failure is less likely to occur. In order to fully exert the above-mentioned cushioning effect, the formation angle (α in FIG. 1) of the through hole 2 is set to a range of 10 degrees or more, preferably 20 degrees or less.

【0016】本発明の異方導電コネクターを得るための
方法としては、例えば以下の工程からなる方法が挙げら
れる。
Examples of the method for obtaining the anisotropic conductive connector of the present invention include a method comprising the following steps.

【0017】絶縁性フィルムと導電層との積層フィル
ム(接着剤を介した3層フィルムまたは直接積層した2
層フィルム)の絶縁フィルムのみにレーザー光を用いて
斜め方向に微細貫通孔を設けるか、もしくは微細貫通孔
を設けた絶縁性フィルムに導電層を積層(但し、導電層
は微細貫通孔が貫通するように積層するか、積層後除去
する)し、導電層表面にレジスト層を形成して表面を絶
縁後、貫通孔部をエッチングして貫通孔部に接する導電
層部分にリベット状の溝部(凹部)を形成する工程と、
A laminated film of an insulating film and a conductive layer (a three-layer film with an adhesive interposed or a two-layer film directly laminated).
Layer film) is provided with a fine through hole in an oblique direction by using a laser beam only on the insulating film, or a conductive layer is laminated on an insulating film provided with a fine through hole (however, the fine through hole penetrates the conductive layer. Stack or remove after lamination) to form a resist layer on the surface of the conductive layer and insulate the surface, and then etch the through hole to form a rivet-shaped groove (recess) in the conductive layer portion in contact with the through hole. ) Is formed,

【0018】微細貫通孔に電解メッキや無電解メッキ
を施して金属物質を充填し、バンプ状の金属突出物を形
成する工程と、
A step of performing electrolytic plating or electroless plating on the fine through-holes and filling a metal substance to form bump-shaped metal protrusions;

【0019】絶縁性フィルムに積層された導電層およ
びレジスト層を化学的エッチング液または電解腐食によ
って除去する工程、とから得られる。
The step of removing the conductive layer and the resist layer laminated on the insulating film by a chemical etching solution or electrolytic corrosion.

【0020】なお、上記の工程においてバンプ状の金
属突出物の形成は、の工程後に行なってもよい。
The bump-shaped metal protrusions may be formed after the step in the above step.

【0021】本発明においてはバンプ状に金属突出物4
は、微細結晶の金属結晶として形成することが好まし
い。なお、高電流密度で電解メッキを行なった場合は、
樹枝状の結晶が形成されるのでバンプ状とならない場合
がある。また、金属結晶の析出速度を調整したり、メッ
キ液の種類やメッキ浴の温度を調整することによって平
滑、均一な突出物を得ることができる。
In the present invention, the metal protrusion 4 is formed in a bump shape.
Is preferably formed as a fine crystal metal crystal. If electrolytic plating is performed at a high current density,
Since dendritic crystals are formed, it may not be bump-shaped. In addition, a smooth and uniform protrusion can be obtained by adjusting the deposition rate of metal crystals, the type of plating solution, and the temperature of the plating bath.

【0022】[0022]

【実施例】以下に本発明の実施例を示し、さらに具体的
に説明する。
EXAMPLES Examples of the present invention will be shown below and will be described more specifically.

【0023】銅箔上にポリイミド前駆体溶液を乾燥後の
厚みが25μmとなるように塗工し、加熱イミド化して
銅箔とポリイミドフィルムとの2層フィルムを作製し
た。
A polyimide precursor solution was coated on a copper foil so that the thickness after drying was 25 μm, and heat imidized to prepare a two-layer film of a copper foil and a polyimide film.

【0024】次に、ポリイミドフィルムの表面に、発振
波長248nmのKrFエキシマレーザー光を斜め方向
(45度)から、マスクを通して照射してドライエッチ
ングを施こし、ポリイミドフィルム層に60μmφ、ピ
ッチ200μm、深さ25μmの微細孔を8cm2 の領域
に設けた。
Then, the surface of the polyimide film is irradiated with KrF excimer laser light having an oscillation wavelength of 248 nm from an oblique direction (45 degrees) through a mask to perform dry etching, and the polyimide film layer is 60 μmφ in pitch, 200 μm in depth. Micropores having a size of 25 μm were formed in an area of 8 cm 2 .

【0025】次いで、銅箔表面にレジストを塗工、硬化
させて絶縁し、50℃の化学研磨溶液中に2分間浸漬し
た。
Next, a resist was coated on the surface of the copper foil, cured to insulate it, and immersed in a chemical polishing solution at 50 ° C. for 2 minutes.

【0026】これを水洗したのち、銅箔部分を電極に接
続して60℃のシアン化金メッキ浴に浸漬し、貫通孔内
に金メッキ層を成長させて充填して、絶縁性フィルム表
面から金結晶がやや突出したとき(突出高さ10μm)
にメッキ処理を中断した。
After washing this with water, the copper foil portion was connected to an electrode and immersed in a gold cyanide plating bath at 60 ° C., a gold plating layer was grown and filled in the through holes, and gold crystals were formed from the surface of the insulating film. When there is a slight protrusion (protrusion height: 10 μm)
The plating process was interrupted.

【0027】最後に、塗工したレジスト層を剥離して2
層フィルムの銅箔を塩化第二銅で溶解除去した本発明の
異方導電コネクターを得た。
Finally, the coated resist layer is peeled off and 2
An anisotropic conductive connector of the present invention was obtained by dissolving and removing the copper foil of the layer film with cupric chloride.

【0028】[0028]

【発明の効果】本発明の異方導電コネクターは以上のよ
うな構造からなるので、導通路として充填された金属物
質は、絶縁性フィルムから脱落することがなく、本来、
導電性を有さなければならない微細導通路が充分に導電
性を発揮し、電気的接続信頼性が高いコネクターであ
る。斜め方向に金属物質が充填されているので、コネク
ター自体にクッション性を有し、外部応力が加わった場
合にも充分に応力緩和ができ、接続部がはずれる恐れが
ないものである。
EFFECT OF THE INVENTION Since the anisotropic conductive connector of the present invention has the above-mentioned structure, the metallic substance filled as the conducting path does not fall off from the insulating film, and originally,
This is a connector with a highly reliable electrical connection because the fine conductive paths that must have conductivity exhibit sufficient conductivity. Since the metallic substance is filled in the diagonal direction, the connector itself has a cushioning property, the stress can be sufficiently relaxed even when an external stress is applied, and there is no fear that the connecting portion will come off.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の異方導電コネクターの一実例を示す
断面図である。
FIG. 1 is a sectional view showing an example of an anisotropic conductive connector of the present invention.

【図2】 本発明の異方導電コネクターの他の実例を示
す断面図である。
FIG. 2 is a cross-sectional view showing another example of the anisotropic conductive connector of the present invention.

【図3】 本発明の異方導電コネクターを用いて外部基
板上の電極同士を接続した状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a state in which electrodes on an external substrate are connected to each other using the anisotropic conductive connector of the present invention.

【図4】 従来の異方導電コネクターの断面図である。FIG. 4 is a cross-sectional view of a conventional anisotropic conductive connector.

【符号の説明】[Explanation of symbols]

1 絶縁性フィルム 2 微細貫通孔 3 金属物質 4 バンプ状金属突出物 1 Insulating Film 2 Micro Through Hole 3 Metallic Material 4 Bump-shaped Metal Projection

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 俊樹 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshiki Naito 1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 独立して絶縁性フィルムの表裏面に導通
した微細貫通孔を有する異方導電コネクターであって、
微細貫通孔には金属物質が充填されており、しかも該貫
通孔が絶縁性フィルムの表裏面にわたって斜め方向に形
成されていることを特徴とする異方導電コネクター。
1. An anisotropic conductive connector having fine through holes independently conducted on the front and back surfaces of an insulating film,
An anisotropic conductive connector, characterized in that the fine through holes are filled with a metal substance, and the through holes are formed diagonally over the front and back surfaces of the insulating film.
【請求項2】 貫通孔の両端部の少なくとも一端部に接
続用のバンプ状金属突出物が形成されている請求項1記
載の異方導電コネクター。
2. The anisotropic conductive connector according to claim 1, wherein bump-shaped metal projections for connection are formed on at least one end of both ends of the through hole.
【請求項3】 バンプ状金属突出物の底面積が絶縁性フ
ィルム表面の貫通孔面積よりも大きい請求項2記載の異
方導電コネクター。
3. The anisotropic conductive connector according to claim 2, wherein a bottom area of the bump-shaped metal protrusion is larger than a through-hole area of the surface of the insulating film.
JP34038291A 1991-11-28 1991-11-28 Anisotropic conduction connector Pending JPH05152021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34038291A JPH05152021A (en) 1991-11-28 1991-11-28 Anisotropic conduction connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34038291A JPH05152021A (en) 1991-11-28 1991-11-28 Anisotropic conduction connector

Publications (1)

Publication Number Publication Date
JPH05152021A true JPH05152021A (en) 1993-06-18

Family

ID=18336416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34038291A Pending JPH05152021A (en) 1991-11-28 1991-11-28 Anisotropic conduction connector

Country Status (1)

Country Link
JP (1) JPH05152021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855648A (en) * 1994-08-12 1996-02-27 Shinano Polymer Kk Elastomer connector
WO1998007216A1 (en) * 1996-08-08 1998-02-19 Nitto Denko Corporation Anisotropic conductive film and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855648A (en) * 1994-08-12 1996-02-27 Shinano Polymer Kk Elastomer connector
WO1998007216A1 (en) * 1996-08-08 1998-02-19 Nitto Denko Corporation Anisotropic conductive film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0433996B1 (en) Process for producing an anisotropic conductive film
KR100720662B1 (en) Printed wiring board and its manufacturing method
US7887899B2 (en) Anisotropic conductive sheet, production method thereof, connection method and inspection method
US8847082B2 (en) Multilayer wiring substrate
JPH0917829A (en) Film carrier and semiconductor device using it
US8535546B2 (en) Method of manufacturing multilayer wiring substrate
JP3352705B2 (en) Mounting structure using anisotropic conductive adhesive film
US5188702A (en) Process for producing an anisotropic conductive film
JP2984205B2 (en) Anisotropic conductive film
JP2984064B2 (en) Method for producing anisotropic conductive film
JPH10303561A (en) Multi-layer wiring board and its manufacture
JP2981057B2 (en) Flexible printed circuit board for hard disk driver
JPH05152019A (en) Anisotropic conduction connector
JP3096235B2 (en) Probe structure and method of manufacturing the same
JPH05152021A (en) Anisotropic conduction connector
JPH0727789A (en) Circuit wiring board and its manufacture
JPH06231818A (en) Anisotropic conductive connector with elasticity
JP2005159074A (en) Electrode for connection of via-hole having projected part at internal layer side
JPH05258790A (en) Anisotropically conductive adhesion film and connecting structure using it
JPH05226054A (en) Manufacture of anisotropic conductive film
JPH05325669A (en) Manufacture of anisotropic conductive film
JPH10125372A (en) Anisotropic conductive connector and manufacture thereof
JPH05258789A (en) Anisotropically conductive adhesion film and connecting structure using it
JPH05258791A (en) Anisotropically conductive connector and its manufacture
JPH10215066A (en) Manufacture of printed wiring board