JPH05141890A - Heat transfer tube with inner surface groove - Google Patents

Heat transfer tube with inner surface groove

Info

Publication number
JPH05141890A
JPH05141890A JP32799991A JP32799991A JPH05141890A JP H05141890 A JPH05141890 A JP H05141890A JP 32799991 A JP32799991 A JP 32799991A JP 32799991 A JP32799991 A JP 32799991A JP H05141890 A JPH05141890 A JP H05141890A
Authority
JP
Japan
Prior art keywords
groove
heat transfer
tube
fin
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32799991A
Other languages
Japanese (ja)
Other versions
JP3219811B2 (en
Inventor
Nobuaki Hinako
日名子伸明
Akihiko Ishibashi
石橋明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32799991A priority Critical patent/JP3219811B2/en
Publication of JPH05141890A publication Critical patent/JPH05141890A/en
Application granted granted Critical
Publication of JP3219811B2 publication Critical patent/JP3219811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high fin heat transfer tube which has high performance and is coped with a small size and high performance of a heat exchanger and a noncleaning step without reducing productivity. CONSTITUTION:A heat transfer tube with an inner surface groove has a continuous and spiral groove on an inner surface of the tube in such a manner that each groove has a crest curved part and an oblique straight part connected smoothly to the curved part and the straight part and a bottom straight part of the groove are smoothly continued by a curve having a radius R of curvature for satisfying the relationship of 1.5<=h/R<=4 (h: the depth of the groove). The minimum radius Di of the tube and the depth h of the groove satisfy the relationship of 0.03<=Di s 0.04, and an angle a formed between the straight parts of both sides at the section perpendicular to the fin tube falls in a range of 35 degrees <= alpha <= 50 degrees.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内面溝付伝熱管に関し、
より詳しくは、空気調和機、冷凍機等の熱交換器の中で
管内流体が相変化する用途に適した内面螺旋溝付伝熱管
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube with an inner groove,
More specifically, the present invention relates to an improvement of an inner surface spiral grooved heat transfer tube suitable for use in a heat exchanger such as an air conditioner or a refrigerator in which the fluid in the tube changes phase.

【0002】[0002]

【従来の技術】一般に、内面溝付伝熱管は、管内面に溝
を連続的且つ螺旋状に設けられており、フィン部の形状
としては、三角形、台形、半円形などがある。例えば、
特開昭62−142995号公報には、フィン部が台形
の内面溝付管であって、管の最小内径Di、フィン高さ
h、溝ねじれ角γ、フィン部山頂角α、溝部断面積sに
おいて、h/Di、γ、α、s/hをパラメーターとし
て管内熱伝達性能が最適となる範囲にした伝熱管が提案
されている。
2. Description of the Related Art Generally, in a heat transfer tube with an inner groove, grooves are continuously and spirally provided on the inner surface of the tube, and the fin portion has a triangular shape, a trapezoidal shape, a semicircular shape, or the like. For example,
Japanese Patent Laid-Open No. 62-142995 discloses an inner grooved tube having a trapezoidal fin portion, which has a minimum inner diameter Di, a fin height h, a groove helix angle γ, a fin crest angle α, and a groove sectional area s. Proposed a heat transfer tube having h / Di, γ, α, and s / h as parameters in a range where the heat transfer performance in the tube is optimum.

【0003】[0003]

【発明が解決しようとする課題】ところで、フィン部形
状及び溝部形状は、伝熱性能、フィン加工成形性、伝熱
管の重量と密接な関係がある。
By the way, the shape of the fin portion and the shape of the groove portion are closely related to the heat transfer performance, the fin workability and the weight of the heat transfer tube.

【0004】すなわち、伝熱性能に関しては、内表面積
の増大、毛細管現象による液の保有及び濡れ面積の増
大、乱流効果、突起部における液膜を薄くする効果、螺
旋角度を持たせることにより旋回力を生じさせ濡れ面積
を増大させる効果、等が影響する。管内二相流における
液の流れの形態は乾き度により異なることは知られてい
る。例えば、管内液体を蒸発させる場合、内面溝付管の
性能が十分発揮されるのは、アニューラーウェイビーフ
ローからアニューラーフローに遷移している間で管内面
が液で十分濡れた状態になっている。この場合、溝部は
液膜で覆われ、その液膜の薄い部分で蒸発が促進され
る。凝縮の場合においては、凝縮した液が溝を伝わり下
部へ流れるが、その排出作用が良好なほど、伝熱面上に
形成された液膜は薄くなり、伝熱性能は向上する。伝熱
管の重量については、フィン部面積が小さいほど、同底
肉厚寸法で小さくなるが、一般にスリムなフィン形状に
おいては、山頂角が小さく、またフィン高さが高い形状
ほど、溝成形性が悪いことが知られている。
That is, regarding the heat transfer performance, the inner surface area is increased, the liquid holding and wetting area is increased by the capillary phenomenon, the turbulent flow effect, the effect of thinning the liquid film on the protrusion, and the swirling by giving a spiral angle. The effect of generating a force and increasing the wetted area, etc. are affected. It is known that the form of liquid flow in a two-phase flow in a pipe varies depending on the dryness. For example, when evaporating the liquid in the pipe, the performance of the pipe with internal groove is fully exhibited when the inner surface of the pipe is sufficiently wet with the liquid during the transition from the annular wave flow to the annular flow. There is. In this case, the groove is covered with the liquid film, and evaporation is promoted in the thin portion of the liquid film. In the case of condensation, the condensed liquid flows along the grooves and flows to the lower part. However, the better the discharging action is, the thinner the liquid film formed on the heat transfer surface is, and the heat transfer performance is improved. Regarding the weight of the heat transfer tube, the smaller the fin area, the smaller the wall thickness at the same bottom.However, in general, in the slim fin shape, the smaller the peak angle and the higher the fin height, the greater the groove formability. Known to be bad.

【0005】近年、熱交換器の小型高性能化のニーズは
伝熱管の更なる高性能化を促していて、加工困難な領域
にまで改善が及ぼうとしている。例えば、内面溝付管の
伝熱性能を上げるためには、フィン高さを高くし内表面
積を増大させる形状改善が行われているが、フィン部の
山頂角が大きくフィン先端曲率の大きい形状において
は、フィンを高くすると溝底部が相対的に小さくなり、
液の排出効果が阻害される。また、伝熱管の重量が増大
すると熱交換器の重量アップ、コストアップにつながる
という問題があり、この問題を解決するためにフィン山
頂角を小さくスリムな形状にした場合、メタルフローが
悪く、十分にフィンが成形されないという問題が起こ
る。具体的には、溝付工具の溝は狭く深くなり、材料を
充満させるために従来の形状に比較して大きな加圧力が
必要となるが、加圧力を高めると抽伸負荷も増大し、材
料の流れが溝方向ではなく管軸方向へ流れ、その結果、
十分な形状を得ることができない。
In recent years, the need for miniaturization and high performance of heat exchangers has promoted higher performance of heat transfer tubes, and improvements are being made to areas where processing is difficult. For example, in order to improve the heat transfer performance of the inner grooved tube, the shape has been improved by increasing the fin height and increasing the inner surface area, but in the shape where the fin crest angle is large and the fin tip curvature is large. , The higher the fin, the smaller the bottom of the groove,
The liquid discharging effect is hindered. Also, if the weight of the heat transfer tube increases, there is a problem that the weight of the heat exchanger increases and the cost increases, and if the fin crest angle is made small and slim to solve this problem, the metal flow is poor and There is a problem that the fins are not formed. Specifically, the groove of the grooved tool becomes narrower and deeper, and a larger pressing force is required to fill the material compared to the conventional shape, but increasing the pressing force also increases the drawing load, The flow is not in the groove direction but in the pipe axis direction, and as a result,
It is not possible to obtain a sufficient shape.

【0006】また、最近の環境保全の観点から、熱交換
器のフロンや有機溶媒による洗浄を廃止する傾向があ
る。そのため、管内面に残留する油の低減化が求めら
れ、溝成形加工油の低粘度化が引き起こされている。こ
のことが、フィンの成形性、安定加工性(管長手方向で
の形状変化)を更に悪化させている。
Further, from the recent viewpoint of environmental protection, there is a tendency to abolish the cleaning of the heat exchanger with CFCs and organic solvents. Therefore, it is required to reduce the oil remaining on the inner surface of the pipe, which causes the viscosity of the groove forming oil to be lowered. This further deteriorates the moldability and stable workability of the fin (change in shape in the longitudinal direction of the pipe).

【0007】このような事情のもとでは、前述の従来の
内面溝付伝熱管では、フィン形状が台形又は半円形であ
り、充分に対応できない。
Under such circumstances, the above-mentioned conventional heat transfer tube with internal groove has a trapezoidal or semi-circular fin shape, which cannot be sufficiently dealt with.

【0008】本発明は、上記の熱交換器の小型高性能
化、洗浄廃止等の要請に応えるべくなされたものであっ
て、その目的は、生産性を低下させずに製造し得るハイ
フィン高性能伝熱管を提供することにある。
The present invention has been made in order to meet the demands for miniaturization and high performance of the above heat exchanger, abolishment of cleaning, etc., and its purpose is to provide a high fin high performance which can be manufactured without lowering productivity. To provide a heat transfer tube.

【0009】[0009]

【課題を解決するための手段】本発明者は、これらの問
題点を解決するために鋭意研究を重ねた結果、スリムな
フィン形状にした場合でも、溝底部とフィン部斜面直線
部との間に適当な曲率を設けることで、変形時のメタル
フローを改善し、更には溝底部における液膜厚を小さく
して伝熱性能を高めることができることを見い出し、こ
こに本発明を完成したものである。
As a result of intensive studies to solve these problems, the present inventor has found that, even in the case of a slim fin shape, the gap between the groove bottom and the linear portion of the sloped surface of the fin is reduced. It was found that the metal flow at the time of deformation can be improved and the liquid film thickness at the groove bottom can be reduced to improve the heat transfer performance by providing an appropriate curvature to the present invention. is there.

【0010】すなわち、本発明は、管内面に連続かつ螺
旋状に溝を持ち、各溝は山頂曲線部とこれに滑らかにつ
ながる斜面直線部を有し、該斜面直線部と溝底直線部が
1.5≦h/R≦4(h:溝深さ)の関係を満たす曲率半径
Rの曲線で滑らかに連続しており、内面溝付伝熱管の最
小半径Diと溝深さhが0.03≦h/Di≦0.04の関
係を満たし、フィン部管軸直角断面で両側の該斜面直線
部のなす角αが35°≦α≦50°の範囲であることを
特徴とする内面溝付伝熱管を要旨とするものである。
That is, according to the present invention, a groove is formed continuously and spirally on the inner surface of the pipe, each groove has a mountain peak curve portion and a slope straight line portion smoothly connected to the peak peak portion, and the slope straight line portion and the groove bottom straight line portion are formed. The curve has a radius of curvature R that satisfies the relationship of 1.5 ≦ h / R ≦ 4 (h: groove depth) and is smoothly continuous, and the minimum radius Di and the groove depth h of the inner grooved heat transfer tube are 0. An inner surface groove satisfying the relation of 03 ≦ h / Di ≦ 0.04, and an angle α formed by the inclined straight portions on both sides in a cross section perpendicular to the fin tube axis is in the range of 35 ° ≦ α ≦ 50 °. The main point is the attached heat transfer tube.

【0011】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0012】[0012]

【作用】[Action]

【0013】本発明の内面溝付伝熱管は、管内面に連続
かつ螺旋状に溝を持ち、各溝は山頂曲線部とこれに滑ら
かにつながる斜面直線部を有し、該斜面直線部と溝底直
線部が曲率半径Rの曲線で滑らかに連続している内面螺
旋溝付管であり、その管軸直角断面は、概ね、図1に示
すような形状を有している。
The inner surface grooved heat transfer tube of the present invention has continuous and spiral grooves on the inner surface of the tube, and each groove has a mountain peak curve portion and a sloped straight line portion smoothly connected to the peaked straight line portion and the sloped straight line portion and the groove. An inner spiral grooved tube whose bottom straight portion is smoothly continuous with a curve having a radius of curvature R, and its cross section perpendicular to the tube axis generally has a shape as shown in FIG.

【0014】ここで、山頂曲線部とは山頂が直線でない
ことを意味している。斜面直線部とは斜面が直線状であ
る場合のほか、ほぼ直線状である場合も包含される。溝
底直線部とは互いに隣合う山のR部同士をつなぐ部分
で、管の外周面(常に或る曲率を有している)と平行な部
分を意味し、微視的には直線状と云えるので、直線部と
称する。
Here, the curve of the summit means that the summit is not a straight line. The slope linear portion includes not only the case where the slope is linear, but also the case where the slope is substantially linear. The groove bottom linear portion is a portion that connects the R portions of adjacent mountains, and is a portion that is parallel to the outer peripheral surface (always having a certain curvature) of the pipe, and is microscopically linear. Since it can be said, it is called a straight line portion.

【0015】但し、本発明では、内面溝付伝熱管とし
て、以下の条件を満たす形状寸法であることが必要であ
る。
However, in the present invention, it is necessary that the heat transfer tube with the inner surface groove has a shape and size which satisfy the following conditions.

【0016】h/Di:溝付管の最小半径Diと溝深さ
hとの比、h/Diが0.03未満では、熱交換器の小型
高性能化において十分な伝熱性能が得られない。一方、
0.04を超えると、溝底部に曲率を設けても成形性が
悪く加工困難となり、また性能的にも飽和してしまい、
十分な効果が得られない。溝成形性が改善された形状に
おいては、h/Diが0.03以上のハイフィンにおいて
もスリムなフィンを形成することが可能であるが、伝熱
性能の向上を望むには0.032以上が好ましい。
H / Di: The ratio of the minimum radius Di of the grooved pipe to the groove depth h. If h / Di is less than 0.03, sufficient heat transfer performance can be obtained in miniaturization and high performance of the heat exchanger. Absent. on the other hand,
If it exceeds 0.04, the moldability is poor even if a curvature is provided at the bottom of the groove, it becomes difficult to process, and the performance is saturated,
Not enough effect. In the shape with improved groove formability, it is possible to form a slim fin even with a high fin having h / Di of 0.03 or more, but 0.032 or more is required to improve heat transfer performance. preferable.

【0017】α:フィン部管軸直角断面で両側の該斜
面直線部のなす角(山頂角)αが35°未満では、成形性
が困難であるため、フィンの高い形状が得られず高性能
が得られない。一方、50°を超えると、フィン部断面
積が大きく重量が大きくなる。また溝部断面積が小さく
なり、液の排出性が悪くなる。
Α: If the angle (peak angle) α formed by the sloped straight portions on both sides in a cross section perpendicular to the fin tube axis is less than 35 °, moldability is difficult and a high fin shape cannot be obtained, resulting in high performance. Can't get On the other hand, if the angle exceeds 50 °, the fin cross-sectional area is large and the weight is large. In addition, the cross-sectional area of the groove becomes small, and the liquid discharging property deteriorates.

【0018】h/R:溝深さhと曲線の曲率半径Rと
の比、h/Rが1.5未満においては、曲率Rが大きく
溝部断面積が減少し、また伝熱管重量が大きくなる。一
方、4を超えると溝部断面形状が台形となって曲率の効
果(溝成形性向上及び形状安定性)が十分に得られない。
H / R: Ratio of the groove depth h to the radius of curvature R of the curve. When h / R is less than 1.5, the curvature R is large, the cross-sectional area of the groove is reduced, and the weight of the heat transfer tube is increased. .. On the other hand, when it exceeds 4, the cross-sectional shape of the groove becomes trapezoidal and the effect of curvature (improvement of groove formability and shape stability) cannot be sufficiently obtained.

【0019】なお、溝のねじれ角γは、特に制限される
ものではないが、小さいと乱流効果、溝のかき上げ効果
が得られず、逆に大きすぎると圧損が大きくなり、十分
な性能が得られないので、通常は10゜〜30゜の範囲
であり、18°が凝縮、蒸発性能のバランス上好まし
い。
The twist angle γ of the groove is not particularly limited, but if it is small, the effect of turbulence and the effect of scraping up the groove cannot be obtained. On the contrary, if it is too large, the pressure loss becomes large, resulting in sufficient performance. Therefore, it is usually in the range of 10 ° to 30 °, and 18 ° is preferable in terms of the balance of condensation and evaporation performance.

【0020】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0021】[0021]

【実施例】外径が約7mmφで、[Example] With an outer diameter of about 7 mmφ,

【表1】 及び[Table 1] as well as

【表2】 に示す様々な諸元の内面溝付伝熱管を製作し、伝熱性
能、成形性を調査した。
[Table 2] The heat transfer tube with inner groove having various specifications shown in Fig. 3 was manufactured, and the heat transfer performance and formability were investigated.

【0022】なお、性能試験は、図2に示す装置を使用
して行った。試験部は全長5000mmの水冷向流二重管
式熱交換器を用い、供試管が二重管の中央部で外管の中
心に位置するように支持した。外管には外径12.69m
mφ、内径11.49mmφ、板厚0.60mmt、長さ50
00mmLのものを用いた。供試管内にフロン(R-22)
を、環状部に水を向流して熱交換を行わせた。蒸発試験
においては、冷媒が完全に蒸発し、所定の過熱度になる
ように水温を調整した。また、凝縮試験においても、冷
媒が完全に凝縮し、所定の過冷却度になるように水温を
調整した。
The performance test was conducted using the apparatus shown in FIG. The test section was a water-cooled countercurrent double-tube heat exchanger having a total length of 5000 mm, and the test tube was supported so that it was located at the center of the double tube and at the center of the outer tube. Outer tube has outer diameter of 12.69m
mφ, inner diameter 11.49mmφ, plate thickness 0.60mmt, length 50
The one of 00 mmL was used. Freon (R-22) in the test tube
The water was allowed to flow countercurrently to the annular portion for heat exchange. In the evaporation test, the water temperature was adjusted so that the refrigerant was completely evaporated and a predetermined degree of superheat was reached. Also in the condensation test, the water temperature was adjusted so that the refrigerant was completely condensed and a predetermined degree of supercooling was achieved.

【0023】また、性能試験条件を表3に示す。測定結
果に基づき、次式
Table 3 shows the performance test conditions. Based on the measurement result,

【数1】 で総括伝熱係数(ko)を算出した。ここで、Q:伝熱量
(kcal/h)、Ao:供試管外表面積(m2)、ΔTm:対数平
均温度差(℃)であり、このΔTmは、To:入口水温
(℃)、T2:出口水温(℃)、ts:蒸発温度又は凝縮温度
(℃)とすると、次式
[Equation 1] The overall heat transfer coefficient (ko) was calculated by. Where Q: heat transfer
(kcal / h), Ao: test tube outer surface area (m 2 ), ΔTm: logarithmic mean temperature difference (° C), where ΔTm is To: inlet water temperature
(° C), T 2 : outlet water temperature (° C), ts: evaporation temperature or condensation temperature
(° C)

【数2】 で表される。[Equation 2] It is represented by.

【0024】管内側及び管外側の各境膜伝熱係数は、W
illson−Plotにより算出した。水側境膜伝熱係数(ho)
は次式
The film heat transfer coefficient inside and outside the tube is W
It was calculated by illson-Plot. Water-side film heat transfer coefficient (ho)
Is

【数3】 を仮定した。ここで、Co:供試管外表面の形状に起因
する因子、k:水熱伝導度、De:相当径(≡di−D
o)、di:外管内径、Do:供試管外径、Re:≡Deu/
ν(u:水流量、ν:水動粘度)、Pr:≡Cpμ/k、
μ:水粘度、μw:水管壁温度における粘度である。
[Equation 3] Was assumed. Here, Co: a factor resulting from the shape of the outer surface of the test tube, k: hydrothermal conductivity, De: equivalent diameter (≡di-D
o), di: outer tube inner diameter, Do: test tube outer diameter, Re: ≡ Deu /
ν (u: water flow rate, ν: water viscosity), Pr: ≡ Cpμ / k,
μ: water viscosity, μw: viscosity at water pipe wall temperature.

【0025】成形性は、The moldability is

【表4】 に示す基準で評価した。[Table 4] It evaluated by the standard shown in.

【0026】試験結果を表1、表2に示す。本発明例
は、いずれもハイフィン高性能伝熱管であり、溝の成形
性も良好である。一部の供試管についての試験結果を図
3〜図5に整理した。図3及び図4は性能比として従来
例(▲印)を1として相対比で示した。なお、図5は山頂
角(α)40度を基準として山頂角と管重量(単重比)の関
係を示したもので、山頂角をあまり大きくすると管重量
が重くなり、コストアップにつながる。
The test results are shown in Tables 1 and 2. All of the examples of the present invention are high-fin high-performance heat transfer tubes and have good groove formability. The test results for some test tubes are summarized in FIGS. 3 and 4, the performance ratio is shown as a relative ratio with the conventional example (marked by ▲) as 1. Note that FIG. 5 shows the relationship between the crest angle and the tube weight (unit weight ratio) with the crest angle (α) of 40 degrees as a reference. If the crest angle is too large, the tube weight becomes heavy and the cost increases.

【0027】また、表1、表2に示した溝の成形性につ
いて、h/Diとh/Rの関係で整理したものを
The formability of the grooves shown in Tables 1 and 2 is summarized by the relationship between h / Di and h / R.

【表5】 に示す。本発明範囲内では良好な成形性を有するが、h
/Diとh/Rが共に大きい場合は成形性がやや困難に
なる傾向にある。
[Table 5] Shown in. Within the scope of the present invention, it has good moldability, but h
When both / Di and h / R are large, moldability tends to be slightly difficult.

【0028】[0028]

【発明の効果】以上詳述したように、本発明によれば、
熱交換器の小型高性能化、洗浄レス工程に対応したハイ
フィン高性能伝熱管を生産性を低下させずに提供するこ
とができる。
As described in detail above, according to the present invention,
It is possible to provide a high-fin high-performance heat transfer tube corresponding to a heat exchanger having a smaller size and higher performance and a cleaning-less process without lowering productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の内面溝付伝熱管の管軸直角断面図であ
る。
FIG. 1 is a cross-sectional view perpendicular to a tube axis of a heat transfer tube with an inner groove according to the present invention.

【図2】伝熱性能試験装置の概略を示す図である。FIG. 2 is a diagram schematically showing a heat transfer performance test device.

【図3】h/Diと蒸発性能比の関係を示す図である。FIG. 3 is a diagram showing a relationship between h / Di and an evaporation performance ratio.

【図4】h/Diと凝縮性能比の関係を示す図である。FIG. 4 is a diagram showing a relationship between h / Di and a condensation performance ratio.

【図5】山頂角αと単重比の関係を示す図である。FIG. 5 is a diagram showing a relationship between a peak angle α and a unit weight ratio.

【符号の説明】[Explanation of symbols]

P 動歪圧力検出器 PD 動歪差力検出器 T Pt温度センサー P Dynamic strain pressure detector PD Dynamic strain differential force detector T Pt Temperature sensor

【表3】 [Table 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管内面に連続かつ螺旋状に溝を持ち、各
溝は山頂曲線部とこれに滑らかにつながる斜面直線部を
有し、該斜面直線部と溝底直線部が1.5≦h/R≦4
(h:溝深さ)の関係を満たす曲率半径Rの曲線で滑らか
に連続しており、内面溝付伝熱管の最小半径Diと溝深
さhが0.03≦h/Di≦0.04の関係を満たし、フ
ィン部管軸直角断面で両側の該斜面直線部のなす角αが
35°≦α≦50°の範囲であることを特徴とする内面
溝付伝熱管。
1. A continuous and spiral groove is formed on the inner surface of the pipe, and each groove has a crest curve portion and a slope straight line portion smoothly connected to the peak peak portion, and the slope straight line portion and the groove bottom straight line portion are 1.5 ≦. h / R ≦ 4
The curve has a radius of curvature R that satisfies the relationship of (h: groove depth) and is smoothly continuous, and the minimum radius Di and the groove depth h of the inner surface heat transfer tube with groove are 0.03 ≦ h / Di ≦ 0.04. And the angle α formed by the inclined straight portions on both sides in the cross section perpendicular to the fin tube axis is in the range of 35 ° ≦ α ≦ 50 °.
JP32799991A 1991-11-15 1991-11-15 Heat transfer tube with internal groove Expired - Lifetime JP3219811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32799991A JP3219811B2 (en) 1991-11-15 1991-11-15 Heat transfer tube with internal groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32799991A JP3219811B2 (en) 1991-11-15 1991-11-15 Heat transfer tube with internal groove

Publications (2)

Publication Number Publication Date
JPH05141890A true JPH05141890A (en) 1993-06-08
JP3219811B2 JP3219811B2 (en) 2001-10-15

Family

ID=18205377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32799991A Expired - Lifetime JP3219811B2 (en) 1991-11-15 1991-11-15 Heat transfer tube with internal groove

Country Status (1)

Country Link
JP (1) JP3219811B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849992A (en) * 1994-08-04 1996-02-20 Sumitomo Light Metal Ind Ltd Heat transfer tube with internal groove
EP0733871A1 (en) * 1995-03-21 1996-09-25 KM Europa Metal Aktiengesellschaft Heat transfer tube for a heat exchanger
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
US7048043B2 (en) * 2002-03-12 2006-05-23 Trefimetaux Reversible grooved tubes for heat exchangers
JP2009186130A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Heat transfer tube for radiator with inner face fin
JP2014142172A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511797B2 (en) * 2003-01-31 2010-07-28 株式会社コベルコ マテリアル銅管 Internal grooved tube, manufacturing apparatus thereof, and manufacturing method thereof
KR102636349B1 (en) 2018-10-30 2024-02-15 비와이케이-케미 게엠베하 Ceramic slurry composition and method of making layered ceramic components

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
JPH0849992A (en) * 1994-08-04 1996-02-20 Sumitomo Light Metal Ind Ltd Heat transfer tube with internal groove
EP0733871A1 (en) * 1995-03-21 1996-09-25 KM Europa Metal Aktiengesellschaft Heat transfer tube for a heat exchanger
US7048043B2 (en) * 2002-03-12 2006-05-23 Trefimetaux Reversible grooved tubes for heat exchangers
JP2009186130A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Heat transfer tube for radiator with inner face fin
JP2014142172A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger

Also Published As

Publication number Publication date
JP3219811B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JP4665713B2 (en) Internal grooved heat transfer tube
US6164370A (en) Enhanced heat exchange tube
JPH0421117B2 (en)
JPH05141890A (en) Heat transfer tube with inner surface groove
US4705103A (en) Internally enhanced tubes
JP4119836B2 (en) Internal grooved heat transfer tube
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
JP2005257160A (en) Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface
JP2912826B2 (en) Heat transfer tube with internal groove
JP3829648B2 (en) Internal grooved heat transfer tube
JPH04260793A (en) Heat transfer tube with inner surface groove
JPH0579783A (en) Heat transfer tube with inner surface groove
JPS5883189A (en) Heat-transmitting pipe
JP3415013B2 (en) Heat transfer tube for condenser
JP3494625B2 (en) Internal grooved heat transfer tube
JP3292043B2 (en) Heat exchanger
JPH0712483A (en) Heat transfer tube with inner surface groove
JPS624638B2 (en)
JP2960828B2 (en) Heat transfer tube for absorber
JP3286171B2 (en) Heat transfer tube with internal groove
JP4119765B2 (en) Internal grooved heat transfer tube
JP2997189B2 (en) Condensation promoting type heat transfer tube with internal groove
JP3417825B2 (en) Inner grooved pipe
JP2005090798A (en) Heat transfer pipe for condenser
JPH051891A (en) Heat transfer tube with internal groove

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100810

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120810

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11