JPH0513882B2 - - Google Patents

Info

Publication number
JPH0513882B2
JPH0513882B2 JP61181551A JP18155186A JPH0513882B2 JP H0513882 B2 JPH0513882 B2 JP H0513882B2 JP 61181551 A JP61181551 A JP 61181551A JP 18155186 A JP18155186 A JP 18155186A JP H0513882 B2 JPH0513882 B2 JP H0513882B2
Authority
JP
Japan
Prior art keywords
fraction
hydrogen
kerosene
steam reforming
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61181551A
Other languages
Japanese (ja)
Other versions
JPS6340702A (en
Inventor
Masayuki Hayashi
Tokuo Fujimune
Soichi Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP61181551A priority Critical patent/JPS6340702A/en
Publication of JPS6340702A publication Critical patent/JPS6340702A/en
Publication of JPH0513882B2 publication Critical patent/JPH0513882B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃料電池用水素を灯油留分を含む炭
化水素留分の水蒸気改質によつて製造する方法に
おいて、水蒸気改質の原料油として安価で入手し
やすくしかも水蒸気改質反応に適性を有し、かつ
簡略なプロセスにより水素の製造が可能となる炭
化水素留分を用いることに特徴を有する燃料電池
用水素製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing hydrogen for fuel cells by steam reforming of hydrocarbon fractions including kerosene fractions, which uses low-cost raw material oil for steam reforming. The present invention relates to a method for producing hydrogen for fuel cells, which is characterized by using a hydrocarbon fraction that is easily available, is suitable for steam reforming reactions, and allows production of hydrogen through a simple process.

発明の背景 燃料電池はエネルギー変換効率が高く、環境を
悪化させることが少ない、などの理由から民生用
あるいは産業用の発電装置として実証プラントの
試験が行われつつあり、各方面からその技術の完
成が期待されている。燃料電池の燃料としては各
種の物質が用いられているが、水素を燃料とする
もの、なかでもリン酸を電解質とする燃料電池の
実用化が最も近いと考えられている。
Background of the Invention Fuel cells have high energy conversion efficiency and do not cause much environmental damage, so demonstration plants are being tested as power generation devices for civilian or industrial use, and there are various concerns regarding the completion of the technology. is expected. Although various substances are used as fuel for fuel cells, it is thought that the practical use of fuel cells that use hydrogen as the fuel, especially fuel cells that use phosphoric acid as the electrolyte, is considered to be the closest.

燃料電池用に用いられる水素は主に技術的な容
易さからメタンを主体とする液化天然ガス
(LNG)やそれを主成分とする都市ガスをスチー
ムで改質して製造するか、メタノールを改質ある
いは分解して製造する方法が研究されている。
Hydrogen used for fuel cells is mainly produced by reforming liquefied natural gas (LNG), which mainly consists of methane, or city gas, which mainly consists of methane, with steam, or by reforming methanol. Research is being conducted on methods of manufacturing by decomposing or decomposing.

しかし、燃料電池を避地を含めて各地に分散し
て設置しようとする場合(分散型燃料電池)、
LNGあるいは都市ガスを用いた燃料電池は配管
のある供給地域内にしか設置できず、その利用は
地域内に極めて限定される。また地震などの大規
模災害の場合は、都市ガス配管の破断のためのガ
ス供給の復旧には長時間を要することになる。ま
たメタノールを改質あるいは分解して水素を得る
方法は、現在のところ水素当たりの原単位として
はLNGに比べてかなり高価となる欠点を有する。
However, if you plan to install fuel cells in a distributed manner, including in evacuation areas (distributed fuel cells),
Fuel cells using LNG or city gas can only be installed within supply areas with pipes, and their use is extremely limited within the area. Furthermore, in the case of a large-scale disaster such as an earthquake, it will take a long time to restore the gas supply due to a break in the city gas pipe. Furthermore, methods for obtaining hydrogen by reforming or decomposing methanol currently have the disadvantage that they are considerably more expensive per unit of hydrogen than LNG.

また改質原料としてナフサを用いることも考え
られるが、ナフサは沸点が低く、蒸気圧が高く、
揮発性であるため引火性が高く、危険性が大きく
取扱いが難しいという欠点を有する。
It is also possible to use naphtha as a reforming raw material, but naphtha has a low boiling point and high vapor pressure.
Because it is volatile, it is highly flammable, highly dangerous, and difficult to handle.

一方、ナフサより重質で引火性が低く、危険性
が小さく、より容易に取り扱える灯油かあるいは
それに相当する留分を燃料電池用の水素を得るた
めの原料として用いることが可能になれば、効率
の高い燃料電池の普及に大いに役立つことにな
る。また大地震が発生した場合でも、道路の復旧
は容易であるためローリーによる供給は直ちに再
開できるので、水素製造装置と燃料電池の装置が
運転可能である限り、発電停止は最小限に食い止
められる。
On the other hand, if it becomes possible to use kerosene or its equivalent distillate, which is heavier, less flammable, less dangerous, and easier to handle than naphtha, as a raw material to obtain hydrogen for fuel cells, efficiency will increase. This will greatly contribute to the spread of fuel cells with high fuel efficiency. Furthermore, even in the event of a major earthquake, roads can be easily restored and supply by lorry can be resumed immediately, so as long as hydrogen production equipment and fuel cell equipment are operational, power generation outages can be kept to a minimum.

また灯油はLNGに比べ水素製造原価が安く、
発電コストが低いというメリツトもある。
In addition, kerosene has a lower hydrogen production cost than LNG,
Another advantage is that power generation costs are low.

従来の技術及び 発明が解決しようとする問題点 従来、石油類を原料とするスチーム改質法によ
る水素の製造プラントにおいてはオフガス、
LNGなどの軽質炭化水素からLPG、ナフサまで
が原料として使用可能とされており、それ以上重
質の油を原料として用いることは困難とされてい
た。その主な理由としては、たとえば灯油を用い
るとこれまで用いられた改質触媒では分解率が低
く炭素分が付着するからである。
Problems to be solved by conventional technology and invention Conventionally, in hydrogen production plants using the steam reforming method using petroleum as raw materials, off-gas,
It is believed that everything from light hydrocarbons such as LNG to LPG and naphtha can be used as raw materials, and it has been difficult to use heavier oils as raw materials. The main reason for this is that, for example, when kerosene is used, the decomposition rate of the reforming catalysts used so far is low and carbon content is deposited.

しかしながら特に最近の技術の進歩により、灯
油を用いても十分な分解率を有し炭素分の付着の
少ないニツケル触媒が明らかにされつつあり、灯
油と同程度の沸点範囲を用する油を水蒸気改質の
原料として用いることが可能となつた。
However, especially with recent advances in technology, nickel catalysts that have a sufficient decomposition rate even when using kerosene and have little carbon content are being revealed, and steam reforming of oil with a boiling point range similar to that of kerosene has been discovered. It became possible to use it as a quality raw material.

ただし、この触媒でも硫黄に対しては鋭敏で、
改質原料としては硫黄が1wtppm以下、ときわめ
て高度に脱硫する必要がある。ところが、灯油の
一般用途である暖房機用に供する目的では、灯油
中の硫黄分をこのレベルのように高度に低減する
必要はない。JIS(K2203)1号灯油は硫黄分の上
限を150ppmまで認めており、一般的には10〜
150ppm、通常は20〜60ppm程度の灯油が市販さ
れているのが現状であり、JIS1号灯油をそのまま
水蒸気改質原料に用いることはできない。
However, even this catalyst is sensitive to sulfur,
As a raw material for reforming, it must be desulfurized to an extremely high level, with sulfur content of 1wtppm or less. However, for the purpose of using kerosene for heating equipment, which is a general use of kerosene, it is not necessary to reduce the sulfur content in kerosene to this high level. JIS (K2203) No. 1 kerosene has an upper limit of sulfur content of 150 ppm, and generally 10 to 100 ppm.
Currently, kerosene with a concentration of 150 ppm, usually around 20 to 60 ppm, is commercially available, and JIS No. 1 kerosene cannot be used as it is as a raw material for steam reforming.

このような比較的高硫黄含有の灯油を直接水素
化脱流して硫黄分を1wtppm以下にすることは技
術的には不可能ではない。しかしながら、この場
合は水素存在下50Kg/cm2・G以上、温度300℃以
上という高温・高圧の条件が必要となり、そのよ
うな設備を各燃料電池用水蒸気改質装置の前段に
設置していては、LNGやナフサあるいはメタノ
ールに比べ安価な灯油を原料としてもそのメリツ
トは失われることになる。
It is not technically impossible to reduce the sulfur content to 1 wtppm or less by direct hydrodeflowing of such relatively high sulfur-containing kerosene. However, in this case, high-temperature and high-pressure conditions of 50 kg/cm 2 G or higher in the presence of hydrogen and a temperature of 300°C or higher are required, and such equipment is installed upstream of each fuel cell steam reformer. The advantages of using kerosene as a raw material, which is cheaper than LNG, naphtha, or methanol, will be lost.

本発明者らは灯油留分のもつ燃料電池用の水素
源製造用の原料としての多くのメリツトを考慮
し、しかも経済的にもLNGやメタノールなどよ
り優れ、また該水素製造プロセスの簡略化も図れ
るような水素製造用原料について鋭意検討した。
The present inventors have considered the many merits of kerosene fraction as a raw material for producing a hydrogen source for fuel cells.In addition, it is economically superior to LNG, methanol, etc., and it also simplifies the hydrogen production process. We conducted extensive research on possible raw materials for hydrogen production.

その結果本発明者らは、従来JIS1号灯油に混合
し家庭用暖房機や産業用加熱燃料としての用途し
かなく、かつ水蒸気改質原料として用いた場合に
一定の期間安定的に水蒸気改質が続行できるかど
うかに関してこれまで検討されたことの例のない
留分、すなわち、原油中に含まれる留分および/
または原油中に含まれる留分を分解して得られる
留分で、かつ触媒と水素による水素化精製処理を
受け硫黄含有量が1wtppm以下となつており、し
かもその留分の中には沸点が150〜260℃の留分を
70wt%以上含有する炭化水素留分をまず製造し、
次に該炭化水素留分の中から直鎖状炭化水素類を
合成ゼオライトによる吸着法および/または尿素
アダクト法により分離除去して得た留分が、水蒸
気改質反応を一定期間続行できるという水蒸気改
質原料に対する適性を有していることを見出し
た。
As a result, the present inventors discovered that conventionally it was mixed with JIS No. 1 kerosene and used only as a heating fuel for home heaters and industrial use, and that when used as a raw material for steam reforming, steam reforming could be performed stably for a certain period of time. Fractions that have not previously been considered as to whether they can proceed, i.e. fractions contained in crude oil and/or
Or, it is a fraction obtained by cracking the fraction contained in crude oil, which has undergone hydrorefining treatment using a catalyst and hydrogen, and has a sulfur content of 1wtppm or less, and some of the fractions have boiling points. Distillate between 150 and 260℃
First, a hydrocarbon fraction containing 70wt% or more is produced,
Next, straight-chain hydrocarbons are separated and removed from the hydrocarbon fraction by an adsorption method using synthetic zeolite and/or a urea adduct method. It was found that it has suitability for modified raw materials.

本発明で言う留分は、例えば生分解性の良い合
成洗剤の原料となる比較的高価な直鎖状炭化水素
類を回収分離した残留分(ラフイネート)で従来
有効な利用がされていないものである。この留分
を燃料電池用水素源を得るための水蒸気改質用原
料として用いれば、JIS1号灯油並みの価値しか発
揮できなかつた留分を有効利用することになる。
また本来JIS1号灯油を水蒸気改質原料として使用
すれば当然必要となる硫黄分を1wtppm以下まで
低減するという厳密な脱硫反応を行わせるための
高価な脱流設備をつけることなく水蒸気改質を行
うことができ、燃料電池のトータルシステムとし
てのコストダウンおよび施設の小型化が図れるこ
とになり、従来にない燃料電池用の安価な水素製
造が可能になることを見出し本発明を完成させ
た。
The distillate referred to in the present invention is, for example, the residue (ruffinate) obtained by collecting and separating relatively expensive linear hydrocarbons, which are raw materials for synthetic detergents with good biodegradability, and has not been effectively utilized in the past. be. If this fraction is used as a raw material for steam reforming to obtain a hydrogen source for fuel cells, it will be possible to effectively utilize a fraction that could only exhibit the same value as JIS No. 1 kerosene.
Additionally, if JIS No. 1 kerosene is used as the raw material for steam reforming, steam reforming can be performed without the need for expensive deflow equipment to carry out the strict desulfurization reaction that reduces the sulfur content to 1wtppm or less. We have completed the present invention by discovering that it is possible to reduce the cost of the total fuel cell system and downsize the facility, making it possible to produce hydrogen at an unprecedented cost for fuel cells.

問題点を解決するための手段 本発明の燃料電池用水素製造方法で用いる水蒸
気改質用原料は次のようにして得られる。すなわ
ち原油の蒸留によつて分離された原油中の適当な
留分および/または原油中に含まれている留分
を、熱分解あるいは触媒および/または水素の存
在下における接触分解などたとえば300℃以上の
温度における分解によつて得られる全部または一
部あるいはこれらを混合した分解生成留分の中に
含有されている150〜260℃の沸点を有する留分を
70wt%以上含む炭化水素留分を炭化水素化合物
の基本的な成分とする。また該成分は上記の留分
を得る前段あるいは後段またはその過程の1つ以
上の段階において、触媒および水素の存在の下で
水素化精製処理により硫黄含有量を1wtppm以下
としておく。ここで150〜260℃の沸点を有する留
分とはいわゆる灯油留分であり、この灯油留分の
含有量が70wt%未満では水蒸気改質原料として
灯油の利便性を活用する観点から望ましくない。
また260℃以上の沸点の炭化水素は水蒸気改質を
行いにくいので少ないほうが好ましい。150℃以
下の沸点の炭化水素は水蒸気改質を行う上では支
障とならないが、あまり低沸点の炭化水素が多く
なると改質原料とする時に引火点が低下し好まし
くない。また沸点150〜260℃以外の留分はあまり
多いと価値の高い、直鎖状炭化水素類の分離を行
うプロセスの経済性が低下するという問題が生ず
るのであまり多くないほうが好ましい。また硫黄
分は1wtppmを越えて存在すると、後述する直鎖
状炭化水素類の分離工程において害となるため、
硫黄分は1wtppm以下ととする必要があるもので
ある。
Means for Solving the Problems The raw material for steam reforming used in the method for producing hydrogen for fuel cells of the present invention is obtained as follows. That is, appropriate fractions in crude oil separated by distillation of crude oil and/or fractions contained in crude oil are subjected to thermal cracking or catalytic cracking in the presence of a catalyst and/or hydrogen, for example at temperatures above 300°C. The fraction having a boiling point of 150 to 260°C, which is contained in the decomposition product fraction obtained by decomposition in whole or in part or a mixture thereof, at a temperature of
The hydrocarbon fraction containing 70wt% or more is the basic component of the hydrocarbon compound. Further, the component is subjected to hydrorefining treatment in the presence of a catalyst and hydrogen to reduce the sulfur content to 1 wtppm or less before or after obtaining the above-mentioned fraction, or at one or more stages of the process. Here, the fraction having a boiling point of 150 to 260°C is a so-called kerosene fraction, and if the content of this kerosene fraction is less than 70 wt%, it is not desirable from the viewpoint of utilizing the convenience of kerosene as a raw material for steam reforming.
Further, hydrocarbons having a boiling point of 260° C. or higher are difficult to steam reform, so the smaller the amount, the better. Hydrocarbons with a boiling point of 150° C. or lower do not pose a problem in steam reforming, but if the amount of hydrocarbons with a low boiling point is too large, the flash point will decrease when used as a reforming raw material, which is undesirable. Further, if the fraction having a boiling point other than 150 to 260° C. is too large, there will be a problem that the economic efficiency of the process for separating highly valuable linear hydrocarbons will be lowered, so it is preferable that the fraction is not too large. In addition, if the sulfur content exceeds 1wtppm, it will be harmful in the separation process of linear hydrocarbons, which will be described later.
The sulfur content must be 1wtppm or less.

該水素化精製処理において用いられる触媒は、
ボーキサイト、活性炭、ケイソウ土、ゼオライ
ト、シリカ、アルミナまたはシリカーアルミナ等
の無機固体を担体として、周期律表第B族、第
族または族金属を酸化物、硫化物、これらの
複合物あるいは混合物の形で担持したものであ
る。第B族、第族および族金属としては、
コバルト、ニツケル、モリブデンおよびタングス
テンが好ましい。本発明においては酸化ニツケ
ル、酸化コバルト、酸化モリブデンおよび酸化タ
ングステンを2種以上組み合わせ、アルミナ担体
に担持したものを予備硫化して得られる触媒が特
に好ましく用いられる。水素化処理における反応
温度は通常230〜400℃好ましくは260〜360℃であ
る。230℃以下では精製度が低く、400℃以上にな
ると分解、脱水素等の副反応が起こる。反応圧力
は通常20〜150Kg/cm2・G好ましくは25〜120Kg/
cm2・Gである。また水素は供給1Kに対し100〜
10,000Nm3好ましくは200〜1,000Nm3
LHSVは0.2〜5hr-1好ましくは0.5〜4hr-1が用い
られる。
The catalyst used in the hydrorefining treatment is
Inorganic solids such as bauxite, activated carbon, diatomaceous earth, zeolite, silica, alumina or silica-alumina are used as carriers to prepare Group B, Group or group metals of the periodic table in the form of oxides, sulfides, composites or mixtures thereof. It is something that is carried in form. Group B, group and group metals include:
Cobalt, nickel, molybdenum and tungsten are preferred. In the present invention, a catalyst obtained by presulfiding a combination of two or more of nickel oxide, cobalt oxide, molybdenum oxide, and tungsten oxide supported on an alumina carrier is particularly preferably used. The reaction temperature in the hydrogenation treatment is usually 230-400°C, preferably 260-360°C. Below 230°C, the degree of purification is low, and above 400°C, side reactions such as decomposition and dehydrogenation occur. The reaction pressure is usually 20-150Kg/ cm2・G, preferably 25-120Kg/
cm 2・G. Also, hydrogen is 100 ~
10,000Nm 3 preferably 200 to 1,000Nm 3 ,
The LHSV used is 0.2 to 5 hr -1 , preferably 0.5 to 4 hr -1 .

このようにして水素化精製された灯油相当留分
は次いで合成ゼオライトを使用する吸着分離法に
よりあるいは尿素アダクト法による分離法によ
り、直鎖状炭化水素類とそれ以外の留分に分けら
れる。
The kerosene-equivalent fraction thus hydrorefined is then separated into linear hydrocarbons and other fractions by an adsorption separation method using synthetic zeolite or a separation method by a urea adduct method.

吸着分離法は一般的には孔径5Åの合成ゼオラ
イト(モレキユラーシーブ5Aという)が吸着剤
として使われる。これは分子断面の直径が約4.9
Åの直鎖状炭化水素類(ノルマルパラフイン)は
合成ゼオライトの開孔部を通過し内部表面に吸着
されるが、分子断面の直径が5Åより大きいイソ
パラフイン、ナフテンおよび芳香族化合物は開孔
部を通過できずに吸着されずに系外に出るので直
鎖状炭化水素類の分離が可能となるのである。吸
着された直鎖状炭化水素類は温度を上げる方法、
圧力を下げる方法、不活性ガスでブローする方法
あるいは低分子量の直鎖状炭化水素類で置換する
方法などでゼオライトより脱着される。
In the adsorption separation method, synthetic zeolite (called molecular sieve 5A) with a pore size of 5 Å is generally used as the adsorbent. This means that the diameter of the molecular cross section is approximately 4.9
Linear hydrocarbons (normal paraffins) with a diameter of 5 Å pass through the pores of synthetic zeolite and are adsorbed on the internal surface, but isoparaffins, naphthenes, and aromatic compounds with molecular cross-sectional diameters larger than 5 Å pass through the pores of the synthetic zeolite and are adsorbed on the internal surface. This makes it possible to separate linear hydrocarbons because they cannot pass through the water and exit the system without being adsorbed. Adsorbed linear hydrocarbons can be removed by increasing the temperature.
It can be desorbed from zeolite by lowering the pressure, blowing with inert gas, or replacing it with low molecular weight linear hydrocarbons.

工業的プロセスとしては分離を液相で行う
Mo1ex法と気相で行うsosiv法、BP法および
TSF法などがあり、本発明にはいずれの方法で
直鎖状炭化水素類を分離してもその残留分(ラフ
イネート)を用い得る。
As an industrial process, separation is carried out in the liquid phase.
Mo1ex method, sosiv method in gas phase, BP method and
There are methods such as the TSF method, and even if linear hydrocarbons are separated by any method, the residue (ruffinate) thereof can be used in the present invention.

また、尿素アダクト法は尿素が活性化能をもつ
溶剤(メチレンジクロライド、メタノールなど)
の存在のもと常温でC7以上の直鎖状炭化水素類
と尿素アダクトを生成する原理を応用して灯油よ
り直鎖状炭化水素類を分離する方法である。生成
したアダクトを尿素あるいは直鎖状炭化水素類を
溶解する溶剤で処理することにより直鎖状炭化水
素類が回収される。工業的方法には固体尿素を使
用する方法と尿素溶液を使う方法があり、固体尿
素を使用する方法にはNurex法、尿素溶液を使う
方法にはエデレアーヌ法がある。
In addition, in the urea adduct method, urea is used in a solvent (methylene dichloride, methanol, etc.) that has the ability to activate it.
This is a method to separate linear hydrocarbons from kerosene by applying the principle of producing linear hydrocarbons of C7 or higher and urea adducts at room temperature in the presence of kerosene. Linear hydrocarbons are recovered by treating the produced adduct with urea or a solvent that dissolves linear hydrocarbons. Industrial methods include methods that use solid urea and methods that use a urea solution; methods that use solid urea include the Nurex method, and methods that use a urea solution include the Edeleane method.

このような方法で得たラフイネートは硫黄分、
窒素分、酸素分および金属分などの不純物は著し
く低減し、特に硫黄分はニツケル系触媒による水
蒸気改質用の原料としての許容される1wtppm以
下しか含まれておらず、また本発明者らが予期し
ないことであつたが、本発明の方法で得られた水
素化精製処理を受けた該留分をさらに吸着分離法
もしくは尿素アダクト法により直鎖状炭化水素類
を分離した残留分(ラフイネート)は、水素化精
製法のみで仕上げられた同程度の性状を有する原
料油に比べてニツケル系触媒を用いた水蒸気改質
反応の水素源として炭素の折出度が遅く、触媒が
より長時間使える傾向を示すなど優れた適性を示
した。この傾向は吸着分離法で著しく認められ
た。この原因については明確にはなつていないが
吸着剤処理法や尿素アダクト法によりニツケル系
改質触媒の活性低下の原因物質の一部が除去され
たものと考えている。
Roughinate obtained by this method has a sulfur content,
Impurities such as nitrogen, oxygen, and metals are significantly reduced, and in particular, sulfur content is less than 1wtppm, which is permissible as a raw material for steam reforming using a nickel catalyst. Unexpectedly, the residue obtained by further separating linear hydrocarbons (roughinate) from the hydrorefining fraction obtained by the method of the present invention by adsorption separation method or urea adduct method. Compared to feedstock oils with similar properties that are finished using only the hydrorefining method, the rate of carbon precipitation is slower and the catalyst can be used for a longer period of time as a hydrogen source for steam reforming reactions using nickel-based catalysts. He showed excellent aptitude by showing trends. This tendency was significantly observed in the adsorption separation method. Although the cause of this is not clear, it is believed that some of the substances responsible for the decrease in the activity of the nickel-based reforming catalyst were removed by the adsorbent treatment method or the urea adduct method.

本発明の方法で得られたラフイネートは水蒸気
改質に必要な水(スチーム)を加え、次いでニツ
ケル触媒を充填したスチーム改質装置に送られ
る。灯油のスチーム改質に用いられるニツケル触
媒はニツケルを5wt%以上たとえば5〜50wt%、
好ましくは10〜35wt%含んでいるものである。
Roughinate obtained by the method of the present invention is added with water (steam) necessary for steam reforming, and then sent to a steam reformer filled with a nickel catalyst. The nickel catalyst used for steam reforming of kerosene contains 5 wt% or more of nickel, for example 5 to 50 wt%,
It preferably contains 10 to 35 wt%.

なお、ここで言う、ニツケル触媒はニツケルを
金属状、酸化物その他の化合物として含有してい
るものが用いられ、通常改質反応条件下において
は大部分が還元状態のニツケルとして存在してい
るものが用いられる。
The nickel catalyst mentioned here is one that contains nickel in the form of a metal, oxide, or other compound, and most of it exists as nickel in a reduced state under normal reforming reaction conditions. is used.

担体としてはアルミナ、マグネシア、シリカ、
カルシア、マグネシア−アルミナスピネルをそれ
ぞれ単独にあるいは混合したものが用いられ、あ
るいはこれらに5wt%以下の酸化カリウムを添加
した触媒が用いられる。反応条件は反応温度500
〜1,000℃、反応圧力3Kg/cm2・G以上でスチ
ーム/炭素(モル比)が2〜6、LHSV0.2〜4
が好ましく用いられる。
Supports include alumina, magnesia, silica,
Calcia and magnesia-alumina spinel may be used alone or in combination, or a catalyst may be used in which 5 wt% or less of potassium oxide is added to these. Reaction conditions are reaction temperature 500
~1,000℃, reaction pressure 3Kg/ cm2・G or higher, steam/carbon (molar ratio) 2-6, LHSV 0.2-4
is preferably used.

スチーム改質用のニツケル触媒に対して原料の
炭化水素中に含まれる硫黄化合物は活性被毒物質
として知られており、硫黄化合物がニツケル触媒
に接触して生成する硫化水素はニツケルと化学量
論的に反応し硫化ニツケルとなつて活性を失う。
したがつて改質反応に供する原料中の硫黄含有量
は可及的に少ない方が望ましいが、経済的な見地
から工業的には原料中の硫黄分として1wtppm以
下が好ましい。この硫黄分濃度の点においても本
発明の燃料電池用水素製造方法において用いる水
蒸気改質原料は適性を有しているといえる。な
お、もし硫黄分が1wtppmを越える原料を用いて
ニツケル触媒でスチーム改質反応を行つた場合は
反応塔入口付近から触媒が被毒されるため、短時
間で反応塔出口から末分解の炭化水素が検出され
たり反応管入口部にホツトスポツトが生成し、コ
ーキングにより反応管のΔPが上昇したりする現
象が起こり短時間で運転を停止して触媒の交換や
再生を実施しなければならなくなる。
The sulfur compounds contained in the hydrocarbon feedstock are known as active poisons for the nickel catalyst used in steam reforming, and the hydrogen sulfide produced when the sulfur compounds come into contact with the nickel catalyst is stoichiometric with the nickel catalyst. It reacts to form nickel sulfide and loses its activity.
Therefore, it is desirable that the sulfur content in the raw material to be subjected to the reforming reaction is as low as possible, but from an economic standpoint and industrially, it is preferable that the sulfur content in the raw material is 1 wtppm or less. It can be said that the steam reforming raw material used in the method for producing hydrogen for fuel cells of the present invention is suitable also in terms of this sulfur content concentration. Furthermore, if a steam reforming reaction is carried out using a nickel catalyst using a raw material with a sulfur content exceeding 1wtppm, the catalyst will be poisoned from near the entrance of the reaction tower, and the decomposed hydrocarbons will be released from the exit of the reaction tower in a short period of time. is detected, a hot spot is formed at the inlet of the reaction tube, and the ∆P of the reaction tube increases due to coking, making it necessary to stop operation in a short period of time and replace or regenerate the catalyst.

次に本発明の方法について実施例を用いて具体
的に説明する。
Next, the method of the present invention will be specifically explained using examples.

実施例 1 〈水素化精製処理〉 スマトラライト原油中から蒸留により得られた
沸点190〜260℃の留分[比重(15/4℃)0.797、
硫黄分190wtppm、直鎖状炭化水素類40.5wt%、
芳香族分10.2vol.%]を市販のニツケル−モリブ
デン系触媒を充填した反応塔に反応圧力85Kg/
cm2・G、温度280℃、LHSV0.9、H2/Oil=400
/の条件で通した。精製油の硫黄分は
1wtppm以下に減り、芳香族分は5.2vo%とな
り、核水素化率は51%であつた。
Example 1 <Hydrorefining treatment> A fraction with a boiling point of 190 to 260°C obtained by distillation from Sumatralite crude oil [specific gravity (15/4°C) 0.797,
Sulfur content 190wtppm, linear hydrocarbons 40.5wt%,
aromatic content of 10.2 vol.%] was placed in a reaction tower packed with a commercially available nickel-molybdenum catalyst at a reaction pressure of 85 kg/
cm2・G, temperature 280℃, LHSV0.9, H2 /Oil=400
I passed on the condition of /. The sulfur content of refined oil is
It decreased to less than 1wtppm, the aromatic content was 5.2vo%, and the nuclear hydrogenation rate was 51%.

〈吸着剤分離〉 次いで該水素化精製油をモレキユラーシーブ
5Aの充填されているモレツクス装置に挿入し、
直鎖状炭化水素類を分離し、ラフイネートを得
た。ラフイネートの性状は沸点191〜260℃、比重
0.815、硫黄分1wtppm以下、芳香族分9.3vo%
であつた。
<Adsorbent separation> Next, the hydrotreated oil is passed through a molecular sieve.
Insert into Molex device filled with 5A,
Straight chain hydrocarbons were separated to obtain roughinate. Roughinate has a boiling point of 191-260℃ and a specific gravity.
0.815, sulfur content 1wtppm or less, aromatic content 9.3vo%
It was hot.

〈水蒸気改質〉 該ラフイネートを何らそれ以上処理することな
くそのまま原料としてNiOを34wt%、A2O3
12wt%、およびMgOを54wt%からなる水蒸気改
質触媒の約1mmの破砕品を充填した反応管を用い
て反応圧力30Kg/cm2・G、反応温度入口500℃、
出口800℃、LHSV1.5、H2O/C(原料)3.5モ
ル/モルの条件で水蒸気改質を行つた。反応開始
から1,000時間経過した後でも反応管の温度分
布にはあまり変化はみられず、出口のガス組成は
熱力学的平衡値に近く、該ラフイネートは水蒸気
改質原料として適したものであつた。
〈Steam reforming〉 34wt% NiO and A 2 O 3 are used as raw materials without any further treatment of the roughinate.
Using a reaction tube filled with approximately 1 mm crushed pieces of steam reforming catalyst consisting of 12 wt% and 54 wt% MgO, the reaction pressure was 30 Kg/cm 2 G, the reaction temperature at the inlet was 500°C,
Steam reforming was carried out under the following conditions: 800°C at the outlet, LHSV 1.5, and H 2 O/C (raw material) 3.5 mol/mol. Even after 1,000 hours had passed since the start of the reaction, there was not much change in the temperature distribution in the reaction tube, and the gas composition at the outlet was close to the thermodynamic equilibrium value, indicating that the raffinate is suitable as a raw material for steam reforming. It was hot.

実施例 2 〈水素化精製処理〉 アラビアン・ライト原油から蒸留で得られた沸
点161〜256℃の留分[比重(15/4℃)0.795、
硫黄分2200wtppm、直鎖状炭化水素類26wt%、
芳香族分18.5vol.%]を市販のニツケル−タング
ステン触媒を用いて反応圧力50Kg/cm2・G、温度
320℃、LHSV2、H2/Oil=250/の条件で
処理した。精製油の硫黄分は1wtppm以下にな
り、芳香族分は14.8ov%に減り、核水素化率20
%であつた。
Example 2 <Hydrorefining treatment> A fraction with a boiling point of 161 to 256°C obtained by distillation from Arabian Light crude oil [specific gravity (15/4°C) 0.795,
Sulfur content 2200wtppm, linear hydrocarbons 26wt%,
Aromatic content 18.5 vol.%] using a commercially available nickel-tungsten catalyst at a reaction pressure of 50 Kg/cm 2 G and temperature.
The treatment was performed at 320°C, LHSV2, and H 2 /Oil = 250/. The sulfur content of refined oil is below 1wtppm, the aromatic content is reduced to 14.8ov%, and the nuclear hydrogenation rate is 20%.
It was %.

〈尿素アダクト法〉 次いで該水素化精製油1重量部を80℃において
76wt%の尿素飽和水溶液1重量部およびメチレ
ンジクロライド2重量部と混合し、次いで30℃冷
却して尿素と直鎖状炭化水素類のアダクトを生成
させる。次いで混合溶液中の該アダクトを分離脱
去してラフイネートを得た。
<Urea adduct method> Next, 1 part by weight of the hydrogenated refined oil was heated to 80°C.
It is mixed with 1 part by weight of a 76 wt% urea saturated aqueous solution and 2 parts by weight of methylene dichloride, and then cooled to 30°C to form an adduct of urea and linear hydrocarbons. Then, the adduct in the mixed solution was separated and removed to obtain ruffinate.

〈水蒸気改質〉 該ラフイネートを何らそれ以上処理することな
くそのまま原料として、市販のニツケル系水蒸気
改質触媒(NiOを22wt%、A2O3を26wt%、
MgOを11wt%、CaOを13wt%、SiO2を16wt%お
よびK2Oを7wt%)を約1mmに破砕したものを用
いて実施例1と同じ方法、同じ条件で反応を行つ
た。反応開始後500時間でみると、反応管中で最
高温度を示す点がわずかに反応管出口側に移動し
たが出口のガス組成はその温度における熱力学的
平衡値に近く、該ラフイネートが水蒸気改質用原
料として適していることが明らかである。
<Steam reforming> Using the roughinate as a raw material without any further treatment, a commercially available nickel-based steam reforming catalyst (22 wt% NiO, 26 wt% A 2 O 3 ,
A reaction was carried out in the same manner and under the same conditions as in Example 1 using 11 wt% MgO, 13 wt% CaO, 16 wt% SiO 2 and 7 wt% K 2 O crushed to about 1 mm. 500 hours after the start of the reaction, the point showing the highest temperature in the reaction tube moved slightly toward the outlet of the reaction tube, but the gas composition at the outlet was close to the thermodynamic equilibrium value at that temperature, indicating that the roughinate was steam reformed. It is clear that it is suitable as a raw material for quality production.

比較例 1 市販のJIS1号灯油(比重0.796、硫黄分
35wtppm、直鎖状炭化水素類24.5wt%、芳香族
分17.0vol.%)をそのまま原料として実施例1と
同様の方法で水蒸気改質反応を行つた。その結
果、反応の初期1時間は順調に反応が進行した
が、反応後約10時間の時点では出口ガス中に末反
応の炭化水素類が検出され、市販のJIS1号灯油は
水蒸気改質原料として不適であつた。
Comparative example 1 Commercially available JIS No. 1 kerosene (specific gravity 0.796, sulfur content
A steam reforming reaction was carried out in the same manner as in Example 1 using raw materials (35wtppm, linear hydrocarbons 24.5wt%, aromatics 17.0vol.%) as raw materials. As a result, the reaction progressed smoothly for the first hour, but after about 10 hours, end-reacted hydrocarbons were detected in the outlet gas, and commercially available JIS No. 1 kerosene was used as a raw material for steam reforming. It was inappropriate.

Claims (1)

【特許請求の範囲】[Claims] 1 原油中に含まれる留分および/または原油中
に含まれる留分を分解して得られる留分で、かつ
触媒と水素による水素化精製処理を受け硫黄含有
量が1wtppm以下で、しかもその留分の中には沸
点が150〜260℃の留分を70wt%以上含有する炭
化水素留分をまず製造し、次に該炭化水素留分の
中から直鎖状炭化水素類を合成ゼオライトによる
吸着法および/または尿素アダクト法により分離
除去して得た留分に、必要量の水を加えてニツケ
ルを5wt%以上含有する水蒸気改質触媒により改
質反応を行わせ、燃料電池に供する水素源を製造
する燃料電池用水素製造方法。
1. A fraction contained in crude oil and/or a fraction obtained by cracking a fraction contained in crude oil, which has been subjected to hydrorefining treatment using a catalyst and hydrogen, and has a sulfur content of 1 wtppm or less. First, a hydrocarbon fraction containing 70wt% or more of a fraction with a boiling point of 150 to 260°C is produced, and then linear hydrocarbons are adsorbed from the hydrocarbon fraction by synthetic zeolite. The necessary amount of water is added to the fraction obtained by separation and removal using the urea adduct method and/or the urea adduct method, and a reforming reaction is performed using a steam reforming catalyst containing 5 wt% or more of nickel, resulting in a hydrogen source for use in fuel cells. A method for producing hydrogen for fuel cells.
JP61181551A 1986-08-01 1986-08-01 Production of hydrogen for fuel cell Granted JPS6340702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181551A JPS6340702A (en) 1986-08-01 1986-08-01 Production of hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181551A JPS6340702A (en) 1986-08-01 1986-08-01 Production of hydrogen for fuel cell

Publications (2)

Publication Number Publication Date
JPS6340702A JPS6340702A (en) 1988-02-22
JPH0513882B2 true JPH0513882B2 (en) 1993-02-23

Family

ID=16102762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181551A Granted JPS6340702A (en) 1986-08-01 1986-08-01 Production of hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JPS6340702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503947A (en) * 2012-12-21 2016-02-08 イナジー・オートモーティブ・システムズ・リサーチ・(ソシエテ・アノニム) Method and system for generating power on a vehicle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243636A1 (en) * 1999-12-17 2002-09-25 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell, fuel oil composition and automobile driving system
JP2001303070A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition and driving system of automobile
JP2001262161A (en) * 2000-03-15 2001-09-26 Idemitsu Kosan Co Ltd Fuel oil for fuel cell
JP4490533B2 (en) * 1999-12-17 2010-06-30 出光興産株式会社 Fuel oil for fuel cells
JP2001214179A (en) * 2000-01-31 2001-08-07 Idemitsu Kosan Co Ltd Fuel oil
JP2001262164A (en) * 2000-03-21 2001-09-26 Idemitsu Kosan Co Ltd Fuel oil for fuel cell
AU2001228855A1 (en) * 2000-01-31 2001-08-14 Idemitsu Kosan Co. Ltd. Fuel oil
JP2001279275A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
WO2001077265A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for fuel cell system
WO2001077268A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for fuel cell system
US6837909B2 (en) 2000-04-10 2005-01-04 Nippon Oil Corporation Fuel for use in a fuel cell system
EP1273650A4 (en) 2000-04-10 2004-10-06 Nippon Oil Corp Fuel for use in fuel cell
JP4598896B2 (en) * 2000-04-10 2010-12-15 Jx日鉱日石エネルギー株式会社 Fuel for fuel cell system
JP2001294874A (en) * 2000-04-13 2001-10-23 Idemitsu Kosan Co Ltd Fuel oil for kerosene-based fuel cell
AU2002221087A1 (en) * 2000-12-08 2002-06-18 Nippon Mitsubishi Oil Corporation Mixed gasoline, and system for storage and/or supply thereof
CN100377988C (en) 2003-06-20 2008-04-02 福特汽车公司 Device and method for reforming a VOC gas
CN105709800B (en) * 2014-12-04 2019-03-19 中国石油化工股份有限公司 A kind of low NOxThe hydrocracking catalyst preparation method of discharge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503947A (en) * 2012-12-21 2016-02-08 イナジー・オートモーティブ・システムズ・リサーチ・(ソシエテ・アノニム) Method and system for generating power on a vehicle

Also Published As

Publication number Publication date
JPS6340702A (en) 1988-02-22

Similar Documents

Publication Publication Date Title
JPH0513882B2 (en)
EP2616525B1 (en) Sulfur removal from heavy hydrocarbon feedstocks by supercritical water treatment followed by undercritical water treatment
CN100534581C (en) Control of hydrogen in hydrogen-containing streams from hydrogen sources
CN102355948B (en) Nickel/lanthana catalyst for producing syngas
US11193072B2 (en) Processing facility to form hydrogen and petrochemicals
JP5301574B2 (en) Method for refining FT synthetic oil and mixed crude oil
US20150136660A1 (en) Process for removing a contaminant from coal tar
KR20220108807A (en) Processing facilities to produce hydrogen and petrochemicals
JP2023504850A (en) Integrated production of hydrogen, petrochemicals and power
US20150136654A1 (en) Process for treatment of pitch from coal tar
TW201247860A (en) Naphtha catalytic rearrangement method
CN105722953B (en) The method for converting coal into chemicals
CN101724455B (en) Combined hydrogenation method
JP2008291146A (en) Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
US3691063A (en) Residual fuel oil hydrocracking process
SU490295A3 (en) Method for hydrotreating asphalt-containing petroleum feedstock
KR20020010656A (en) Hydrocarbon hydroconversion process for the production of hydrogen, hydroprocessed hydrocarbons and electricity
JP2591971B2 (en) Hydrogen production method for distributed fuel cell
JPH04226188A (en) Method for eliminating sulfur from recycled gas in catalytic reforming
JP2006306742A (en) Method for producing methyldecalin
JPH0665602B2 (en) Hydrogen production method for distributed fuel cell
JPH07115842B2 (en) Hydrogen production method for distributed fuel cell
EA020582B1 (en) Method for producing liquid fuel and system for producing liquid fuel
US20150136653A1 (en) Process for pyrolysis and gasification of a coal feed
CN1644652B (en) Process to make a sulphur containing steam cracker feedstock