JPH05135763A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH05135763A
JPH05135763A JP3294079A JP29407991A JPH05135763A JP H05135763 A JPH05135763 A JP H05135763A JP 3294079 A JP3294079 A JP 3294079A JP 29407991 A JP29407991 A JP 29407991A JP H05135763 A JPH05135763 A JP H05135763A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
battery
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3294079A
Other languages
Japanese (ja)
Inventor
Tomoaki Senoo
智昭 妹尾
Koji Yuasa
浩次 湯浅
Yasuko Ito
康子 伊藤
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3294079A priority Critical patent/JPH05135763A/en
Publication of JPH05135763A publication Critical patent/JPH05135763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the capacity of the negative electrode hydrogen storage alloy of a nickel-hydrogen storage battery and improve the overcharge characteristic and charge/discharge cycle life characteristic of the storage battery. CONSTITUTION:In an alkaline storage battery mainly constituted of a hydrogen storage allay and a positive electrode mainly made of a metal oxide, a negative electrode has a quickly cooled and coagulated CaCu5 structure, and it is mainly made of an alloy expressed by a general formula ABxVy, where A is a mixture of rare earth metals, B is mainly made of Ni and one of Co, Mn, Al, Fe, Cu, Cr or a mixture of them, for the range of the atomic number of elements, Ni>=3.4, Co<=1.0, x<=0.6 for Mn, x<=0.5 for Al, x<=0.3 for Fe, x<=1.0 for Cu, x<=0.3 for Cr, the atomic number (y) for V is 0.02<=y<=0.3, and (x+y) is 4.7-5.3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的に水素の吸
蔵・放出が可能な水素吸蔵合金を負極に用いた密閉型ア
ルカリ蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery using a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as a negative electrode.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金を負極とし、正極に
ニッケル極を用いたニッケル・水素蓄電池は、ニッケル
・カドミウム蓄電池より高容量化が可能な二次電池とし
て期待されている。
2. Description of the Related Art Heretofore, a nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode and a nickel electrode as a positive electrode has been expected as a secondary battery capable of higher capacity than a nickel-cadmium storage battery.

【0003】また、この負極用水素吸蔵合金は、従来、
溶解炉中で溶解し、そのまま徐冷もしくは徐冷に近い冷
却法を採用して作製されていた。
Further, this hydrogen storage alloy for negative electrodes has hitherto been
It was manufactured by melting in a melting furnace and then adopting a cooling method as it is or a cooling method similar to that of slow cooling.

【0004】その水素吸蔵合金の代表的な合金としてC
aCu5構造を有するLaNi5合金がある。このLaN
5合金を負極として用いた場合、サイクル寿命は良好
であるが高価であること、常温付近における放電容量が
小さいという問題がある。この問題に対してLaをLa
とCeなどの希土類金属の混合物であるMm(ミッシュ
メタル)に置き換え、比較的安価なMmNi5系合金を
負極として用いることが提案されている。また、Niの
一部をMn,Al,Coなどで置換し、水平平衡圧力を
低下させることにより電極用材料として最適化が図られ
ている。これらの例としてMmNi(5-x-y-z)CoxMn
yzが提案されている(特開昭63−164161号公
報)。ここで、Mmは少なくとも3種以上の希土類金属
の混合物、MはAl,Cr,Fe,Cu,Sn,Sb,
Mo,V,Nb,Ta,Zn,Mg,Zr,Tiのうち
の1種であり、0<x≦2、0<y≦1.5、0<z≦
1.5である。
C is a typical alloy of the hydrogen storage alloy.
There is a LaNi 5 alloy with an aCu 5 structure. This LaN
When the i 5 alloy is used as the negative electrode, there are problems that the cycle life is good but it is expensive, and the discharge capacity near room temperature is small. La for this problem
It has been proposed to replace Mm (Misch metal), which is a mixture of rare earth metals such as and Ce, with a relatively inexpensive MmNi 5 alloy as a negative electrode. Further, by substituting a part of Ni with Mn, Al, Co or the like and lowering the horizontal equilibrium pressure, optimization as an electrode material is attempted. An example of these is MmNi (5-xyz) Co x Mn
y M z has been proposed (Japanese Patent Laid-Open No. 63-164161). Here, Mm is a mixture of at least three kinds of rare earth metals, M is Al, Cr, Fe, Cu, Sn, Sb,
One of Mo, V, Nb, Ta, Zn, Mg, Zr, and Ti, 0 <x ≦ 2, 0 <y ≦ 1.5, 0 <z ≦
It is 1.5.

【0005】[0005]

【発明が解決しようとする課題】従来から知られている
合金の一例としてMmNi3.55Co0.75Mn0.4Al0.3
の組成を有するMnNi5系合金を負極として密閉型電
池を構成した場合、充放電を繰り返すとサイクルの進行
とともに過充電時に正極より発生する酸素ガスによって
負極合金表面に水酸化物が生成されたり、合金中の成分
が一部溶出するため、合金の水素吸蔵能力や酸素ガス吸
収能力が低下して電池内圧力が上昇する結果、安全弁
(通常のニッケル・カドミウム電池と同様に10〜15
kg/cm2で作動)が作動し電解液が漏液することにより
充放電サイクル寿命特性が低下するという問題が発生し
た。
As an example of a conventionally known alloy, MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3
When a sealed battery is constructed by using the MnNi 5 alloy having the composition of as a negative electrode, a hydroxide is generated on the surface of the negative electrode alloy due to oxygen gas generated from the positive electrode during overcharging as the cycle progresses when charging and discharging are repeated, Since some of the components in the alloy are eluted, the hydrogen storage capacity and oxygen gas absorption capacity of the alloy decrease and the internal pressure of the battery rises. As a result, the safety valve (10 to 15% as in a normal nickel-cadmium battery)
(Operating at kg / cm 2 ) and the electrolyte leaks, resulting in a decrease in charge / discharge cycle life characteristics.

【0006】また、1時間率などの急速充電を行うと合
金の水素吸蔵量が十分でないため、電池内圧が上昇し安
全弁が作動する結果、電解液が漏液するという課題があ
った。
Further, when rapid charging such as 1 hour rate is performed, the hydrogen storage capacity of the alloy is not sufficient, so that the internal pressure of the battery rises and the safety valve operates, resulting in the electrolyte leakage.

【0007】本発明は上記の問題点を解決するもので、
特に合金の水素吸蔵量の増大と耐酸化性の向上を図るこ
とにより、急速充電時に電池内圧が上昇することなく、
サイクル寿命に優れたアルカリ蓄電池を得ることを目的
とする。
The present invention solves the above problems.
In particular, by increasing the hydrogen storage capacity of the alloy and improving the oxidation resistance, the battery internal pressure does not rise during rapid charging,
The purpose is to obtain an alkaline storage battery having excellent cycle life.

【0008】[0008]

【課題を解決するための手段】この問題を解決するため
に本発明のアルカリ蓄電池は、急冷凝固させた一般式A
xyで表される水素吸蔵合金を負極として用いたもの
である。
In order to solve this problem, the alkaline storage battery of the present invention has a general formula A which is rapidly solidified.
The hydrogen storage alloy represented by B x V y was used as the negative electrode.

【0009】そして上記一般式ABxyにおいて、Aは
La,Ceなどから選ばれる希土類金属の混合物からな
り、BはNiを主体とし、そのほかにCo,Mn,F
e,Cu,Crのうちの1種以上を含む混合物からな
り、各元素の原子数の範囲については、Niはx≧3.
4、Coはx≦1.0、Mnはx≦0.6、Alはx≦
0.5、Feはx≦0.3、Cuはx≦1.0、Crは
x≦0.3であり、Vはその原子数yが0.02≦y≦
0.3であり、(x+y)は4.7〜5.3である。
In the above general formula AB x V y , A is a mixture of rare earth metals selected from La, Ce, etc., B is mainly Ni, and Co, Mn, F
e, Cu, Cr, which is a mixture containing at least one of the elements, and Ni is x ≧ 3.
4, Co x ≦ 1.0, Mn x ≦ 0.6, Al x ≦
0.5, Fe is x ≦ 0.3, Cu is x ≦ 1.0, Cr is x ≦ 0.3, and V has an atomic number y of 0.02 ≦ y ≦.
It is 0.3 and (x + y) is 4.7-5.3.

【0010】[0010]

【作用】本発明の水素吸蔵合金は、Vを添加した合金組
成にすることにより合金の水素吸蔵量が増大する。ま
た、急冷凝固によって合金を作製することにより、合金
表面の耐酸化性が向上する。このVを添加した合金組成
と急冷凝固との組み合わせにより、急速充電時の電池内
圧を低減でき、また充放電サイクルに伴う合金の酸化に
よる水素吸蔵能力の低下が抑制されるので充放電サイク
ル寿命も向上させることができる。
In the hydrogen storage alloy of the present invention, the hydrogen storage amount of the alloy increases when the alloy composition is added with V. Further, by producing the alloy by rapid solidification, the oxidation resistance of the alloy surface is improved. The combination of the alloy composition containing V and the rapid solidification can reduce the internal pressure of the battery at the time of rapid charging, and also suppress the reduction of the hydrogen storage capacity due to the oxidation of the alloy due to the charging / discharging cycle, so that the charging / discharging cycle life is also increased. Can be improved.

【0011】[0011]

【実施例】本発明合金の一般式ABxy中のAとして、
市販のミッシュメタルMm(La:15重量%、Ce:
50重量%、Nd:20重量%、他の希土類金属:15
重量%)、Bとしてニッケル(純度99%以上)、コバ
ルト(純度99%以上)、マンガン(純度99%以上)
とアルミニウム,鉄,銅などのうちの1種を選択し、V
(純度99%以上)と各試料を一定の組成比に秤量、混
合しアーク溶解炉に入れて10-4〜10-5Torrまで減圧
した後、アルゴンガス雰囲気中(減圧状態)でアーク放
電して加熱溶解した。この加熱溶解を4回繰り返し行っ
て、(表1)に示すような記号A〜Lの12種類の組成
の合金を作製した。
EXAMPLES As A in the general formula AB x V y of the alloy of the present invention,
Commercially available misch metal Mm (La: 15% by weight, Ce:
50% by weight, Nd: 20% by weight, other rare earth metals: 15
% By weight), B as nickel (purity 99% or higher), cobalt (purity 99% or higher), manganese (purity 99% or higher)
And select one of aluminum, iron, copper, etc.
(Purity of 99% or more) and each sample were weighed and mixed in a constant composition ratio, put in an arc melting furnace, decompressed to 10 -4 to 10 -5 Torr, and then arc-discharged in an argon gas atmosphere (decompressed state). It melted by heating. This heat melting was repeated 4 times to prepare alloys of 12 kinds of compositions with symbols A to L as shown in (Table 1).

【0012】[0012]

【表1】 [Table 1]

【0013】以下、急冷凝固の具体例として、超急冷ロ
ール法を用いた場合について説明する。まず、上記のア
ーク溶解法で作製した合金を5〜15mm程度の小片に砕
いた後、石英ノズル(ノズル穴1.0mm)の中に入れ、
石英ノズルを超急冷ロール装置に設置し、装置内をアル
ゴンガスで置換した後に高周波加熱コイルにより加熱
し、合金を溶解した。合金が溶解した後、石英ノズル内
をアルゴンガスで加圧し、高速回転している銅製ローラ
ーの上に合金溶湯を噴出させ、ローラー面上で急冷させ
て水素吸蔵合金C〜Lを得た。これらの水素吸蔵合金の
うち合金C〜Hは本発明合金であり、合金I〜Lは本発
明とは組成の異なる比較合金である。
As a specific example of the rapid solidification, the case of using the ultra-quick roll method will be described below. First, after crushing the alloy produced by the above arc melting method into small pieces of about 5 to 15 mm, they are put into a quartz nozzle (nozzle hole 1.0 mm),
The quartz nozzle was installed in an ultra-quenching roll device, the inside of the device was replaced with argon gas, and then heated by a high-frequency heating coil to melt the alloy. After the alloy was melted, the inside of the quartz nozzle was pressurized with argon gas, the molten alloy was jetted onto a high-speed rotating copper roller, and rapidly cooled on the roller surface to obtain hydrogen storage alloys C to L. Among these hydrogen storage alloys, alloys C to H are alloys of the present invention, and alloys I to L are comparative alloys having different compositions from those of the present invention.

【0014】また、比較例としてアーク溶解法により作
成したMmNi3.6Co0.7Mn0.4Al0.3合金を比較合
金Aとし、MmNi3.6Co0.7Mn0.3Al0.30.1
金を比較合金Bとした。
Further, the MmNi 3.6 Co 0.7 Mn 0.4 Al 0.3 alloy was prepared by arc melting method as a comparative example and comparative alloys A, was compared alloy B of MmNi 3.6 Co 0.7 Mn 0.3 Al 0.3 V 0.1 alloy.

【0015】上記の12種類の水素吸蔵合金を用い、以
下の試験を行った。第1にV添加による放電容量への効
果を調べるため、開放式H型セルにより水素吸蔵合金の
放電容量を測定した。まず、負極は合金1gとNi微粉
末3gをポリエチレンにより結着させることにより作製
した。この負極と過剰の容量を有するニッケル正極をH
型セルにセットし、アルカリ電解液で充分に満たした状
態で充放電試験を行った。充放電試験は、電流値100
mAで5.5時間充電を行った後、電流値50mAで電圧
0.8Vまで放電したときの電気量を、その合金の放電
容量(mAh/g)とした。
The following tests were conducted using the above 12 kinds of hydrogen storage alloys. First, in order to investigate the effect of V addition on the discharge capacity, the discharge capacity of the hydrogen storage alloy was measured by an open H-type cell. First, the negative electrode was prepared by binding 1 g of the alloy and 3 g of Ni fine powder with polyethylene. This negative electrode and a nickel positive electrode having an excessive capacity are mixed with H
The battery was set in a mold cell and a charge / discharge test was performed in a state where the cell was sufficiently filled with an alkaline electrolyte. Charge / discharge test is conducted at a current value of
After the battery was charged with mA for 5.5 hours, the quantity of electricity when discharged at a current value of 50 mA to a voltage of 0.8 V was taken as the discharge capacity (mAh / g) of the alloy.

【0016】第2にこれらの合金を用いて密閉電池を作
製し、電池の過充電特性を調べた。まず、(表1)に示
した各組成の合金を粒径38μm以下に粉砕し、ポリビ
ニルアルコール1重量%水溶液を混合してペースト状に
した。次に、この合金ペーストを発泡状ニッケル多孔体
に充填し、乾燥後、80℃で比重1.30の水酸化カリ
ウム水溶液中に12時間浸漬し、水洗,乾燥した後、加
圧して電極とした。(表1)に示した各組成の合金を用
いた負極と、公知の発泡メタル式ニッケル正極を用いて
正極容量規制(容量1000mAh)のAAサイズ密閉型
ニッケル・水素蓄電池を構成した。
Secondly, a sealed battery was manufactured using these alloys, and the overcharge characteristics of the battery were investigated. First, alloys having the respective compositions shown in (Table 1) were crushed to a particle size of 38 μm or less, and a 1% by weight polyvinyl alcohol aqueous solution was mixed to form a paste. Next, this alloy paste was filled in a foamed nickel porous body, dried, immersed in an aqueous potassium hydroxide solution having a specific gravity of 1.30 at 80 ° C. for 12 hours, washed with water, dried, and pressed to form an electrode. .. An AA size sealed nickel-hydrogen storage battery having a positive electrode capacity regulation (capacity 1000 mAh) was constructed by using a negative electrode using the alloy of each composition shown in (Table 1) and a known foam metal nickel positive electrode.

【0017】電池構成後、20℃で0.1CmAで15時
間充電し、0.2CmAで放電した後、電池内圧力を測定
するために電池ケース底部に穴を開け、圧力センサーを
取り付けて1CmAで1.5時間充電を行い、この充電時
の電池内圧の測定を行った。
After the battery was constructed, it was charged at 0.1 ° C mA for 15 hours at 20 ° C and discharged at 0.2 ° C mA. Then, a hole was made at the bottom of the battery case to measure the internal pressure of the battery, and a pressure sensor was attached to the battery at 1 ° C mA. The battery was charged for 1.5 hours, and the internal pressure of the battery during this charging was measured.

【0018】第3に、上記と同様の方法で構成した電池
の充放電サイクル寿命試験を行った。充放電試験は45
℃において、充電が1CmAで1.5時間、放電が1CmAで
放電電圧が0.8Vまでの条件で行った。
Thirdly, a charge / discharge cycle life test of a battery constructed by the same method as described above was conducted. 45 charge / discharge test
At a temperature of 1 ° C., charging was performed at 1 CmA for 1.5 hours, discharging was performed at 1 CmA and a discharging voltage was 0.8 V.

【0019】半電池タイプのH型セルによる合金極の放
電容量の実験結果を(表2)に示す。(表2)に示した
ように、Vを添加していない比較合金Aは240mAh/
gであったが、Vを添加した比較合金Bおよび本発明合
金C〜Hでは290mAh/g以上であった。このことか
ら、V添加は水素吸蔵量を増大させる効果があり、この
合金を用いることにより高容量電池が可能になると考え
られる。また、合金容量が240mAh/gの場合に、1
000mAhの電池を構成すると、正極に対する負極の容
量が充分でないため急速充電が不可能となるが、合金容
量が290mAh/g以上の場合には、正極に対する負極
の容量が充分となり急速充電が可能となると考えられ
る。
The experimental results of the discharge capacity of the alloy electrode by the H-cell of the half-cell type are shown in (Table 2). As shown in (Table 2), the comparative alloy A to which V was not added was 240 mAh /
Although it was g, it was 290 mAh / g or more in Comparative Alloy B to which V was added and Alloys C to H of the present invention. From this, it is considered that the addition of V has an effect of increasing the hydrogen storage amount, and the use of this alloy enables a high capacity battery. If the alloy capacity is 240 mAh / g, 1
When a battery of 000mAh is constructed, the capacity of the negative electrode with respect to the positive electrode is not sufficient to make rapid charging impossible, but when the alloy capacity is 290mAh / g or more, the capacity of the negative electrode with respect to the positive electrode is sufficient and rapid charging is possible. It is considered to be.

【0020】次に、半電池タイプのH型セルによりVの
添加量について検討した結果を示す。検討に用いた水素
吸蔵合金は急冷凝固法により作製し、その組成はMmN
3. 6Co0.7Mn0.4Al0.3-yyとして原子数yの値
を0〜0.3の範囲で変化させた。それぞれの合金の水
素吸蔵能力をVの置換量yと放電容量の関係から調べ
た。Vの置換量yと放電容量の関係を図1に示した。図
1に示したようにVを置換していない合金(MmNi
3.6Co0.7Mn0.4Al0.3)を用いた放電容量は240
mAh/gであった。しかし、Vを0.02原子だけAl
と置換することにより放電容量は290mAh/gになっ
た。さらに、0.3原子数までのAlのVへの置換は放
電容量が300mAh/g以上の優れた特性を示した。し
かし、Vの置換原子数が0.4になると放電容量が15
0mAh/gとなった。これは過剰のV置換が合金の均一
性を低下させ、水素吸蔵量の低下をもたらしたと考えら
れる。したがって、AlをVに置換する場合、Vの置換
原子数の範囲は0.02〜0.3の範囲が好ましい。な
お、Ni,Co,Mn,Fe,Cu,Crの各元素をV
に置換する場合においても、AlをVに置換した場合と
同様な傾向が得られた。
Next, the results of studying the amount of V added by a half-cell type H-type cell will be shown. The hydrogen storage alloy used in the study was produced by the rapid solidification method and its composition was MmN.
i 3. and the value of 6 Co 0.7 Mn 0.4 Al 0.3- y V y as atomic number y varied from 0 to 0.3. The hydrogen storage capacity of each alloy was investigated from the relationship between the V substitution amount y and the discharge capacity. The relationship between the substitution amount y of V and the discharge capacity is shown in FIG. As shown in FIG. 1, an alloy in which V is not substituted (MmNi
The discharge capacity using 3.6 Co 0.7 Mn 0.4 Al 0.3 ) is 240
It was mAh / g. However, only 0.02 atoms of V are Al
When replaced with, the discharge capacity became 290 mAh / g. Further, the substitution of Al for V up to 0.3 atom has an excellent characteristic that the discharge capacity is 300 mAh / g or more. However, when the number of substituted atoms of V becomes 0.4, the discharge capacity becomes 15
It became 0 mAh / g. This is presumably because excessive V substitution deteriorated the uniformity of the alloy and resulted in a decrease in hydrogen storage capacity. Therefore, when substituting V for Al, the range of the number of substituting atoms for V is preferably 0.02 to 0.3. In addition, each element of Ni, Co, Mn, Fe, Cu, Cr is V
The same tendency as in the case of substituting V for Al was obtained when substituting for V.

【0021】次に、半電池タイプのH型セルによりV以
外の各元素についての最適組成範囲を調べた結果を示
す。負極に用いる水素吸蔵合金の組成を(表1)の比較
合金I〜Lのように変化させ、本発明合金Cと比較合金
I〜Lについて合金組成と放電容量との関係を調べた結
果を(表2)に示した。電極の構成条件ならびに充放電
試験条件等は上記に示した方法と同様とした。合金組成
が比較合金H〜KのようにNiが3.3(比較合金
I)、Coが1.1Mnが0.7(比較合金J)、Mn
が0.7(比較合金K)、Alが0.6(比較合金L)
である合金を用いた場合、Vを含んでいるにもかかわら
ず、放電容量は250mAh/g以下となった。
Next, the results of examining the optimum composition range for each element other than V using a half-cell type H-type cell will be shown. The results of examining the relationship between the alloy composition and the discharge capacity of the alloy C of the present invention and the comparative alloys IL by changing the composition of the hydrogen storage alloy used for the negative electrode as in Comparative alloys IL of Table 1 The results are shown in Table 2). The electrode configuration conditions and charge / discharge test conditions were the same as those described above. As for the alloy compositions of Comparative Alloys H to K, Ni is 3.3 (Comparative Alloy I), Co is 1.1 Mn is 0.7 (Comparative Alloy J), and Mn is Mn.
Is 0.7 (Comparative Alloy K), Al is 0.6 (Comparative Alloy L)
When the alloy of No. 1 was used, the discharge capacity was 250 mAh / g or less even though V was contained.

【0022】[0022]

【表2】 [Table 2]

【0023】また、(表2)には示さなかったがFe,
CuおよびCrを添加した場合も同様に原子数が0.
4,1.1,0.4である合金を負極に用いると、放電
容量は250mAh/g以下となった。したがって、最適
の組成範囲としてはNiは3.4以上、Coは1.0以
下、Mnは0.6以下、Alは0.5以下、Feは0.
3以下、Cuは1.0以下、Crは0.3以下が好まし
い。次に、各合金を用いた電池の電池内圧力の経時変化
を図2に示した。図2から明らかなように比較合金Aの
負極を用いた電池の電池内圧力は1CmAを行った場合、
充電末期には20kg/cm2以上となり著しく増加した。
これは、負極の水素吸蔵合金の水素吸蔵能力が低いため
に充電末期に水素ガスが多量に発生したためと考えられ
る。
Although not shown in (Table 2), Fe,
Similarly, when Cu and Cr are added, the number of atoms is 0.
When an alloy of 4,1.1,0.4 was used for the negative electrode, the discharge capacity was 250 mAh / g or less. Therefore, as an optimum composition range, Ni is at least 3.4, Co is at most 1.0, Mn is at most 0.6, Al is at most 0.5, and Fe is at most 0.
3 or less, Cu is preferably 1.0 or less, and Cr is preferably 0.3 or less. Next, FIG. 2 shows changes with time in the battery internal pressure of the battery using each alloy. As is apparent from FIG. 2, when the battery internal pressure of the battery using the negative electrode of Comparative Alloy A was 1 CmA,
At the end of charging, it increased to over 20 kg / cm 2 and increased remarkably.
It is considered that this is because a large amount of hydrogen gas was generated at the end of charging due to the low hydrogen storage capacity of the hydrogen storage alloy of the negative electrode.

【0024】これに対し、比較合金Bおよび本発明の合
金C〜Hを用いた電池では、充電末期の電池内圧力は1
0kg/cm2以下であった。これは、V添加によって水素
吸蔵能力が増大したことにより、充電末期の電池内圧力
の上昇が抑えられたためであると考えられる。
On the other hand, in the batteries using the comparative alloy B and the alloys C to H of the present invention, the internal pressure of the battery at the end of charging was 1.
It was 0 kg / cm 2 or less. It is considered that this is because the increase in hydrogen storage capacity due to the addition of V suppressed the increase in the battery internal pressure at the end of charging.

【0025】充放電サイクル試験の結果を図3に示す。
図3から明らかなように、従来例の合金Aを用いた電池
では250サイクルで容量が低下し、合金Bを用いた電
池では400サイクルで容量が低下しているが、急冷凝
固法によって作製した合金C〜Hを用いた電池では80
0サイクルを越えても容量の劣化は全く見られなかっ
た。これは、急冷凝固法により耐酸化性が向上したた
め、充電末期の酸素ガス吸収能力の低下が防止されたた
めであると考えられる。
The results of the charge / discharge cycle test are shown in FIG.
As is clear from FIG. 3, the capacity of the battery using the alloy A of the conventional example decreased at 250 cycles, and the capacity of the battery using the alloy B decreased at 400 cycles. However, the battery was manufactured by the rapid solidification method. 80 for batteries using alloys C to H
No deterioration of capacity was observed even after 0 cycles. It is considered that this is because the rapid solidification method improved the oxidation resistance and prevented the decrease in the oxygen gas absorption capacity at the end of charging.

【0026】[0026]

【発明の効果】以上のように急冷凝固させたABxy
示す合金は、水素平衡圧が低く水素吸蔵量が増大し、か
つ耐食性にも優れるため、急速充電時に電池内圧力が上
昇せず、またサイクル寿命にも優れるアルカリ蓄電池が
提供できる。
The alloy AB x V y rapidly solidified as described above has a low hydrogen equilibrium pressure, an increased hydrogen storage capacity, and excellent corrosion resistance. Therefore, the internal pressure of the battery increases during rapid charging. In addition, an alkaline storage battery having excellent cycle life can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金のVの置換量yと放電容量の関係を
示す図
FIG. 1 is a diagram showing a relationship between a substitution amount y of V and a discharge capacity of an alloy of the present invention.

【図2】本発明合金と比較合金の急速充電時における電
池内圧力の試験結果を示す図
FIG. 2 is a diagram showing test results of battery internal pressure during rapid charging of the alloys of the present invention and comparative alloys.

【図3】本発明合金と比較合金の充放電サイクルと放電
容量の試験結果を示す図
FIG. 3 is a diagram showing test results of charge / discharge cycles and discharge capacities of the alloy of the present invention and the comparative alloy.

フロントページの続き (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Isao Matsumoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な水素吸蔵合金を主たる構成材料とする負極
と、アルカリ電解液と、セパレータとからなり、前記負
極は急冷凝固したCaCu5構造を有し、一般式ABx
yで表される合金を主たる構成材料としたことを特徴と
するアルカリ蓄電池。ただし、前記一般式中、Aは希土
類金属の混合物からなり、BはNiを主体とし、そのほ
かにCo,Mn,Al,Fe,Cu,Crのうちの1種
以上を含む混合物からなり、各元素の原子数の範囲につ
いては、Niはx≧3.4、Coはx≦1.0、Mnは
x≦0.6、Alはx≦0.5、Feはx≦0.3、C
uはx≦1.0、Crはx≦0.3であり、Vはその原
子数yが0.02≦y≦0.3であり、(x+y)は
4.7〜5.3である。
1. A positive electrode whose main constituent material is a metal oxide, a negative electrode whose main constituent material is a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as an active material, and an alkaline electrolyte. And a separator, the negative electrode has a rapidly solidified CaCu 5 structure, and has the general formula AB x V
An alkaline storage battery characterized by using an alloy represented by y as a main constituent material. However, in the above general formula, A is a mixture of rare earth metals, B is a mixture containing Ni as a main component and one or more of Co, Mn, Al, Fe, Cu and Cr. Regarding the range of the number of atoms, Ni is x ≧ 3.4, Co is x ≦ 1.0, Mn is x ≦ 0.6, Al is x ≦ 0.5, Fe is x ≦ 0.3, and C is
u is x ≦ 1.0, Cr is x ≦ 0.3, V has an atomic number y of 0.02 ≦ y ≦ 0.3, and (x + y) is 4.7 to 5.3. ..
【請求項2】急冷凝固が、超急冷ロール法,ガスアトマ
イズ法,遠心噴霧法のうちのいずれかによる請求項1記
載のアルカリ蓄電池。
2. The alkaline storage battery according to claim 1, wherein the rapid solidification is performed by any one of an ultra-quenching roll method, a gas atomizing method and a centrifugal atomizing method.
JP3294079A 1991-11-11 1991-11-11 Alkaline storage battery Pending JPH05135763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294079A JPH05135763A (en) 1991-11-11 1991-11-11 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294079A JPH05135763A (en) 1991-11-11 1991-11-11 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH05135763A true JPH05135763A (en) 1993-06-01

Family

ID=17803019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294079A Pending JPH05135763A (en) 1991-11-11 1991-11-11 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH05135763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171727B1 (en) 1998-02-16 2001-01-09 Canon Kabushiki Kaisha Alkaline secondary battery and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171727B1 (en) 1998-02-16 2001-01-09 Canon Kabushiki Kaisha Alkaline secondary battery and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP0293660B1 (en) Hydrogen storage electrodes
JPH0586029B2 (en)
JPS6191863A (en) Sealed alkaline storage battery
JPH0719599B2 (en) Storage battery electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH05156382A (en) Manufacture of hydrogen storage alloy for alkali storage battery
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH05135763A (en) Alkaline storage battery
US5268143A (en) Method of producing hydrogen-storing alloy from a zirconium-tin starting material
JP2004218017A (en) Hydrogen storage alloy
JPH0675398B2 (en) Sealed alkaline storage battery
JPH0949034A (en) Production of hydrogen storage alloy
JPH0265060A (en) Hydrogen storage electrode
JP3301879B2 (en) Hydrogen storage alloy electrode for sealed metal-hydride alkaline storage batteries
JPH06145849A (en) Hydrogen storage alloy electrode
JP2679441B2 (en) Nickel-metal hydride battery
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2000129379A (en) Hydrogen storage alloy
JPH0794176A (en) Hydrogen storage electrode
JP3351227B2 (en) Hydrogen storage alloy powder for battery and its manufacturing method
JPH07320730A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JPH0466633A (en) Hydrogen storage ni-zr series alloy
JPH0949046A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0598374A (en) Hydrogen storage alloy for ni-hydrogen battery and hydrogen storage alloy electrode