JPH0466633A - Hydrogen storage ni-zr series alloy - Google Patents

Hydrogen storage ni-zr series alloy

Info

Publication number
JPH0466633A
JPH0466633A JP2176872A JP17687290A JPH0466633A JP H0466633 A JPH0466633 A JP H0466633A JP 2176872 A JP2176872 A JP 2176872A JP 17687290 A JP17687290 A JP 17687290A JP H0466633 A JPH0466633 A JP H0466633A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage battery
hydrogen
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2176872A
Other languages
Japanese (ja)
Other versions
JP2762713B2 (en
Inventor
Hidekazu Doi
土井 英和
Tatsumori Yabuki
矢吹 立衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2176872A priority Critical patent/JP2762713B2/en
Publication of JPH0466633A publication Critical patent/JPH0466633A/en
Application granted granted Critical
Publication of JP2762713B2 publication Critical patent/JP2762713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To offer a hydrogen storage alloy, excellent in corrosion resistance to an alkaline electrolyte, decreasing the self-discharge of a storage battery and securing a high discharging capacity over a long cycle life by limiting the compsn. of an Ni-Zr series alloy. CONSTITUTION:The above alloy having a compsn. contg., by weight, 10 to 37% Zr, 5 to 25% Ti, 4 to 20% Mn, 0.01 to 15% Fe, 0.001 to 0.5% Pt or Au, 0.1 to 15% V and the balance Ni with inevitable impurities and having and MgZn2 type crystalline structure is prepd. If required, 1 to 7% Cu and/or 0.05 to 7% Cr is added to the above compsn. In this way, this alloy has excellent corrosion resistance to an alkaline electrolyte, decreases the self-discharge of a storage battery when it is used particularly as the active material in the negative pole in a closed Ni-hydrogen storage battery, and can furthermore secure a high discharging capacity over long cycle life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、M g Z n 2型結晶構造、すなわち
六方晶C14型結晶構造をもち、特に密閉型Ni水素蓄
電池の負極活物質として用いるのに適した水素吸蔵Ni
−Zr系合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to MgZn having a 2-type crystal structure, that is, a hexagonal C14-type crystal structure, and which is particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. Hydrogen storage Ni suitable for
-This relates to Zr-based alloys.

〔従来の技術〕[Conventional technology]

一般に、密閉型Ni  −水素蓄電池が、水素吸蔵合金
を活物質として用いてなる負極と、Ni正極と、さらに
セパレータおよびアルカリ電解液で構成され、かつ前記
負極を構成する水素吸蔵合金には、 (a)  室温付近での水素吸蔵・放出能が大きい。
Generally, a sealed Ni-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, a Ni positive electrode, a separator, and an alkaline electrolyte, and the hydrogen storage alloy constituting the negative electrode includes: a) High hydrogen absorption and release ability near room temperature.

(b)  PCT曲線における室温付近の温度でのプラ
トー圧に相当する平衡水素解離圧が比較的低(A(5気
圧以下)。
(b) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature in the PCT curve is relatively low (A (5 atm or less).

(C)  アルカリ電解液中で耐食性および耐久性(耐
劣化性)がある。
(C) Corrosion resistance and durability (deterioration resistance) in alkaline electrolytes.

(d)  水素酸化能(触媒作用)が大きい。(d) High hydrogen oxidation ability (catalytic action).

(e)  水素の吸蔵・放出の繰返しに伴う微粉化が起
り難い。
(e) Pulverization due to repeated absorption and release of hydrogen is unlikely to occur.

(f)  無(低)公害である。(f) No (low) pollution.

(g)  低コストである。(g) It is low cost.

以上(a)〜(g)の性質を具備することが望まれ、さ
らにこのような性質を具備した水素吸蔵合金を負極の活
物質として用いてなる密閉型Ni  −水素蓄電池は、
大きな放電容量、長い充・放電サイクル寿命、すぐれた
急速光・放電特性、および低自己放電などの好ましい性
能を発揮するようになることも良く知られるところであ
る。
A sealed Ni-hydrogen storage battery is desired to have the properties (a) to (g) above, and further uses a hydrogen storage alloy having such properties as the active material of the negative electrode.
It is also well known that they exhibit favorable performances such as large discharge capacity, long charge/discharge cycle life, excellent rapid light/discharge characteristics, and low self-discharge.

したがって、特に密閉型Ni  −水素蓄電池の負極を
構成する活物質として用いるのに適した水素吸蔵合金の
開発が盛んに行なわれ、例えば特開昭61−45583
号公報に記載されるM g Z n 2型結晶構造、す
なわち六方晶C14型結晶構造をもった水素吸蔵合金は
じめ、多数の水素吸蔵合金が提案されている。
Therefore, the development of hydrogen storage alloys particularly suitable for use as active materials constituting the negative electrode of sealed Ni-hydrogen storage batteries has been actively carried out.
A large number of hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a M g Z n 2 type crystal structure, that is, a hexagonal C14 type crystal structure, described in the above publication.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、すでに提案されているいずれの水素吸蔵合金も
密閉型Ni  −水素蓄電池の負極活物質として用いる
場合に要求される上記の性質をすべて満足して具備する
ものではなく、より一層の開発が望まれているのが現状
である。
However, none of the hydrogen storage alloys that have already been proposed satisfies all of the above properties required for use as negative electrode active materials in sealed Ni-hydrogen storage batteries, and further development is desired. The current situation is that

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、特に密
閉型Ni  −水素蓄電池の負極活物質として用いるの
に適した水素吸蔵合金を開発すべく研究を行なった結果
、重量%で(以下%は重量%を示す)、 Zr:lO〜37%、  Ti:5〜25%、Mn :
 4〜20%、  F e : 0.01〜15%、P
tまたはAu : 0.001〜0.5%、■:0゜1
〜15%、 を含有し、さらに必要に応じて、 Cu:1〜7%、   Cr:0.05〜7%、のうち
の1種または2種を含有し、残りかNiと不可避不純物
からなる組成を有する水素吸蔵Ni−Zr系合金は、M
gZn2型結晶構造(六方晶C14型結晶構造)をもち
、密閉型Ni  −水素蓄電池の負極活物質として用い
る場合に要求される上記(a)〜(g)の性質を十分満
足した状態で具備し、したがってこれを負極活物質とし
て用いた密閉型Ni−  −水素蓄電池は、大きなエネ
ルギー密度と電気容量をもち、かつ長いサイクル寿命を
示すようになるほか、自己放電が小さくなり、さらに高
率光・放電特性にもすぐれ、無公害および低コストと合
わせて、すぐれた性能を発揮するようになるという研究
結果を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a hydrogen storage alloy particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. % indicates weight %), Zr: IO ~ 37%, Ti: 5 ~ 25%, Mn:
4-20%, Fe: 0.01-15%, P
t or Au: 0.001-0.5%, ■: 0°1
~15%, and further contains one or two of Cu: 1~7%, Cr: 0.05~7%, as necessary, and the rest consists of Ni and inevitable impurities. The hydrogen storage Ni-Zr alloy having the composition M
gZn has a 2-type crystal structure (hexagonal C14-type crystal structure) and fully satisfies the above properties (a) to (g) required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery. Therefore, a sealed Ni--hydrogen storage battery using this as the negative electrode active material has high energy density and electric capacity, and has a long cycle life. Research has shown that it has excellent discharge characteristics, is non-polluting and low cost, and exhibits excellent performance.

この発明は、上記研究結果にもとづいてなされたもので
あって、以下に上記水素吸蔵Ni−Zr系合金の成分組
成を上記の通りに限定した理由を説明する。
This invention has been made based on the above research results, and the reason why the composition of the hydrogen storage Ni-Zr alloy is limited as described above will be explained below.

(a)  ZrおよびTi これらの成分には、共存した状態で合金に望ましい水素
吸蔵・放出特性を具備せしめると共に、室温における平
衡水素解離圧(プラトー圧)を、例えば5気圧以下に低
下させる作用があるが、その含有量がそれぞれZr:1
0%未満およびTi =5%未満では前記作用に所望の
効果が得られず、一方Zrの含有量が37%を越えると
、放電容量の水素解離圧依存の点では問題はないが、水
素吸蔵・放出能か低下するようになり、またTiの含有
量が25%を越えると、平衡水素解離圧が例えば5気圧
以上に上昇するようになり、大きな放電容量を確保する
ためには高い水素解離圧を必要とするようになって蓄電
池として好ましくないものとなることから、その含有量
を、それぞれZr:10〜37%、Ti:5〜25%と
定めた。
(a) Zr and Ti These components, when coexisting, provide the alloy with desirable hydrogen storage and desorption properties, and also have the effect of lowering the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less. However, the content is Zr:1
When the Zr content is less than 0% and Ti is less than 5%, the desired effect cannot be obtained, while when the Zr content exceeds 37%, there is no problem in terms of the hydrogen dissociation pressure dependence of the discharge capacity, but the hydrogen absorption・If the release capacity decreases and the Ti content exceeds 25%, the equilibrium hydrogen dissociation pressure will rise to, for example, 5 atm or more, and in order to secure a large discharge capacity, high hydrogen dissociation is required. Since this requires pressure and is not desirable as a storage battery, the contents were determined to be Zr: 10-37% and Ti: 5-25%, respectively.

(b)  Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質として用いた場合に自己放
電を抑制する作用があるが、その含有量が4%未満では
前記作用に所望の効果が得られず、一方その含有量が2
0%を越えると、水素吸蔵・放出特性が損なわれるよう
になることから、その含有量を4〜20%と定めた。
(b) Mn The Mn component not only improves hydrogen storage and release ability, but also improves the corrosion resistance and durability of the alloy in alkaline electrolytes, and suppresses self-discharge when used as a negative electrode active material in storage batteries. However, if its content is less than 4%, the desired effect cannot be obtained; on the other hand, if its content is less than 2%,
If it exceeds 0%, the hydrogen storage and release characteristics will be impaired, so the content was set at 4 to 20%.

(c)  Fe Fe成分には、蓄電池の負極活物質として用いる場合な
どの粉末化に際して、形成された粉末を整粒化する作用
があるが、その含有量が0.01%未満では前記作用に
所望の効果が得られず、一方その含有量が15%を越え
ると耐食性が低下し、蓄電池に適用した場合、これの自
己放電が進行するようになることから、その含有量を0
.01〜15%と定めた。
(c) Fe The Fe component has the effect of sizing the formed powder during powdering when used as a negative electrode active material of a storage battery, but if its content is less than 0.01%, the above effect will not be achieved. If the desired effect is not obtained, and if the content exceeds 15%, the corrosion resistance will decrease, and when applied to a storage battery, self-discharge will progress, so the content should be reduced to 0.
.. It was set at 01-15%.

(d)  PtまたはAu これらの成分には、水素吸蔵能を一段と増大させ、もっ
てNi  −水素蓄電池の負極活物質として用いた場合
に放電容量を増加させて、その使用寿命の著しい延命化
に寄与する作用があるが、その含有量がそれぞれ0.0
01%未満では前記作用に所望の効果か得られず、2方
それぞれ0.5%を越えて含有させても前記作用により
一層の向上効果が得られず、経済性を考慮して、その含
有量をそれぞれ0.001〜0 、596と定めた。
(d) Pt or Au These components further increase the hydrogen storage capacity, thereby increasing the discharge capacity when used as the negative electrode active material of a Ni-hydrogen storage battery, contributing to a significant extension of its service life. However, the content is 0.0
If the content is less than 0.01%, the desired effect cannot be obtained in the above action, and even if the content exceeds 0.5% on each side, the effect of further improving the action cannot be obtained. The amounts were determined to be 0.001 to 0.596, respectively.

(e)  V 上記のように密閉型Ni  −水素蓄電池には、室温に
おける平衡水素解離圧が過度に高くなく (例えば5気
圧以下)、かつ水素吸蔵・放出能ができるだけ大きいこ
とが望まれるが、■成分には、このような水素吸蔵・放
出能の増大および平衡水素圧の適正化に寄与する作用が
あるが、その含有量が0.1%未満では前記作用に所望
の効果が滉られず、一方その含有量力月5%を越えると
、平衡水素圧が高くなりすぎるようになるほか、電解液
中に溶は出して、自己放電が助長されるようになること
から、その含有量を0.1〜15%と定めた。
(e) V As mentioned above, it is desirable for a sealed Ni-hydrogen storage battery to have an equilibrium hydrogen dissociation pressure at room temperature that is not excessively high (for example, 5 atm or less) and a hydrogen storage/release capacity that is as large as possible. ■The component has the effect of contributing to increasing the hydrogen storage/desorption capacity and optimizing the equilibrium hydrogen pressure, but if the content is less than 0.1%, the desired effect will not be achieved. On the other hand, if the content exceeds 5%, the equilibrium hydrogen pressure will become too high, and it will dissolve into the electrolyte, promoting self-discharge. .1 to 15%.

(f’)  Cu Cu成分には、水素吸蔵・放出能の増大および平衡水素
圧の適正化を一段と促進する作用があるので、必要に応
じて含有されるが、その含有量が1%未満では前記作用
に所望の向上効果が得られず、一方その含有量が7%を
越えると、水素吸蔵・放出能の低下を招き、放電容量が
低下するようになることから、その含有量を1〜7%と
定めた。
(f') Cu The Cu component has the effect of further increasing the hydrogen storage/desorption capacity and optimizing the equilibrium hydrogen pressure, so it is included as necessary, but if the content is less than 1%, The desired effect of improving the above-mentioned action cannot be obtained, and on the other hand, if the content exceeds 7%, the hydrogen absorption/desorption ability will decrease and the discharge capacity will decrease. It was set at 7%.

(g)  Cr Cr成分には、水素吸蔵・放出能を低下させることなく
、アルカリ電解液中での耐食性を一段と向上させる作用
があるので、必要に応じて含有されるが、その含有量が
0.05%未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が7%を越えると、水素吸蔵・放出
能が低下するようになることから、その含有量を0.0
5〜7%と定めた。
(g) Cr The Cr component has the effect of further improving corrosion resistance in an alkaline electrolyte without reducing the hydrogen absorption/desorption ability, so it is included as necessary, but if the content is 0. If the content is less than 0.05%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 7%, the hydrogen storage and desorption ability will decrease.
It was set at 5-7%.

〔実 施 例〕〔Example〕

つぎに、この発明の水素吸蔵N1−Zr系合金を実施例
により具体的に説明する。
Next, the hydrogen storage N1-Zr alloy of the present invention will be specifically explained with reference to Examples.

通常の高周波誘導溶解炉を用い、Ar雰囲気中にてそれ
ぞれ第1表に示される成分組成をもったNi−Zr系合
金溶湯を調製し、銅鋳型に鋳造してインゴットとした後
、このインゴットをAr雰囲気中、900〜1000℃
の範囲内の所定温度に5時間保持の条件で焼鈍し、つい
でショークラッシャを用い、粗粉砕して直径二2mm以
下の粗粒とし、さらにボールミルを用いて微粉砕して3
50iesh以下の粒度とすることによりいずれもM 
g Z n Z型結晶構造をもった本発明水素吸蔵合金
1〜22、比較水素吸蔵合金1〜10、および従来水素
吸蔵合金をそれぞれ製造した。
Molten Ni-Zr alloys having the compositions shown in Table 1 are prepared in an Ar atmosphere using a conventional high-frequency induction melting furnace, and cast into a copper mold to form an ingot. 900-1000℃ in Ar atmosphere
Annealed at a predetermined temperature within the range of 5 hours, then coarsely crushed using a show crusher to obtain coarse particles with a diameter of 22 mm or less, and then finely crushed using a ball mill.
Both M
Hydrogen storage alloys 1 to 22 of the present invention, comparative hydrogen storage alloys 1 to 10, and conventional hydrogen storage alloys each having a g Z n Z-type crystal structure were manufactured.

ついで、この結果得られた各種の粉末状水素吸蔵合金を
活物質として用い、まず、これにポリビニールアルコー
ル(PVA)の2%水溶液ヲ添加してペースト化した後
、95%の多孔度を有する市販のNiウィスカー不織布
に充填し、乾燥し、さらに加圧して、平面寸法: 42
mm X 35mmにして、厚さ: 0.BO〜0.6
5mmの形状(活物質充填量:約2.8g)とし、これ
の−辺にリードとなるNi薄板を溶接により取付けて負
極を製造し、一方正極として同寸法のNi焼結板を2枚
用意し、これを前記負極の両側に配置し、30%KOH
水溶液を装入することにより密閉型NI’−水素蓄電池
を製造した。
Next, using the resulting various powdered hydrogen storage alloys as active materials, first, a 2% aqueous solution of polyvinyl alcohol (PVA) was added thereto to form a paste, which had a porosity of 95%. A commercially available Ni whisker nonwoven fabric was filled, dried, and further pressurized to obtain a planar size of 42
mm x 35mm, thickness: 0. BO~0.6
A negative electrode was manufactured by attaching a Ni thin plate to the negative side of the negative electrode by welding to the negative side of the negative electrode, and two Ni sintered plates of the same size were prepared as positive electrodes. This was placed on both sides of the negative electrode, and 30% KOH
A sealed NI'-hydrogen storage battery was manufactured by charging an aqueous solution.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容量を負極の容量より著しく大き
くすることにより負極の容量を測定し易くした。
The various storage batteries obtained as a result were all open batteries, and the capacity of the positive electrode was made significantly larger than the capacity of the negative electrode, thereby making it easier to measure the capacity of the negative electrode.

また、上記比較水素吸蔵合金1〜IOは、いずれも構成
成分のうちのいずれかの成分含有量(第1表に※印を付
す)がこの発明の範囲から外れた組成をもつものである
In addition, the comparative hydrogen storage alloys 1 to IO all have compositions in which the content of one of the constituent components (marked with * in Table 1) is outside the scope of the present invention.

つぎに、これらの各種の蓄電池について、充放電速度7
0.2C、充電電気ti:負極容量の130%の条件で
充・放電試験を行い、1回の充電と放電を1サイクルと
し、 140サイクル後、 280サイクル後、および
420サイクル後における放電容量をそれぞれ測定した
Next, for these various storage batteries, the charging/discharging speed 7
A charge/discharge test was conducted under the conditions of 0.2C, charging electric Ti: 130% of the negative electrode capacity, one charge and discharge was considered as one cycle, and the discharge capacity after 140 cycles, 280 cycles, and 420 cycles was calculated. Each was measured.

また、さらに第1表に示される組成をもった各種の粉末
状水素吸蔵合金を用い、平面サイズを90mmX40m
ms厚さ: 0.60〜0.65mmとして、容量:1
450〜1500mAh(活物質充填量:約6g)とす
る以外は、上記の充・放電試験で用いた蓄電池の負極板
と同一の条件で負極板を製造し、一方正極板は、95%
の多孔度を有するNiウィスカー不織布に水酸化ニッケ
ル(Ni(OH)2 )を活物質として充填し、乾燥し
、さらにプレス加工した後、リードを取付けて、平面寸
法: 70+am X 40龍、厚さ=0.65〜0.
70mmの形状(容ji : 1000〜105010
5Oとすることにより製造し、この結果得られた負極板
と正極板を、セパレータを介してうず巻き状にした状態
で、電解液と共にケース(これは○端子と兼用)の中に
収容した構造の密閉型N1−水素蓄電池とした。なお、
この蓄電池においては、正極容量より負極容量を大きく
して正極律則の蓄電池を構成した。
In addition, various powdered hydrogen storage alloys having the compositions shown in Table 1 were used, and the planar size was 90 mm x 40 m.
ms thickness: 0.60~0.65mm, capacity: 1
The negative electrode plate was manufactured under the same conditions as the negative electrode plate of the storage battery used in the above charging/discharging test, except that the charge was 450 to 1500 mAh (active material filling amount: approximately 6 g), while the positive electrode plate was manufactured at 95%
A Ni whisker nonwoven fabric with a porosity of =0.65~0.
70mm shape (capacity: 1000-105010
5O, and the resulting negative electrode plate and positive electrode plate are housed in a case (which also serves as the ○ terminal) together with the electrolyte in a spiral shape with a separator in between. It was a sealed N1-hydrogen storage battery. In addition,
In this storage battery, the negative electrode capacity was larger than the positive electrode capacity to constitute a positive electrode regulation storage battery.

また、これらの蓄電池に対する自己放電試験は、まず室
温で0.2C(20DIIA)で7時間充電し、ついで
蓄電池を45℃に温度セットしである恒温槽中に開路状
態(電池に負荷をかけない状態)で、240時間および
480時間放置し、放置後、とり出して、室温で0.2
C(20hA)放電を行ない、容量残存率を求めること
により行なった。
In addition, in the self-discharge test for these storage batteries, first charge them at room temperature at 0.2C (20DIIA) for 7 hours, then set the temperature of the storage battery at 45℃ and place it in a constant temperature oven in an open circuit state (no load is applied to the battery). condition) for 240 hours and 480 hours, after which it was taken out and 0.2
This was performed by discharging at 20 hA and determining the remaining capacity.

さらに、同じく第1°表に示される成分組成をもった各
種の水素吸蔵合金について、一般にHuey試験と呼ば
れている方法を用い、試験片を上記のインゴットより切
り出してプラスチック樹脂に埋め込み、腐食面をエメリ
ーベーパー#600で研磨仕上げした状態で、コールド
フィンガー型コンデンサー付三角フラスコに装入し、沸
騰した35%KOH水溶液中に120時間保持の条件で
アルカリ電解液腐食試験を行ない、試験後の腐食減量を
測定した。これらの測定結果を第1表に示した。
Furthermore, using a method generally called the Huey test, test pieces were cut from the above ingot and embedded in plastic resin for various hydrogen storage alloys having the compositions shown in Table 1. After polishing with Emery Vapor #600, it was charged into an Erlenmeyer flask with a cold finger type condenser, and an alkaline electrolyte corrosion test was conducted under the conditions of holding it in a boiling 35% KOH aqueous solution for 120 hours. Weight loss was measured. The results of these measurements are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明水素吸蔵合金1〜2
2は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してすぐれた耐食性を示し、さらにこれを密閉
型Ni  −水素蓄電池の負極活物質として用いた場合
、蓄電池は高容量をもつようになり、従来水素吸蔵合金
を用いた蓄電池に比して充・放電サイクルを繰り返した
場合の容量低下が著しく小さいという好ましい結果を示
すことが明らかであり、一方比較水素吸蔵合金1〜IO
に見られるように、構成成分のうちのいずれかの成分含
有量でもこの発明の範囲から外れると、本発明水素吸蔵
合金に比して、アルカリ電解液に対する耐食性、並びに
これを蓄電池の負極活物質として用いた場合の蓄電池の
放電容量および自己放電のうちの少なくともいずれかの
特性が劣ったものになることが明らかである。
From the results shown in Table 1, hydrogen storage alloys 1 to 2 of the present invention
2 exhibits superior corrosion resistance to alkaline electrolytes compared to conventional hydrogen storage alloys, and furthermore, when used as the negative electrode active material of a sealed Ni-hydrogen storage battery, the storage battery has a high capacity. It is clear that compared to storage batteries using conventional hydrogen storage alloys, the capacity decrease is significantly smaller when repeated charge/discharge cycles are performed, which is a favorable result.On the other hand, comparative hydrogen storage alloys 1 to IO
As can be seen in the figure, if the content of any of the constituent components is outside the scope of the present invention, the corrosion resistance to alkaline electrolytes and the corrosion resistance of the hydrogen storage alloy of the present invention may be lower than that of the hydrogen storage alloy of the present invention. It is clear that when used as a storage battery, the discharge capacity and/or self-discharge characteristics of the storage battery become inferior.

上述のように、この発明の水素吸蔵Ni−Zr系合金は
、アルカリ電解液に対する耐食性にすぐれているほか、
特に密閉型Ni −水素蓄電池の負極活物質として用い
た場合に、負極活物質に要求される特性をすべて十分満
足する状態で具備しているので、蓄電池の自己放電が著
しく低減し、さらに長いサイクル寿命に亘って大きな放
電容量が確保されるようになるなど工業上有用な特性を
有するのである。
As mentioned above, the hydrogen-absorbing Ni-Zr alloy of the present invention has excellent corrosion resistance against alkaline electrolytes, and
In particular, when used as a negative electrode active material in a sealed Ni-Hydrogen storage battery, it fully satisfies all of the characteristics required for a negative electrode active material, significantly reducing self-discharge of the storage battery and resulting in a longer cycle time. It has industrially useful characteristics such as ensuring a large discharge capacity over its lifetime.

Claims (4)

【特許請求の範囲】[Claims] (1)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜15%、PtまたはAu
:0.001〜0.5%、 V:0.1〜15%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(1) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-15%, Pt or Au
: 0.001 to 0.5%, V: 0.1 to 15%, and the remainder is Ni and unavoidable impurities (weight %). Hydrogen storage Ni-Zr alloy.
(2)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜15%、PtまたはAu
:0.001〜0.5%、 V:0.1〜15%、 を含有し、さらに、 Cu:1〜7%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(2) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-15%, Pt or Au
: 0.001 to 0.5%, V: 0.1 to 15%, further contains Cu: 1 to 7%, and the remainder is Ni and unavoidable impurities (wt%) A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure.
(3)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜15%、PtまたはAu
:0.001〜0.5%、 V:0.1〜15%、 を含有し、さらに、 Cr:0.05〜7%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(3) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-15%, Pt or Au
Cr: 0.001 to 0.5%, V: 0.1 to 15%, and Cr: 0.05 to 7%, with the remainder being Ni and unavoidable impurities (by weight) %) having a MgZn_2 type crystal structure.
(4)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜15%、PtまたはAu
:0.001〜0.5%、 V:0.1〜15%、 を含有し、さらに、 Cu:1〜7%、Cr:0.05〜7%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(4) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-15%, Pt or Au
:0.001~0.5%, V:0.1~15%, and further contains Cu:1~7%, Cr:0.05~7%, and the rest is Ni and unavoidable. A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure characterized by having a composition (the above weight %) consisting of impurities.
JP2176872A 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy Expired - Lifetime JP2762713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176872A JP2762713B2 (en) 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176872A JP2762713B2 (en) 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy

Publications (2)

Publication Number Publication Date
JPH0466633A true JPH0466633A (en) 1992-03-03
JP2762713B2 JP2762713B2 (en) 1998-06-04

Family

ID=16021266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176872A Expired - Lifetime JP2762713B2 (en) 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy

Country Status (1)

Country Link
JP (1) JP2762713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123239A1 (en) * 2019-12-20 2021-06-24 BJØRSETH, Alf Metal alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123239A1 (en) * 2019-12-20 2021-06-24 BJØRSETH, Alf Metal alloy
CN115380126A (en) * 2019-12-20 2022-11-22 Vsca股份有限公司 Metal alloy
CN115380126B (en) * 2019-12-20 2024-05-03 Vsca股份有限公司 Metal alloy

Also Published As

Publication number Publication date
JP2762713B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JPH0466633A (en) Hydrogen storage ni-zr series alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JPH01290742A (en) Closed alkali storage battery
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JPH0426735A (en) Hydrogen storage ni-zr series alloy
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JPH02277738A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery
JPH02194140A (en) Hydrogen storage ni-based alloy and closed ni-hydrogen battery
JPH02263944A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JPH02263945A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13