JPH05129411A - Compound semiconductor wafer for detecting metal element contamination and method of detecting metal element contamination - Google Patents

Compound semiconductor wafer for detecting metal element contamination and method of detecting metal element contamination

Info

Publication number
JPH05129411A
JPH05129411A JP29006691A JP29006691A JPH05129411A JP H05129411 A JPH05129411 A JP H05129411A JP 29006691 A JP29006691 A JP 29006691A JP 29006691 A JP29006691 A JP 29006691A JP H05129411 A JPH05129411 A JP H05129411A
Authority
JP
Japan
Prior art keywords
wafer
metal element
heavy metal
contamination
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29006691A
Other languages
Japanese (ja)
Inventor
Tomoki Inada
知己 稲田
Masatomo Shibata
真佐知 柴田
Youhei Otogi
洋平 乙木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP29006691A priority Critical patent/JPH05129411A/en
Publication of JPH05129411A publication Critical patent/JPH05129411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a very small amount of heavy metal contamination by a very simple method, facilitate management and maintenance, and shorten working hour per specimen. CONSTITUTION:High purity GaAs wafer wherein heavy metal concentration is lower than or equal to 1015cm<-3>, carbon concentration is 1015cm<-3>, and three- step heat treatment has been performed is used as a wafer for detecting heavy metal contamination. When the wafer is dipped in chemical liquid containing heavy metal and dried, the heavy metal adheres to the GaAs wafer surface and remains. When the surface is heated at 700-850 deg.C, the heavy metal diffuses in GaAs, and forms impurity level in a band gap. The GaAs wafer is irradiated with laser light having energy larger than the band gap of GaAs, and photoluminescence is measured. Light emission corresponding with the heavy metal which emission is caused by recombination of excitated carrier and impurity level can be observed. By comparing the luminous intensity of the heavy metal with the band end luminous intensity corresponding with the band gap energy of GaAs, relative concentration can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GaAsウェハをはじ
めとするIII −V族化合物半導体ウェハの金属元素汚染
源となるウェハ製造環境、または処理環境の中に含まれ
る金属元素を簡便に検出できる金属元素汚染検出用III
−V族化合物半導体ウェハ及び金属元素汚染検出方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal capable of easily detecting a metal element contained in a wafer manufacturing environment or a processing environment which is a source of metal element contamination of III-V group compound semiconductor wafers such as GaAs wafers. For elemental contamination detection III
-Group V compound semiconductor wafer and metal element contamination detection method.

【0002】[0002]

【従来の技術】工業上重要な役割を果しているGaAs
化合物半導体をはじめとするIII −V族化合物半導体デ
バイスは、結晶製造、研削・研磨やエッチングなどのウ
ェハ製造工程、薄膜形成やエッチングなどのウェハ処理
工程等を経て作製されるが、これを汚染から守るため
に、その作製において極めて神経質なクリーン管理のも
とに作られている。雰囲気中のダスト及び浮遊する重金
属などの金属元素、使用する薬液や、それを入れる容器
の純度、純水の純度等にきめ細かい汚染管理がなされて
いる。その中で最も重要なポイントが薬液を使用するウ
エットプロセスでの汚染管理である。
2. Description of the Related Art GaAs plays an important role in industry.
Group III-V compound semiconductor devices, including compound semiconductors, are manufactured through crystal manufacturing, wafer manufacturing processes such as grinding / polishing and etching, and wafer processing processes such as thin film formation and etching. In order to protect it, it is made under a very nervous clean management in its production. Fine pollution control is carried out on the dust in the atmosphere and metallic elements such as floating heavy metals, the chemical liquid used, the purity of the container in which it is contained, the purity of pure water, and the like. The most important point among them is pollution control in wet processes that use chemicals.

【0003】これをGaAs製造についてみる。GaA
s化合物半導体デバイス製造段階ばかりでなく、その前
段階になるGaAs単結晶ウェハ製造段階や処理も含め
た広範囲な分野で、水や溶剤、酸、アルカリなどを用い
た湿式法での洗浄やエッチング、いわゆるウエットプロ
セスが行われている。このプロセスで半導体特性に影響
する重金属元素の汚染がひとたび生じると、その発生源
を突止めることが極めて難しい。それは、プロセス全体
が複雑多岐に亘り、使用する薬液や容器が多品種である
上に、問題となる汚染量が高精度な分析を余儀なくされ
る程の極微量であるためである。
This will be examined for GaAs manufacturing. GaA
In a wide range of fields including not only the compound semiconductor device manufacturing stage but also the GaAs single crystal wafer manufacturing stage and processing that precedes it, cleaning and etching by a wet method using water, solvent, acid, alkali, etc. A so-called wet process is performed. Once the contamination of heavy metal elements affecting the semiconductor characteristics occurs in this process, it is extremely difficult to determine the source. This is because the whole process is complicated and diversified, and various kinds of chemicals and containers are used, and a problematic amount of contamination is so small that a highly accurate analysis is required.

【0004】従来は、汚染されている可能性のあるプロ
セスごとに薬液を抜き取り、分析器で分析することによ
り、発生源及び汚染の波及している範囲の探索を行って
いた。その分析法としては、原子吸光分析法や二次イオ
ン質量分析法(SIMS)等が専ら用いられている。
Conventionally, a chemical solution is extracted for each process that may be contaminated and analyzed by an analyzer to search for a source and a range in which contamination is spread. As the analysis method, atomic absorption spectrometry, secondary ion mass spectrometry (SIMS), etc. are used exclusively.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来用いら
れている分析法は、原子吸光分析法にあっては成分元素
を原子化するフレーム発生装置や、光源となる放電管、
さらには吸光度測定器等を要し、またSIMSにあって
は高エネルギ一次イオン発生装置や質量分析器を要し、
大掛かりで高価な装置を使用するため、半導体の各プロ
セスチェックの目的での設備にはふさわしくない。ま
た、汚染量が極く微量なことが多く、分析に用いる容器
の洗浄あるいは装置の真空度管理、質量分析計の管理な
どのメンテナンスに多大の経費を要する。また1試料当
りの作業時間が長いことも難点になっている。
However, the conventional analytical methods used in the atomic absorption spectrometry are a flame generator for atomizing the constituent elements, a discharge tube serving as a light source,
Furthermore, it requires an absorbance measuring device, and SIMS requires a high-energy primary ion generator and a mass spectrometer.
Since large-scale and expensive equipment is used, it is not suitable for equipment for the purpose of checking each process of semiconductors. Moreover, the amount of contamination is often extremely small, and a large amount of cost is required for maintenance such as cleaning of the container used for analysis, control of the degree of vacuum of the device, and control of the mass spectrometer. Another problem is that the working time per sample is long.

【0006】本発明の目的は、金属元素で汚染されてい
ないIII −V族化合物半導体ウェハを検出用に用いるこ
とによって、前記した従来技術の欠点を解消して、簡便
かつ安価に金属元素の汚染を検出することが可能な金属
元素汚染検出用III −V族化合物半導体ウェハ及び金属
元素汚染検出方法を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art by using a III-V group compound semiconductor wafer which is not contaminated with metallic elements for detection, and to simply and inexpensively contaminate metallic elements. It is an object of the present invention to provide a III-V group compound semiconductor wafer for detecting metal element contamination and a method for detecting metal element contamination capable of detecting a metal element.

【0007】[0007]

【課題を解決するための手段】本発明の金属元素汚染検
出用ウェハは、III−V族化合物半導体ウェハの製造、
処理環境中の金属元素汚染の検出が可能な金属元素汚染
検出用ウェハであって、このウェハが高純度であり、か
つウェハ面内のホトルミネセンス強度を均一にすべく熱
処理されているものである。この熱処理は、ウェハ面内
の強度を特に均一とするために、結晶インゴット状態あ
るいはウェハ状態で、三段階の熱処理で構成することが
好ましい。すなわち、1000℃以上で加熱してから、
500〜700℃の温度範囲内で冷却し、その後800
〜950℃の温度範囲内で再加熱処理する構成とする。
また、検出精度をより高めるために、検出対象となるウ
ェハの金属元素濃度が1015cm-3以下であって、かつ
炭素濃度が1015cm-3以下であることが望ましい。こ
こで、適用できるIII −V族化合物半導体には、GaA
sの他にInP、InAs、GaP等があり、また汚染
検出対象となる金属元素の代表的なものとして重金属が
あげられる。
A metal element contamination detection wafer of the present invention is a III-V group compound semiconductor wafer,
A metal element contamination detection wafer capable of detecting metal element contamination in a processing environment, which is of high purity and has been heat-treated to make the photoluminescence intensity uniform in the wafer surface. is there. In order to make the strength in the plane of the wafer particularly uniform, this heat treatment is preferably configured by a three-step heat treatment in a crystal ingot state or a wafer state. That is, after heating at 1000 ° C or higher,
Cool within a temperature range of 500-700 ° C, then 800
Reheat treatment is performed within a temperature range of up to 950 ° C.
In order to further improve the detection accuracy, it is desirable that the wafer to be detected has a metal element concentration of 10 15 cm -3 or less and a carbon concentration of 10 15 cm -3 or less. Here, the applicable III-V compound semiconductor is GaA.
In addition to s, there are InP, InAs, GaP, and the like, and a heavy metal is a typical example of the metal element to be the contamination detection target.

【0008】また、本発明の金属元素汚染検出方法は、
上述した金属元素汚染検出用III −V族化合物半導体ウ
ェハを用いた金属元素汚染検出方法であって、金属元素
汚染を検出する環境にウェハを晒して金属元素で汚染さ
せた後、この環境から取り出し金属元素をウェハ内に拡
散するための拡散加熱処理を施し、しかる後、このウェ
ハをホトルミネセンス分析法にかけて、III −V族化合
物半導体のバンドギャップエネルギに対応して現れるバ
ンド端発光強度のピークと、ウェハは内に含まれる金属
元素に対応して現れる金属元素発光強度のピークとを求
め、両ピークの発光強度の比較により環境中の金属元素
汚染量を求めるようにしたものである。この場合におい
て、ウェハの金属元素への定着を確実にするために、拡
散加熱処理は700〜850℃の範囲で行われることが
好ましい。
The metal element contamination detection method of the present invention is
A method for detecting a metal element contamination using a III-V compound semiconductor wafer for detecting a metal element contamination as described above, which comprises exposing a wafer to an environment for detecting metal element contamination to contaminate it with a metal element, and then taking out the environment. Diffusion heat treatment for diffusing the metal element into the wafer is performed, and then this wafer is subjected to photoluminescence analysis to show the peak of the band edge emission intensity corresponding to the band gap energy of the III-V group compound semiconductor. Then, the peak of the emission intensity of the metal element that appears corresponding to the metal element contained in the wafer is obtained, and the emission amount of both peaks is compared to obtain the amount of contamination of the metal element in the environment. In this case, the diffusion heat treatment is preferably performed in the range of 700 to 850 ° C. in order to ensure the fixing of the wafer to the metal element.

【0009】本発明における環境は、ウエットプロセス
で使用されるエッチング液や洗浄液などの薬液あるいは
容器、さらにはドライプロセスにおける雰囲気等を意味
する。
The environment in the present invention means a chemical solution such as an etching solution or a cleaning solution used in a wet process or a container, and an atmosphere in a dry process.

【0010】[0010]

【作用】ここでは、本発明のIII −V族化合物半導体ウ
ェハがGaAsであり、汚染金属元素が重金属であり、
かつ環境がウエットプロセスでの薬液となる場合につい
て説明するが、その他の化合物半導体、金属元素、環境
であっても同じである。高純度のGaAsウェハを重金
属を含む薬液に浸し乾燥すると、重金属がGaAsウェ
ハ表面に付着し残留する。これを適当な加熱処理、例え
ば700〜850℃で数十分間加熱すると、GaAs内
に重金属が拡散し、バンドギャップ内で不純物レベルを
作る。この温度範囲以外では、目的とする拡散以外の現
象も生じてしまうため、あまり好ましくない。
In this case, the III-V compound semiconductor wafer of the present invention is GaAs, the contaminating metal element is a heavy metal,
The case where the environment is a chemical solution in the wet process will be described, but the same applies to other compound semiconductors, metal elements, and the environment. When a high-purity GaAs wafer is dipped in a chemical containing a heavy metal and dried, the heavy metal adheres to the surface of the GaAs wafer and remains. When this is subjected to an appropriate heat treatment, for example, at 700 to 850 ° C. for several tens of minutes, the heavy metal diffuses in GaAs and an impurity level is created in the band gap. Outside of this temperature range, phenomena other than the intended diffusion may occur, which is not preferable.

【0011】このGaAsウェハにGaAsのバンドギ
ャップより大きなエネルギのレーザ光、例えばArガス
レーザの514.5μmの光を照射し、ホトルミネセン
スを測定すると、励起キャリアと不純物レベルとの再結
合による重金属に対応した発光が観察される。この重金
属発光強度を、GaAsのバンドギャップエネルギに対
応して現れるバンド端(以下、単にバンド端という)の
発光による強度と比較することにより相対的な濃度を求
めることができ、他の分析法との比較により濃度の絶対
値を求めることができる。ホトルミネセンス法は、半導
体物性の解析に最も広く用いられているありふれた装置
で、メンテナンスも容易であり、簡便な測定ができる。
This GaAs wafer is irradiated with laser light having an energy larger than the band gap of GaAs, for example, light of 514.5 μm of Ar gas laser, and photoluminescence is measured. As a result, heavy metal is formed due to recombination of excited carriers and impurity levels. Corresponding luminescence is observed. By comparing this heavy metal emission intensity with the emission intensity of the band edge (hereinafter simply referred to as the band edge) that appears corresponding to the band gap energy of GaAs, the relative concentration can be obtained, and it can be compared with other analytical methods. The absolute value of the concentration can be obtained by comparing The photoluminescence method is a common apparatus most widely used for the analysis of physical properties of semiconductors, is easy to maintain, and allows simple measurement.

【0012】次に、本発明の金属元素汚染検出方法に必
要となる重金属汚染検出用GaAsウェハについて説明
する。重金属濃度を1015cm-3以下としたのは、10
15cm-3よりも大きいと、それと同程度以上の汚染量の
濃度範囲の測定において測定誤差を生じるためである。
また炭素濃度を特に規定したのは、図2に示すように、
1.53eVに現れるバンド端の発光ピークの他に、結
晶成長時混入の避けられない炭素不純物が関与している
と言われている浅いアクセプタに関する鋭い発光ピーク
が1.49eVに現れる。このためバンド端の発光が炭
素濃度に大きく依存することとなり、特に炭素濃度が1
15cm-3を超えると、バンド端発光ピークに重金属元
素のピークが重なって両者を分離できなくなり、結晶と
してピーク強度比を求められなくなるためである。
Next, a GaAs wafer for heavy metal contamination detection, which is necessary for the metal element contamination detection method of the present invention, will be described. The heavy metal concentration was set to 10 15 cm -3 or less because
This is because if it is larger than 15 cm −3 , a measurement error will occur in the measurement of the concentration range of the amount of contamination equal to or higher than that.
Further, the carbon concentration is specified in particular as shown in FIG.
In addition to the band-edge emission peak appearing at 1.53 eV, a sharp emission peak for a shallow acceptor, which is said to involve carbon impurities that cannot be avoided during crystal growth, appears at 1.49 eV. For this reason, the light emission at the band edge largely depends on the carbon concentration.
This is because when it exceeds 0 15 cm −3 , the peak of the heavy metal element overlaps with the band edge emission peak and the two cannot be separated, and the peak intensity ratio cannot be obtained as a crystal.

【0013】GaAs中には、結晶欠陥が多く、その不
均一分布や、濃度が上述の測定に影響する。均一性をよ
くし、精度のよい測定を可能ならしめるためには、ウェ
ハを加工する前の結晶インゴットあるいは、加工後のウ
ェハに、次のような熱処理を施すことが望ましい。すな
わち、1000℃以上の温度で加熱し、500〜700
℃の範囲まで冷却保持し、その後800〜950℃の範
囲に一定時間保持する。このような3段階の熱処理をG
aAs結晶に施すと、GaAs中の固有欠陥は本質的に
消失できないものの、ウェハ面内のホトルミネセンス強
度が非常に均一に成るため、結晶欠陥が作るバンド内で
のレベルによるホトルミネセンス測定への影響を抑える
ことができる。なお、三段階の熱処理により強度の均一
化が図れるのは、1段階ないし2段階の熱処理では、ウ
ェハ面内に偏在していたバンドギャップ中央付近に準位
をもつ非発光中心が十分に消滅しておらず、3段階にな
って初めて十分に消滅したためであると思われる。従っ
て、4段階以上の熱処理を加えることも可能である。
There are many crystal defects in GaAs, and their non-uniform distribution and concentration affect the above measurement. In order to improve uniformity and enable accurate measurement, it is desirable to subject the crystal ingot before processing the wafer or the processed wafer to the following heat treatment. That is, it is heated at a temperature of 1000 ° C. or higher to 500 to 700.
It is cooled and held in the range of 800C, and then held in the range of 800 to 950C for a certain period of time. Such a three-step heat treatment
When applied to aAs crystals, the intrinsic defects in GaAs cannot be essentially eliminated, but since the photoluminescence intensity in the wafer surface is very uniform, it is possible to measure photoluminescence by the level within the band formed by crystal defects. The effect of can be suppressed. It should be noted that the strength can be made uniform by the three-step heat treatment because in the first-step or second-step heat treatment, the non-radiative centers having the levels near the center of the band gap, which are unevenly distributed in the wafer surface, are sufficiently eliminated. It seems that it is because it has not disappeared enough until the third stage. Therefore, it is possible to add heat treatment in four or more steps.

【0014】このように本発明によれば、高純度GaA
sを、重金属汚染を検出しようとする環境にさらし、そ
れを加熱した後に、汎用性の高い装置であるホトルミネ
センス法を用いるという簡単な構成で、重金属汚染を検
出できるため、大掛かりで高価な装置を使用する必要が
無く、従って本発明を半導体の各プロセスチェックの目
的のために用意することも可能である。また、汚染量が
極く微量な場合でも、高純度のGaAsウェハとホトル
ミネセンス装置を用意するだけでよいので、汚染量分析
に用いる容器の洗浄あるいは装置の真空度管理、質量分
析計の管理などのメンテナンスを不要とし、それに掛る
多大な経費を節約できる。また1試料当りの作業時間も
短くなる。
Thus, according to the present invention, high-purity GaA
s is exposed to the environment where heavy metal contamination is to be detected, and after heating it, the photoluminescence method, which is a highly versatile device, is used to detect heavy metal contamination. It is not necessary to use equipment, and it is therefore possible to devise the invention for the purpose of each semiconductor process check. In addition, even if the amount of contamination is extremely small, it is only necessary to prepare a high-purity GaAs wafer and a photoluminescence device. Therefore, cleaning the container used for contamination amount analysis, controlling the vacuum degree of the device, managing the mass spectrometer. It eliminates the need for maintenance and saves a great deal of cost. Also, the working time per sample is shortened.

【0015】従って本発明によれば、工業上重要な機能
デバイスに多く用いられているGaAs化合物半導体製
造工程において、特に重大な問題である重金属元素によ
るプロセス汚染を容易に検出できるため、製品の歩留り
向上が可能であり、経済的な効果が大である。また、G
aAs以外のIII −V族化合物半導体に対する重金属を
はじめとした金属元素による汚染検出にも適用できる。
Therefore, according to the present invention, in a GaAs compound semiconductor manufacturing process, which is often used for industrially important functional devices, process contamination due to heavy metal elements, which is a particularly serious problem, can be easily detected, so that the product yield is increased. It can be improved and the economic effect is great. Also, G
It can also be applied to detection of contamination by metal elements such as heavy metals on III-V group compound semiconductors other than aAs.

【0016】[0016]

【実施例】以下、本発明の実施例を比較例と共に説明す
る。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0017】実施例1 引上法(ボート法でもよい)により成長したアンドープ
のGaAs単結晶インゴットから、GaAsウェハを厚
さ350μm、10mm×50mmの矩形状に切り出
し、両面をラッピングした後、硫酸系のエッチング液で
エッチングし、有機溶剤、純水でよく洗浄したものを汚
染検出用GaAsウェハとして用いた。SIMSで分析
した不純物は、いずれも検出限界以下で、1015cm-3
を超えるものは含まれていなかった。また、赤外線吸収
により求めた炭素濃度は1014cm-3オーダで、8×1
14cm-3であった。このGaAsウェハは、切り出す
前に結晶インゴットの状態で1150℃−24h、50
0℃−48h、850℃−24hの三段階アニールを連
続して行った。
Example 1 From an undoped GaAs single crystal ingot grown by the pulling method (the boat method may be used), a GaAs wafer is cut into a rectangular shape having a thickness of 350 μm, 10 mm × 50 mm, and both surfaces are lapped, and then a sulfuric acid system The GaAs wafer for contamination detection was used after being etched with the etching solution of 1. and thoroughly washed with an organic solvent and pure water. Impurities analyzed by SIMS were all below the detection limit, 10 15 cm -3
No more than. The carbon concentration determined by infrared absorption is of the order of 10 14 cm -3 and 8 × 1
It was 0 14 cm -3 . This GaAs wafer, in the state of a crystal ingot, was cut at 1150 ° C. for 24 hours for 50 hours before being cut out.
Three-step annealing at 0 ° C.-48 h and 850 ° C.-24 h was continuously performed.

【0018】プロセス工程でのウエットプロセスの重金
属元素汚染を模擬するため、含有する銅濃度を変化させ
た硫酸銅の水溶液を用意し、その液に上記GaAsウェ
ハを5分間浸漬させ、ウェハを抜き出して液を切り自然
乾燥させた。その後、ウェハを水素ガス中で750℃−
30分熱処理してウェハ内に銅を拡散させた。そして不
純物によるピークが明瞭に現れるように、液体窒素でウ
ェハを約77Kまで冷やしながらホトルミネセンス測定
を行った。
In order to simulate the heavy metal element contamination of the wet process in the process step, an aqueous solution of copper sulfate having a varying copper concentration is prepared, the GaAs wafer is immersed in the solution for 5 minutes, and the wafer is taken out. The liquid was cut and naturally dried. After that, the wafer is placed in hydrogen gas at 750 ° C.
Heat treatment was performed for 30 minutes to diffuse copper in the wafer. Then, the photoluminescence measurement was performed while the wafer was cooled to about 77 K with liquid nitrogen so that the peak due to the impurities clearly appeared.

【0019】まず、1.53eVのバンド端の発光の均
一性をウェハの長さ方向に5mmピッチで9点測定した
ところ、ピーク強度の面内でのバラツキは5%以内と小
さく、重金属汚染検出用のウェハに適することを確認し
た。次に、重金属元素である銅に基づく発光として、
1.36eVの発光ピークを観察したところ、測定上特
に難しい処理を行わなくても1.53eVのピークと分
離でき、両者のピーク強度比を容易に求められた。以上
の結果を示すと、図1の様な関係が得られ、極く微量の
汚染から高濃度の汚染まで、本実施例の方法及び本実施
例のウェハにて検出可能であることがわかった。
First, the uniformity of light emission at the band edge of 1.53 eV was measured at 9 points at a pitch of 5 mm in the lengthwise direction of the wafer. The variation in peak intensity within the plane was as small as 5% or less, and heavy metal contamination was detected. It was confirmed to be suitable for a wafer for use. Next, as light emission based on copper, which is a heavy metal element,
When the emission peak of 1.36 eV was observed, it was possible to separate from the peak of 1.53 eV without performing a treatment that is particularly difficult in measurement, and the peak intensity ratio of both was easily obtained. From the above results, the relationship as shown in FIG. 1 was obtained, and it was found that a very small amount of contamination to a high concentration of contamination can be detected by the method of this example and the wafer of this example. ..

【0020】比較例1 実施例1と同じ方法で、結晶インゴットに全く熱処理を
施さなかったGaAsウェハで実験したところ、発光ピ
ークの面内バラツキが大きく、また2つのピークの重な
りが大きく、ピーク分離ができなかったため、重金属汚
染検出には不向きであっることがわかった。
Comparative Example 1 In the same manner as in Example 1, an experiment was conducted on a GaAs wafer in which the crystal ingot was not subjected to any heat treatment. As a result, the in-plane variation of the emission peak was large, and the two peaks overlap greatly, resulting in peak separation. Therefore, it was found that it was not suitable for detecting heavy metal contamination.

【0021】比較例2 実施例1と同じ方法で、インゴットの熱処理を950℃
−24hの一段階で行ったところ、比較例1と同様に面
内バラツキ、ピーク分離の点で、重金属汚染検出には使
用できないことがわかった。
Comparative Example 2 Ingots were heat treated at 950 ° C. in the same manner as in Example 1.
When it was carried out in one step for -24 h, it was found that it could not be used for detection of heavy metal contamination in terms of in-plane variation and peak separation as in Comparative Example 1.

【0022】比較例3 実施例1と同じ方法で、GaAs結晶中の炭素濃度のみ
高濃度2×1015cm-3のものを用いた。その結果、バ
ンド端発光のピークが強くなり重金属元素とのピーク分
離ができなかった。
Comparative Example 3 In the same manner as in Example 1, a GaAs crystal having a high carbon concentration of 2 × 10 15 cm −3 was used. As a result, the peak of the band edge emission became strong and the peak separation from the heavy metal element could not be performed.

【0023】比較例4 実施例1と同じ方法で、汚染検出用ウェハに当初から銅
を2×1015cm-3添加した結晶を用いた。重金属汚染
を模擬した水溶液に硫酸銅を全く入れないものと、入れ
たもののピーク強度の差が測定誤差に隠れてしまい、使
用不可であった。
Comparative Example 4 In the same manner as in Example 1, a crystal for which 2 × 10 15 cm −3 of copper was added from the beginning was used as a contamination detection wafer. The aqueous solution simulating heavy metal contamination was unusable because the difference in peak intensity between the one in which copper sulfate was not added and the one in which it was added was hidden by a measurement error.

【0024】実施例2 実施例1と同じ方法でGaAsウェハを準備し、汚染を
模擬する水溶液として、硫酸銅ではなく、硝酸にマンガ
ンを溶かしたマンガン水溶液を用い、重金属であるマン
ガン濃度を変えて、ウェハを汚染させた。浸漬法以降の
処理は実施例1と同一である。ホトルミネセンスは1.
41eVのマンガンに起因するピークを観察した。上述
した比較例に見られる様な重なりや、面内バラツキ現象
は全くなく、実施例1と同様にウエットプロセスの汚染
検出用として向いていることを確認した。
Example 2 A GaAs wafer was prepared in the same manner as in Example 1, and an aqueous solution of manganese dissolved in nitric acid was used as the aqueous solution for simulating contamination, and the concentration of manganese, which is a heavy metal, was changed. , Contaminated the wafer. The treatments after the immersion method are the same as in Example 1. Photoluminescence is 1.
A peak due to 41 eV of manganese was observed. It was confirmed that there is no overlap or in-plane variation phenomenon as seen in the above-mentioned comparative example, and it is suitable for contamination detection in the wet process as in Example 1.

【0025】上述した実施例1、比較例1〜4及び実施
例2の結果をまとめて表1に示す。
The results of Example 1, Comparative Examples 1 to 4 and Example 2 described above are summarized in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】*の条件は本文中に既述した通りである。The condition of * is as described above in the text.

【0028】表中の○は方法として適する範囲のもの、
×は不適であることを示す。また、実施例1及び比較例
1〜4については銅に起因するホトルミネセンスのピー
クを観察し、実施例2についてはマンガンに起因するホ
トルミネセンスのピークを観察している。
◯ in the table is in a range suitable for the method,
X indicates unsuitability. Further, in Example 1 and Comparative Examples 1 to 4, the peak of photoluminescence caused by copper is observed, and in Example 2, the peak of photoluminescence caused by manganese is observed.

【0029】他の実施例 重金属不純物にCu、Mnを適用した上記実施例を、F
e、Mg、Zn、Sなど他の重金属不純物について適用
したところ、いずれも良好な結果が得られた。なお、ホ
トルミネセンス強度均一化のためにインゴットまたはウ
ェハに与える熱処理については、1000℃未満、50
0℃未満あるいは700℃を超える温度、800℃未満
あるいは950℃を超える温度の3プロセスの組合せで
効果を比較したが、重金属汚染検出用として使用可能な
ウェハが得られたのは、本発明の1000℃以上、80
0〜950℃、500〜700℃の温度範囲の組合せの
みであった。
Other Embodiments The above-mentioned embodiment in which Cu and Mn are applied to the heavy metal impurities is F
When applied to other heavy metal impurities such as e, Mg, Zn and S, good results were obtained in all cases. Regarding the heat treatment applied to the ingot or the wafer in order to make the photoluminescence intensity uniform, a temperature of less than 1000 ° C., 50
Although the effects were compared by a combination of three processes of a temperature lower than 0 ° C. or higher than 700 ° C., a temperature lower than 800 ° C. or higher than 950 ° C., a wafer usable for detecting heavy metal contamination was obtained. 1000 ° C or higher, 80
Only combinations of temperature ranges of 0 to 950 ° C and 500 to 700 ° C were available.

【0030】[0030]

【発明の効果】本発明によれば次の効果が得られる。According to the present invention, the following effects can be obtained.

【0031】(1)本発明の金属元素汚染検出用GaA
sウェハによれば、III −V族化合物半導体デバイスを
構成するIII −V族化合物半導体ウェハそのものを金属
元素汚染検出用に使用するので、資源の有効利用が図れ
る。
(1) GaA for detecting metallic element contamination of the present invention
According to the s-wafer, the III-V compound semiconductor wafer itself, which constitutes the III-V compound semiconductor device, is used for detecting the metal element contamination, so that the resources can be effectively used.

【0032】(2)本発明の金属元素汚染検出方法によ
れば、極めて簡便、かつ安価に金属元素汚染を検出でき
る。
(2) According to the metal element contamination detection method of the present invention, metal element contamination can be detected very simply and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例によるホトルミネセンスのピーク強度
比と硫酸銅水溶液中の銅濃度との関係を示す特性図。
FIG. 1 is a characteristic diagram showing the relationship between the peak intensity ratio of photoluminescence and the copper concentration in a copper sulfate aqueous solution according to this example.

【図2】アンドープのGaAs結晶のホトルミネセンス
スペクトルを示す説明図。
FIG. 2 is an explanatory view showing a photoluminescence spectrum of undoped GaAs crystal.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】III −V族化合物半導体ウェハの製造、処
理環境中の金属元素汚染の検出が可能な金属元素汚染検
出用ウェハであって、該ウェハが高純度であり、かつウ
ェハ面内のホトルミネセンス強度を均一にすべく熱処理
されていることを特徴とする金属元素汚染検出用III −
V族化合物半導体ウェハ。
1. A III-V compound semiconductor wafer, a metal element contamination detection wafer capable of detecting metal element contamination in a processing environment, wherein the wafer has a high purity and is within a plane of the wafer. For metal element contamination detection, characterized by being heat-treated to make photoluminescence intensity uniform-
Group V compound semiconductor wafer.
【請求項2】前記熱処理は、結晶インゴット状態あるい
はウェハ状態で、1000℃以上で加熱してから、50
0〜700℃の温度範囲内で冷却し、その後800〜9
50℃の温度範囲内で再加熱するようにしたものである
ことを特徴とする請求項1に記載の金属元素汚染検出用
III −V族化合物半導体ウェハ。
2. The heat treatment is performed in a crystalline ingot state or a wafer state at a temperature of 1000.degree.
Cool in a temperature range of 0 to 700 ° C., then 800 to 9
The metal element contamination detection device according to claim 1, characterized in that it is reheated within a temperature range of 50 ° C.
III-V compound semiconductor wafer.
【請求項3】検出対象となるウェハの金属元素濃度が1
15cm-3以下であって、かつ炭素濃度が1015cm-3
以下であることを特徴とする請求項1または2に記載の
金属元素汚染検出用III −V族化合物半導体ウェハ。
3. A metal element concentration of a wafer to be detected is 1
0 15 cm -3 or less and a carbon concentration of 10 15 cm -3
The III-V group compound semiconductor wafer for metal element contamination detection according to claim 1 or 2, wherein:
【請求項4】請求項1ないし3のいずれかに記載の金属
元素汚染検出用III−V族化合物半導体ウェハを用いた
金属元素汚染検出方法であって、金属元素汚染を検出す
る環境に前記ウェハを晒して金属元素で汚染させた後、
該環境から取り出し金属元素をウェハ内に拡散するため
の拡散加熱処理を施し、しかる後、このウェハをホトル
ミネセンス分析法によりIII −V族化合物半導体のバン
ドギャップエネルギに対応して現れるバンド端発光強度
のピークと、金属元素に対応して現れる金属元素発光強
度のピークとを求め、両ピークの発光強度の比較により
環境中の金属元素汚染量を求めるようにしたことを特徴
とする金属元素汚染検出方法。
4. A metal element contamination detection method using the III-V compound semiconductor wafer for metal element contamination detection according to claim 1, wherein the wafer is used in an environment for detecting metal element contamination. Exposed to contaminate with metallic elements,
Diffusion heat treatment for diffusing the metal element into the wafer taken out from the environment is performed, and thereafter, this wafer is subjected to band edge emission corresponding to the band gap energy of the III-V group compound semiconductor by photoluminescence analysis method. Contamination of metallic elements characterized by determining the peak of intensity and the peak of luminous intensity of metallic elements appearing corresponding to metallic elements, and comparing the luminous intensity of both peaks to find the amount of metallic element contamination in the environment. Detection method.
【請求項5】請求項4に記載の金属元素汚染検出方法に
おいて、前記拡散加熱処理は700〜850℃の範囲で
行われることを特徴とする金属元素汚染検出方法。
5. The metal element contamination detection method according to claim 4, wherein the diffusion heating treatment is performed in a range of 700 to 850 ° C.
JP29006691A 1991-11-06 1991-11-06 Compound semiconductor wafer for detecting metal element contamination and method of detecting metal element contamination Pending JPH05129411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29006691A JPH05129411A (en) 1991-11-06 1991-11-06 Compound semiconductor wafer for detecting metal element contamination and method of detecting metal element contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29006691A JPH05129411A (en) 1991-11-06 1991-11-06 Compound semiconductor wafer for detecting metal element contamination and method of detecting metal element contamination

Publications (1)

Publication Number Publication Date
JPH05129411A true JPH05129411A (en) 1993-05-25

Family

ID=17751350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29006691A Pending JPH05129411A (en) 1991-11-06 1991-11-06 Compound semiconductor wafer for detecting metal element contamination and method of detecting metal element contamination

Country Status (1)

Country Link
JP (1) JPH05129411A (en)

Similar Documents

Publication Publication Date Title
Heinke et al. Photoluminescence at dislocations in GaAs
US7888265B2 (en) Method for assaying copper in silicon wafers
US7892862B2 (en) Method of evaluating thermal treatment and method of manufacturing semiconductor wafer
Higgs et al. Characterization of epitaxial and oxidation‐induced stacking faults in silicon: The influence of transition‐metal contamination
CN110223927A (en) The metallic pollution analysis method of silicon wafer
WO2011083719A1 (en) Method and apparatus for etching of surface layer part of silicon wafer, and method for analysis of metal contamination in silicon wafer
US7601538B2 (en) Method for analyzing impurity
JP2003133381A (en) Method and apparatus for etching silicon wafer and impurity analyzing method
JPH10223713A (en) Heat treatment evaluating wafer and heat treatment evaluating method using the same
JP2003021619A (en) Fluorite and its analyzing method, manufacturing method and optical, characteristic evaluation method
JPH05129411A (en) Compound semiconductor wafer for detecting metal element contamination and method of detecting metal element contamination
JP3331106B2 (en) Method for analyzing impurities in semiconductor thin film or semiconductor substrate
US6518785B2 (en) Method for monitoring an amount of heavy metal contamination in a wafer
US6146909A (en) Detecting trace levels of copper
KR100901823B1 (en) Method of testing defect of silicon wafer
KR20040045986A (en) A Classification method of defect area of silicon wafer or single crystalline silicon ingot
JP2001108583A (en) Method for measuring concentration of impurity in silicon wafer
Nakashima et al. Photoluminescence topographic observation of defects in silicon crystals
JPH0666695A (en) Preparation of sample
Lu et al. Evaluation of cleaning efficiency with a radioactive tracer and development of a microwave digestion method for semiconductor processes
JP5042445B2 (en) Method for evaluating gettering efficiency of silicon wafers
Magee et al. Low‐temperature redistribution and gettering of oxygen in silicon
JP2847228B2 (en) Evaluation method of semiconductor jig material
Boudart et al. Efficiency of neutron transmutation doping of InP investigated by optical and electrical methods
JPH0926401A (en) Impurity analyzing method for semiconductor thin film and substrate