JPH05121060A - Separator material for high temperature type fuel cell - Google Patents

Separator material for high temperature type fuel cell

Info

Publication number
JPH05121060A
JPH05121060A JP3186936A JP18693691A JPH05121060A JP H05121060 A JPH05121060 A JP H05121060A JP 3186936 A JP3186936 A JP 3186936A JP 18693691 A JP18693691 A JP 18693691A JP H05121060 A JPH05121060 A JP H05121060A
Authority
JP
Japan
Prior art keywords
component
fuel cell
separator material
high temperature
temperature fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3186936A
Other languages
Japanese (ja)
Inventor
Hiroyuki Iwasaki
浩之 岩崎
Toshihiko Yoshida
利彦 吉田
Satoshi Sakurada
智 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3186936A priority Critical patent/JPH05121060A/en
Publication of JPH05121060A publication Critical patent/JPH05121060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a separator material for a high-temperature type fuel cell, which provides sufficient stability and corrosion resistance to each of high-temperature corrosive gases both on the side of oxidizer gas and on the side of reducer gas and also is free of such deformation as a warp, a curve and the like, and also free of peeling or the like, while the strength and conductivity of the separator material are kept respectively at given levels. CONSTITUTION:In a separator material composed of a metal radical component forming metal, an alloy or an intermetallic compound, and also a ceramics component, a portion of the separator material on the side of oxidizer gas is rich in the ceramics component while a portion thereof on the side of reducer gas is rich in the metal radical component, and the composition of each of the components for the separator material is inclinedly changed in succession or in stages from the side of oxidizer gas to the side of reducer gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強度や導電性を維持し
たままで、酸化剤ガス側及び還元剤ガス側のいずれにお
いても高温の各腐食性ガスに対して十分安定で耐食性で
あり、しかもそり、曲がりなどの変形、剥がれなどを生
じることのない新規高温型燃料電池用セパレータ材料に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is sufficiently stable and corrosion resistant to high temperature corrosive gases on both the oxidizing gas side and the reducing gas side while maintaining strength and conductivity. Moreover, the present invention relates to a novel high temperature type fuel cell separator material that does not cause deformation such as warping or bending and peeling.

【0002】[0002]

【従来の技術】高温型燃料電池用セパレータ材料として
は、金属、合金などの金属基成分とセラミックス成分特
に導電性セラミックス成分からなる複合材料が知られて
いる。しかしながら、このものは、全体的に均質であっ
て、酸化剤ガス側も還元剤ガス側も一定比率の金属基成
分とセラミックス成分を有し、しかも酸化剤ガスに安定
なセラミックス成分は還元剤ガスに弱く、還元剤ガスに
安定な金属基成分は酸化剤ガスで酸化されやすく耐食性
の劣化や導電性の低下を生じやすいことから、いずれの
側も高温の腐食性ガスに対して必ずしも十分安定なもの
とはいえないという問題がある。
2. Description of the Related Art As a high temperature type fuel cell separator material, a composite material comprising a metal base component such as a metal or an alloy and a ceramic component, particularly a conductive ceramic component is known. However, this is homogeneous throughout and has a certain ratio of metal base component and ceramics component on both the oxidizing gas side and the reducing agent gas side, and the ceramic component stable to the oxidizing gas is the reducing agent gas. The metal base component, which is weak against heat and is stable to reducing agent gas, is easily oxidized by the oxidizing agent gas and is likely to cause deterioration of corrosion resistance and deterioration of conductivity, so that both sides are not always sufficiently stable against high temperature corrosive gas. There is a problem that it cannot be called a thing.

【0003】他方、この問題を解決するために表裏の異
なる材料、例えば表側が金属で裏側がセラミックスから
なる貼り合わせ材料などが考えられるが、このものは表
裏が互いに機械的特性や熱的性質などの物性が異なるた
めに温度や圧力などの使用環境の変動により、そり、曲
がりなどの変形、剥がれなどの問題を生じやすい。
On the other hand, in order to solve this problem, a material having different front and back surfaces, such as a bonding material having a front surface made of metal and a back surface made of ceramics, can be considered. Due to the different physical properties of the product, problems such as warping and bending and peeling are likely to occur due to changes in the operating environment such as temperature and pressure.

【0004】[0004]

【発明が解決しょうとする課題】本発明は、このような
従来の高温型燃料電池用セパレータ材料のもつ欠点を克
服し、酸化剤ガス側及び還元剤ガス側のいずれにおいて
も高温の各腐食性ガスに対して十分安定で耐食性があ
り、しかもそり、曲がりなどの変形、剥がれなどの問題
を生じない高温型燃料電池用セパレータ材料を提供する
ことを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional separator material for a high temperature fuel cell, and has high temperature corrosiveness on both the oxidant gas side and the reducing agent gas side. The purpose of the present invention is to provide a high temperature fuel cell separator material which is sufficiently stable to gas and has corrosion resistance, and which does not cause problems such as warping, bending and other deformations and peeling.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の好
ましい性質を有する高温型燃料電池用セパレータ材料を
開発するために種々研究を重ねた結果、金属基成分と導
電性セラミックス成分、特に希土類・クロム複合酸化物
系導電性セラミックス成分とを組合せて複合化するとと
もに、その一方側から他方側にかけてこれら成分組成に
傾斜変化をもたせることにより、その目的を達成しうる
ことを見出し、この知見に基づいて本発明を完成するに
至った。
The inventors of the present invention have conducted various studies to develop a separator material for a high temperature fuel cell having the above-described preferable properties, and as a result, a metal base component and a conductive ceramic component, particularly It was found that the object can be achieved by combining the rare earth / chromium complex oxide-based conductive ceramics component to form a composite and changing the composition of these components from one side to the other side. The present invention has been completed based on the above.

【0006】すなわち、本発明は、金属、合金及び金属
間化合物の中から選ばれた少なくとも1種の金属基成分
と導電性セラミックス成分からなり、かつ酸化剤ガス側
が導電性セラミックス成分に富み、還元剤ガス側が金属
基成分に富むとともに、酸化剤ガス側から還元剤ガス側
にかけて成分組成を連続的あるいは段階的に傾斜変化さ
せたことを特徴とする高温型燃料電池用セパレータ材料
を提供するものである。
That is, the present invention comprises at least one metal base component selected from metals, alloys and intermetallic compounds and a conductive ceramic component, and the oxidant gas side is rich in the conductive ceramic component and reduced. Provided is a separator material for a high temperature fuel cell, characterized in that the agent gas side is rich in a metal group component, and the composition of the component is continuously or stepwise changed from the oxidizing agent gas side to the reducing agent gas side. is there.

【0007】本発明に用いる金属基成分としては、金
属、合金あるいは金属間化合物が用いられる。金属とし
ては、例えばNi、Coなどが挙げられる。また合金と
しては、例えばNi‐Cr系、Ni‐Cr‐Fe系、N
i‐Cr‐Mo系、Ni‐Cr‐Mo‐Co系、Ni‐
Cr‐Mo‐Fe系のようなNi基合金、Co‐Cr
系、Co‐Cr‐Fe系、Co‐Cr‐W系、Co‐C
r‐Ni‐W系のようなCo基合金などが挙げられる。
また金属間化合物としては、例えばNiAl、Ni
Al、NiAl、IC218、IC264などのNi
‐Al系、NiTiAlのようなNi‐Ti‐Al
系、CoTiのようなCo‐Ti系、TiAl、Ti
AlのようなTi‐Al系、VAlのようなV‐A
l系、NbAlのようなNb‐Al系、ZrAl
ようなZr‐Al系、FeAlのようなFe‐Al系、
MoSiのようなMo‐Si系、TiSiのよう
なTi‐Si系のものなどが挙げられ、特にNi‐Al
系金属間化合物が好ましい。
As the metal base component used in the present invention, a metal, an alloy or an intermetallic compound is used. Examples of the metal include Ni and Co. As the alloy, for example, Ni-Cr system, Ni-Cr-Fe system, N
i-Cr-Mo system, Ni-Cr-Mo-Co system, Ni-
Ni-based alloys such as Cr-Mo-Fe system, Co-Cr
System, Co-Cr-Fe system, Co-Cr-W system, Co-C
Examples thereof include Co-based alloys such as r-Ni-W system.
Further, as the intermetallic compound, for example, Ni 3 Al, Ni 2
Ni such as Al 3 , NiAl, IC218 and IC264
-Al system, Ni-Ti-Al such as Ni 2 TiAl
System, Co-Ti system such as Co 3 Ti, TiAl, Ti
Ti-Al system such as Al 3 , VA such as VAl 3
l system, NbAl systems such as NbAl 3, ZrAl systems such as ZrAl 3, FeAl systems such as FeAl,
Examples include Mo-Si-based materials such as MoSi 2 and Ti-Si-based materials such as Ti 5 Si 3 , especially Ni-Al.
Intermetallic compounds are preferred.

【0008】導電性セラミックス成分は特に制限されな
いが、希土類系酸化物、中でもランタンクロマイト系複
合酸化物やイットリウムクロマイト系複合酸化物のよう
な希土類・クロマイト系複合酸化物、特に一般式(I)
The conductive ceramic component is not particularly limited, but rare earth oxides, especially rare earth / chromite composite oxides such as lanthanum chromite composite oxide and yttrium chromite composite oxide, especially the general formula (I)

【化2】 (LはLa又はY、MはMg、Sr、Ca及びBaの中
から選ばれた少なくとも1種の元素、M′はCo、N
i、Fe、Ti、V、Mn、Al、Si、Zn、Cu、
Mo、Pd、W、Rh、Ir及びPtの中から選ばれた
少なくとも1種の元素、0≦x≦0.5、0≦y≦0.
5、0.95≦b/a≦1.05である)で表わされか
つペロブスカイト構造を有するものが好ましい。これら
は単独で用いてもよいし、また2種以上を組合せて用い
てもよい。
[Chemical 2] (L is La or Y, M is at least one element selected from Mg, Sr, Ca and Ba, M ′ is Co, N
i, Fe, Ti, V, Mn, Al, Si, Zn, Cu,
At least one element selected from Mo, Pd, W, Rh, Ir, and Pt, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.
5, 0.95 ≦ b / a ≦ 1.05) and has a perovskite structure. These may be used alone or in combination of two or more.

【0009】本発明の高温型燃料電池用セパレータ材料
は、これら金属基成分と導電性セラミックス成分からな
り、かつ酸化剤ガス側が導電性セラミックス成分に富
み、還元剤ガス側が金属基成分に富むとともに、酸化剤
ガス側から還元剤ガス側にかけて成分組成を連続的ある
いは段階的に傾斜変化させて成るものである。
The high temperature fuel cell separator material of the present invention comprises these metal base component and conductive ceramic component, and the oxidizing gas side is rich in conductive ceramic component and the reducing agent gas side is rich in metal base component. The composition is gradually or gradually changed from the oxidant gas side to the reducing agent gas side.

【0010】本発明においては、このように成分組成を
少しずつ変えていくことにより、物性的な変化も同傾向
とすることが可能である。
In the present invention, by gradually changing the component composition in this manner, it is possible to make the physical properties change in the same tendency.

【0011】すなわち、金属基成分の種類、導電性セラ
ミックス成分の種類、それらの組成を変動させることに
より、任意の部位あるいは各層の物性特に熱膨張率をほ
ぼ同様にそろえてマッチングさせるか、あるいは一方側
から他方側にかけてできるだけ可能な限り少しずつ緩徐
に又は段階的に傾斜変化させることにより、セパレータ
材料のそり、曲がりなどの変形、層間はく離などの不都
合を少なくとも一部防止することが可能になる。
That is, by varying the type of the metal-based component, the type of the conductive ceramics component, and the composition thereof, the physical properties of any part or each layer, in particular the coefficient of thermal expansion, are aligned in a substantially similar manner, or one of them is matched. By gradually or gradually changing the inclination from one side to the other side as much as possible, it is possible to prevent at least part of the inconveniences such as warpage and bending of the separator material, and delamination.

【0012】このように、各部位あるいは層間の金属基
成分と導電性セラミックス成分の割合の変化に応じ、熱
膨張についてマッチングあるいは傾斜変化をもたせるに
は、金属基成分の組成を固定すると、熱膨張率の高い金
属基成分の比率がより高い部位あるいは層ほど、より低
い熱膨張率をもつ組成の導電性セラミックス成分を組み
合わせるのが好ましい。換言すると、金属基成分の割合
の増大につれて熱膨張率も大きくなるが、他方のコンポ
ジット成分である導電性セラミックス成分の組成の熱膨
張率を小さくして全体として各部位あるいは層の熱膨張
率をほぼ一定に制御調整するのが好ましい。このために
は導電性セラミックス成分の組成を変動させるか、ある
いは成分を変えるのが実際的である。
As described above, in order to have a matching or gradient change in thermal expansion in accordance with the change in the ratio of the metal base component and the conductive ceramics component between the respective parts or layers, fixing the composition of the metal base component causes the thermal expansion. It is preferable to combine a conductive ceramic component having a composition having a lower coefficient of thermal expansion in a region or layer having a higher ratio of the metal base component having a higher coefficient. In other words, the coefficient of thermal expansion increases as the proportion of the metal-based component increases, but the coefficient of thermal expansion of the composition of the conductive ceramics component, which is the other composite component, is decreased to reduce the coefficient of thermal expansion of each part or layer as a whole. It is preferable that the control adjustment is made to be substantially constant. For this purpose, it is practical to change the composition of the conductive ceramics component or change the component.

【0013】また、還元側ほど金属基成分の比率がより
高く、しかも金属基成分の熱膨張率の方が導電性セラミ
ックス成分のそれよりも高く、例えば金属基成分のう
ち、比較的熱膨張率の低い金属間化合物の1例としての
NiAlの熱膨張率でも約13×10−6−1
あることから、還元側ほど導電性セラミックス成分とし
てより熱膨張率の低いものを用いるのが有利である。
Further, the ratio of the metal group component is higher toward the reducing side, and the coefficient of thermal expansion of the metal group component is higher than that of the conductive ceramics component. For example, the coefficient of thermal expansion of the metal group component is relatively high. The thermal expansion coefficient of Ni 2 Al 3 as an example of an intermetallic compound having a low thermal conductivity is also about 13 × 10 −6 ° C. −1 , so that a conductive ceramic component having a lower thermal expansion coefficient is used on the reducing side. Is advantageous.

【0014】このより低い熱膨張率をもつ導電性セラミ
ックス成分としては、ペロブスカイト型希土類クロマイ
ト系酸化物、特にランタンクロマイト系(熱膨張率10
×10−6−1)やそれよりも熱膨張率が小さいイッ
トリウムクロマイト系(熱膨張率8×10−6−1
のものが好ましい。さらに、該希土類クロマイト系酸化
物を混合して用いたり、そのペロブスカイト構造(AB
)におけるAサイトやBサイトの組成成分や成分間
の割合あるいは比率を変動させるのが好ましい。このB
サイトのCrの一部を置換する金属、例えばCoの量を
制御してその増減により熱膨張率を上下でき、またAサ
イトの希土類の一部を置換するアルカリ土類金属の量を
制御してその増減により熱膨張率を下げたり上げたりで
きる。このようにして本発明の高温型燃料電池用セパレ
ータ材料全体の熱膨張率を適宜調整することが可能とな
る。
As the conductive ceramic component having a lower coefficient of thermal expansion, perovskite type rare earth chromite type oxide, especially lanthanum chromite type (coefficient of thermal expansion 10
X10 -6 ° C -1 ) or yttrium chromite system having a smaller coefficient of thermal expansion than that (coefficient of thermal expansion 8x10 -6 ° C -1 )
Are preferred. Further, the rare earth chromite oxide is mixed and used, or the perovskite structure (AB
It is preferable to change the composition component of the A site or B site in O 3 ) or the ratio or ratio between the components. This B
By controlling the amount of metal that replaces part of the Cr in the site, for example, Co, the thermal expansion coefficient can be increased or decreased by increasing or decreasing it, and by controlling the amount of alkaline earth metal that replaces part of the rare earth in the A site. The coefficient of thermal expansion can be lowered or raised by the increase or decrease. In this way, the coefficient of thermal expansion of the entire high temperature fuel cell separator material of the present invention can be appropriately adjusted.

【0015】本発明の高温型燃料電池用セパレータ材料
の全体についての上記各成分の比率は、金属基成分と導
電性セラミックス成分との体積比で1:9〜5:5、特
に2:8〜4:6の範囲とするのが好ましい。この比が
大きすぎると耐酸化性等の耐食性に劣るし、また小さす
ぎると導電性や緻密化が不十分となるのを免れない。
The ratio of each of the above components in the whole high temperature fuel cell separator material of the present invention is 1: 9 to 5: 5, particularly 2: 8 to 5 by volume ratio of the metal base component and the conductive ceramics component. It is preferably in the range of 4: 6. If this ratio is too large, the corrosion resistance such as oxidation resistance will be poor, and if it is too small, the conductivity and densification will be insufficient.

【0016】本発明の高温型燃料電池用セパレータ材料
は、常用のフイルム・シート形成技術、例えばドクター
ブレード法などのコーテイング法、CVD法、蒸着法、
プラズマスプレー法、粒子焼結法、通電加熱法などの自
己発熱法、あるいはこれらの組み合わせ方法などにより
作成される。特に、各所定割合に成分比率を変えて調製
した金属基成分と導電性セラミックス成分からなる多数
のフイルムを各フイルム間において成分組成を段階的に
傾斜変化するように多層に積層し、一体にプレス成形し
たのち、適当な雰囲気、例えば還元性雰囲気下や不活性
ガス雰囲気下のような非酸化性雰囲気下、あるいは真空
中で焼成することによって得られる。この積層法は、通
常高温型燃料電池用セパレータの厚さは1cmまでであ
って積層シート化するのに適しているので実用的であ
る。
The high temperature fuel cell separator material of the present invention can be produced by a conventional film / sheet forming technique, for example, a coating method such as a doctor blade method, a CVD method, a vapor deposition method,
It is prepared by a plasma spray method, a particle sintering method, a self-heating method such as an electric heating method, or a combination thereof. In particular, a large number of films composed of a metal-based component and a conductive ceramics component prepared by changing the component ratio to each predetermined ratio are laminated in multiple layers so that the component composition gradually changes between the films, and they are pressed together. After molding, it is obtained by firing in an appropriate atmosphere, for example, a reducing atmosphere or a non-oxidizing atmosphere such as an inert gas atmosphere, or in vacuum. This lamination method is practical because the separator for a high temperature fuel cell usually has a thickness of up to 1 cm and is suitable for forming a laminated sheet.

【0017】本発明の高温型燃料電池用セパレータを作
成する際の問題点は、焼成や加熱処理時の収縮の程度が
任意の部位あるいは積層する各層によって異なってくる
点、及び各層間の密着の不十分なところから剥離を生じ
る点であるが、これを改善する好適な方法としては、液
相焼結法が挙げられる。例えば、重ね合わせた多層状構
造体物を加圧しながら電流を流し、通電により被通電物
を発熱させることによって金属成分を自己加熱溶融さ
せ、焼成する方法などである。この方法によれば溶融し
た金属はセラミックス粒子間を濡らすので、このような
液相焼結により焼成時の収縮の差を制御することができ
る。このような溶融成形品は多孔度に差のある導電性セ
ラミックス成分に溶融金属が入り込んだ形態のものであ
る。
The problems in preparing the high temperature fuel cell separator of the present invention are that the degree of shrinkage during firing or heat treatment varies depending on an arbitrary site or each layer to be laminated, and the adhesion between the layers. Although peeling occurs from an insufficient point, a suitable method for improving this is liquid phase sintering. For example, there is a method in which an electric current is applied while pressurizing the laminated multi-layered structures to heat an object to be energized to cause the metal component to self-heat and melt and fire. According to this method, the molten metal wets the ceramic particles, so that the difference in shrinkage during firing can be controlled by such liquid phase sintering. Such a melt-molded product has a form in which a molten metal is mixed in a conductive ceramic component having a different porosity.

【0018】また、本発明の高温型燃料電池用セパレー
タ材料においては、部位あるいは層ごとの熱膨張率が異
なることから、特に昇温又は降温時にたわみや歪みの発
生が懸念されるが、導電性セラミックス成分であるラン
タンクロマイト系複合酸化物がジルコニアよりも、また
イットリアクロマイト系複合酸化物がランタンクロマイ
ト系複合酸化物よりもそれぞれさらに熱膨張率が小さい
という優れた特性を有することから、各層ごとに金属基
成分とこれらの導電性セラミックス成分との体積比が変
化しても、セラミックス成分の組成を変えることによ
り、線膨張率等に代表される熱膨張率を適宜調整するこ
とができる。例えば、該高温型燃料電池用セパレータ材
料に、燃料電池等の固体電解質材料に常用のジルコニア
系材、例えばイットリア安定化ジルコニアなどとほぼ等
しい熱膨張率を容易にもたせることができる。
Further, in the high temperature fuel cell separator material of the present invention, since the coefficient of thermal expansion differs for each part or layer, there is a concern that bending or distortion may occur especially at the time of temperature increase or decrease, but the conductivity is high. The lanthanum chromite composite oxide, which is a ceramic component, has the excellent property that the coefficient of thermal expansion is smaller than that of zirconia and the yttria chromite composite oxide is smaller than that of the lanthanum chromite composite oxide. Even if the volume ratio between the metal-based component and these conductive ceramics components changes, the coefficient of thermal expansion represented by the linear expansion coefficient or the like can be appropriately adjusted by changing the composition of the ceramics component. For example, the separator material for a high temperature fuel cell can easily have a coefficient of thermal expansion almost equal to that of a zirconia-based material commonly used for solid electrolyte materials such as fuel cells, for example, yttria-stabilized zirconia.

【0019】したがって、本発明の高温型燃料電池用セ
パレータ材料は、固体電解質型燃料電池用などとして、
1000℃付近までの高温に及ぶ環境条件の変動にも十
分に耐えうる各部材の強固な接合を可能とする上に、本
来導電性に優れた金属基成分の特性を高温型燃料電池用
セパレータとして十分実用性のある導電性領域内で維持
することを十分可能とする。特に有利には、金属基成分
がNi‐Al系金属間化合物、導電性セラミックス成分
が一般式(I)で表わされるペロブスカイト構造のもの
であり、かつ両者の体積比が高温型燃料電池用セパレー
タ全体について前者:後者で1:9〜5:5、好ましく
は2:8〜4:6の範囲内にあるものが用いられる。
Therefore, the separator material for a high temperature fuel cell of the present invention is used for a solid electrolyte fuel cell, etc.
As a separator for high-temperature fuel cells, the characteristics of the metal-based component, which is originally excellent in conductivity, can be achieved, as well as the strong bonding of each member that can sufficiently withstand the change in environmental conditions up to high temperature up to around 1000 ° C. It is possible to sufficiently maintain the conductive region within a sufficiently practical range. Particularly preferably, the metal base component has a Ni-Al intermetallic compound, the conductive ceramic component has a perovskite structure represented by the general formula (I), and the volume ratio of the two is the whole high temperature fuel cell separator. Regarding the former: the latter, which is in the range of 1: 9 to 5: 5, preferably 2: 8 to 4: 6 is used.

【0020】次に、本発明のセパレータを用いた固体電
解質型燃料電池について説明する。先ず各部材について
説明すると、固体電解質は酸素イオン導電性を有するも
のであれば特に制限されず、例えばイットリア安定化ジ
ルコニア(YSZ)、カルシア安定化ジルコニア(CS
Z)など公知の固体電解質が挙げられ、通常は板状に形
成される。板状体とした場合、その厚さは通常0.05
〜0.3mm、好ましくは0.1〜0.25mmの範囲
で選ばれる。この厚さが0.05mmよりも薄いと、強
度が低下するし、また0.3mmを超えると抵抗が大き
くなりすぎて好ましくない。
Next, a solid oxide fuel cell using the separator of the present invention will be described. First, each member will be described. The solid electrolyte is not particularly limited as long as it has oxygen ion conductivity, and for example, yttria-stabilized zirconia (YSZ), calcia-stabilized zirconia (CS) is used.
Known solid electrolytes such as Z) are mentioned, and they are usually formed in a plate shape. When used as a plate, its thickness is usually 0.05.
˜0.3 mm, preferably 0.1 to 0.25 mm. If the thickness is less than 0.05 mm, the strength will decrease, and if it exceeds 0.3 mm, the resistance will be too large, which is not preferable.

【0021】カソードは酸素や空気などの酸化剤ガス通
路側なので、高温下で酸化剤ガスに対して耐食性のある
導電性材料、例えば、LaSr1−xMnOなどの
導電性複合酸化物材料を塗布して形成される。この塗布
方法としては、はけ塗り法やスクリーン印刷法などが用
いられる。その他、カソードの作成方法としては、CV
D法、プラズマCVD法、スパッタ法、溶射法などが用
いられる。
[0021] Since the cathode oxidant gas passage side such as oxygen or air, the conductive material with a corrosion resistance against oxidizing gas at a high temperature, for example, conductive complex oxide such as La x Sr 1-x MnO 3 It is formed by applying a material. As the coating method, a brush coating method, a screen printing method or the like is used. In addition, as a method of forming the cathode, CV
D method, plasma CVD method, sputtering method, thermal spraying method and the like are used.

【0022】アノードは水素などの燃料ガス通路側なの
で、高温下で燃料ガスに対して耐食性のある導電性材
料、例えばNi/ZrOサーメットなどで形成され
る。
Since the anode is on the side of the fuel gas passage such as hydrogen, it is formed of a conductive material having corrosion resistance to the fuel gas at high temperature, such as Ni / ZrO 2 cermet.

【0023】このように固体電解質板の両面に各電極を
形成したものを高温型燃料電池用セパレータを介して接
合集積し、両端には外部端子をそれぞれ設けることによ
り、多数のセルからなる多段直列型の電池に形成され
る。
As described above, the solid electrolyte plates having the respective electrodes formed on both sides are joined and integrated through the high-temperature fuel cell separator, and external terminals are provided at both ends of the solid electrolyte plate to form a multi-stage series composed of a large number of cells. Molded battery is formed.

【0024】[0024]

【発明の効果】本発明の高温型燃料電池用セパレータ材
料は、強度や導電性を維持したままで、酸化剤ガス側及
び還元剤ガス側のいずれにおいても高温の各腐食性ガス
に対して十分安定で耐食性であり、しかもそり、曲がり
などの変形、剥がれなどを生じることがない。
EFFECTS OF THE INVENTION The high temperature fuel cell separator material of the present invention is sufficiently resistant to high temperature corrosive gases on both the oxidant gas side and the reducing agent gas side while maintaining strength and conductivity. It is stable and resistant to corrosion, and does not cause warping, bending, or other deformation or peeling.

【0025】したがって、本発明材料からなる高温型燃
料電池用セパレータは、これを組み込んだ高温型燃料電
池の性能を長期間保持させることができる。
Therefore, the high temperature fuel cell separator made of the material of the present invention can maintain the performance of the high temperature fuel cell incorporating the separator for a long period of time.

【0026】中でも、固体電解質型燃料電池用セパレー
タ、特に導電性セラミックス成分にイットリウムクロマ
イトやランタンクロマイトなどの希土類・クロマイト系
複合酸化物を用いたものは、ジルコニアに比べて小さい
熱膨張率を有することから、金属基成分とそれら導電性
セラミックス成分との比率を適宜変えることで導電性を
そこなうことなく、線膨張率に代表される熱膨張率を制
御することが可能となり、固体電解質材料等との熱膨張
率の整合性を高めうるので、該比率を最適化して熱膨張
率を燃料電池の固体電解質のそれとほぼ一致させること
により、該高温型燃料電池用セパレータを組み込んだ燃
料電池において各部材の強固な接合を可能とし、ガス封
止の安定性に優れ、電池特性を向上させることができる
という顕著な効果を奏する。
Among them, a solid oxide fuel cell separator, particularly one using a rare earth / chromite complex oxide such as yttrium chromite or lanthanum chromite as a conductive ceramic component, has a coefficient of thermal expansion smaller than that of zirconia. Therefore, it is possible to control the thermal expansion coefficient represented by the linear expansion coefficient by appropriately changing the ratio of the metal-based component and those conductive ceramics components, without impairing the conductivity, and with the solid electrolyte material and the like. Since the consistency of the coefficient of thermal expansion can be enhanced, by optimizing the ratio and making the coefficient of thermal expansion substantially coincide with that of the solid electrolyte of the fuel cell, in the fuel cell incorporating the separator for a high temperature fuel cell, A remarkable effect that enables strong bonding, excellent gas sealing stability, and improved battery characteristics. Unlikely to.

【0027】[0027]

【実施例】【Example】

実施例1 NiAl(共立窯業原料社製、商品名N2A3)粉
末と粒径1μm以下のLa0.8−xSr0.2
1−yCo粉末とをそれぞれ所定の割合で配合
しボールミルで混合した後、これらをドクターブレード
法によりシートに作成した。得られた各シートを乾燥後
100mmφの大きさに打ち抜きその成分組成が各シー
ト間で段階的に傾斜変化するように積層し、熱圧着によ
り一体化させ、空気中400℃にて一昼夜脱脂処理を行
った。次いで、窒素雰囲気中、1150℃、250kg
/cmの加圧下でプレス焼成を行い、セパレータ材料
を作成した。
Example 1 Ni 2 Al 3 (manufactured by Kyoritsu Kiln Raw Materials Co., Ltd., trade name N2A3) powder and La x Y 0.8-x Sr 0.2 C having a particle size of 1 μm or less.
r 1-y Co y O 3 powder was blended at a predetermined ratio and mixed by a ball mill, and then these were formed into a sheet by a doctor blade method. After drying each of the obtained sheets, they were punched into a size of 100 mmφ and laminated so that the component composition gradually changed between the sheets, integrated by thermocompression bonding, and subjected to degreasing treatment in air at 400 ° C for one day. went. Then, in a nitrogen atmosphere, 1150 ° C, 250 kg
Press firing was performed under a pressure of / cm 2 to prepare a separator material.

【0028】このセパレータ材料は800〜1000℃
の所定雰囲気下において前記体積比のNiAl含有
量範囲内で十分な導電性を示し、また1000℃におけ
る線膨張率は、10.3×10−6−1とジルコニア
のそれに近い値を示した。
This separator material is 800 to 1000 ° C.
Shows a sufficient conductivity within the Ni 2 Al 3 content range of the volume ratio under a predetermined atmosphere, and the coefficient of linear expansion at 1000 ° C. is 10.3 × 10 −6 ° C. −1 , which is close to that of zirconia. showed that.

【0029】この材料の各層の導電性セラミックス及び
各層全体についてそれぞれ組成及び1000℃における
熱膨張率を測定した結果を表1に示す。
Table 1 shows the results of measuring the composition and the coefficient of thermal expansion at 1000 ° C. of the conductive ceramics of each layer of this material and the entire layers.

【表1】 *NiAl:導電性セラミックス[Table 1] * Ni 2 Al 3 : conductive ceramics

【0030】実施例2 3段直列セルの固体電解質型燃料電池を以下のとおり作
製した。先ず、高温型燃料電池用セパレータ、外部端子
を実施例1で得た高温型燃料電池用セパレータ材料を用
いて作製した。高温型燃料電池用セパレータ及び外部端
子はいずれも50×50×5mmの正方形の板に溝幅2
mm、溝深さ1.5mmの溝を各8本形成したものであ
る。高温型燃料電池用セパレータでは両面に形成する溝
の方向を直交させた。
Example 2 A solid oxide fuel cell of a three-stage series cell was prepared as follows. First, a high temperature fuel cell separator and external terminals were produced using the high temperature fuel cell separator material obtained in Example 1. The separator for the high temperature fuel cell and the external terminals are both 50 × 50 × 5 mm square plates with groove width 2
mm, the groove depth is 1.5 mm, and eight grooves each are formed. In the high-temperature fuel cell separator, the grooves formed on both sides were orthogonal to each other.

【0031】また、固体電解質板には、イットリアを3
モル%添加した部分安定化ジルコニアからなる50×5
0×0.2mmの板状物を用いた。そして、酸素通路側
にLaSrMnO粉末(平均粒径5μ
m)を厚さ0.3mmに塗布してカソードとし、水素通
路側にNi/ZrO(10/1重量比)のサーメット
混合粉末を厚さ0.3mmに塗布してアノードとした。
Further, yttria is used as the solid electrolyte plate.
50 × 5 consisting of partially stabilized zirconia added with mol%
A plate having a size of 0 × 0.2 mm was used. Then, La 0 . 9 Sr 0 . 1 MnO 3 powder (average particle size 5μ
m) was applied to a thickness of 0.3 mm to serve as a cathode, and a cermet mixed powder of Ni / ZrO 2 (10/1 weight ratio) was applied to the hydrogen passage side to a thickness of 0.3 mm to serve as an anode.

【0032】この電極を付設した固体電解質板と実施例
1で得られた表1記載の積層物を導電性セラミックスだ
けからなる層をカソード側にして高温型燃料電池用セパ
レータ、外部端子を単セルが3層になるように集積し、
この電極付き固体電解質板と高温型燃料電池用セパレー
タの間はジルコニア系の無機接着剤で接着し、軟化点が
約800℃のガラスペーストを塗布してガス封止をし
た。このガラスペーストは電池の作動温度で軟化してガ
スを封止する。
The solid electrolyte plate provided with this electrode and the laminate shown in Table 1 obtained in Example 1 were used as a separator for a high temperature fuel cell and a single cell was used as a separator for a high temperature fuel cell with a layer consisting only of conductive ceramics as the cathode side. Are integrated so that there are 3 layers,
A zirconia-based inorganic adhesive was used to bond the electrode-attached solid electrolyte plate and the high-temperature fuel cell separator to each other, and a glass paste having a softening point of about 800 ° C. was applied to seal the gas. This glass paste softens at the operating temperature of the battery and seals the gas.

【0033】こうして集積した電池本体を円筒状アルミ
ナ製マニホールドに納めた。マニホールドと電池本体と
の接触部分はガラスペーストを塗布してガス封止した。
外部端子には、白金リード線を挿入し、電気的接続を行
った。
The battery body thus integrated was placed in a cylindrical alumina manifold. The contact portion between the manifold and the battery body was coated with glass paste and gas-sealed.
A platinum lead wire was inserted into the external terminal for electrical connection.

【0034】このようにして作製した燃料電池を加熱し
た。すなわち、室温から150℃までは1℃/分で加熱
し、ガラスペーストの溶媒を蒸発させた。150〜35
0℃までは5℃/分で昇温した。350℃以上では水素
通路側には、アノードの酸化を防止するため、窒素ガス
を流し、5℃/分で1000℃まで昇温した。その後、
1000℃に保持してアノード側に水素、カソード側に
酸素を流し、発電を開始した。開放電圧は3.8Vであ
った。
The fuel cell thus produced was heated. That is, the solvent of the glass paste was evaporated by heating from room temperature to 150 ° C at 1 ° C / min. 150-35
The temperature was raised to 0 ° C at 5 ° C / min. At 350 ° C. or higher, nitrogen gas was flown on the hydrogen passage side to prevent oxidation of the anode, and the temperature was raised to 1000 ° C. at 5 ° C./min. afterwards,
The temperature was maintained at 1000 ° C., hydrogen was flown on the anode side and oxygen was flown on the cathode side to start power generation. The open circuit voltage was 3.8V.

【0035】次に、放電特性を表2に示す。Next, the discharge characteristics are shown in Table 2.

【表2】 [Table 2]

フロントページの続き (72)発明者 桜田 智 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内Continued Front Page (72) Inventor Satoshi Sakurada 1-3-1 Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属、合金及び金属間化合物の中から選
ばれた少なくとも1種の金属基成分と導電性セラミック
ス成分からなり、かつ酸化剤ガス側が導電性セラミック
ス成分に富み、還元剤ガス側が金属基成分に富むととも
に、酸化剤ガス側から還元剤ガス側にかけて成分組成を
連続的あるいは段階的に傾斜変化させたことを特徴とす
る高温型燃料電池用セパレータ材料。
1. At least one metal base component selected from the group consisting of metals, alloys and intermetallic compounds and a conductive ceramic component, wherein the oxidant gas side is rich in the conductive ceramic component and the reducing agent gas side is a metal. A separator material for a high temperature fuel cell, which is rich in a base component and whose composition is gradually or gradually changed from the oxidizing gas side to the reducing gas side.
【請求項2】 多層構造を有し、かつ各層間において酸
化剤ガス側から還元剤ガス側に向かうにつれて、成分組
成を段階的に傾斜変化させたことを特徴とする請求項1
記載の高温型燃料電池用セパレータ材料。
2. A multi-layered structure, wherein the composition of components is gradually changed from the oxidant gas side toward the reducing agent gas side in each layer.
The high temperature fuel cell separator material described.
【請求項3】 導電性セラミックス成分が下記一般式で
表わされる希土類・クロマイト系複合酸化物である請求
項1又は2記載の高温型燃料電池用セパレータ材料。 【化1】 (LはLa又はY、MはMg、Sr、Ca及びBaの中
から選ばれた少なくとも1種の元素、M′はCo、N
i、Fe、Ti、V、Mn、Al、Si、Zn、Cu、
Mo、Pd、W、Rh、Ir及びPtの中から選ばれた
少なくとも1種の元素、0≦x≦0.5、0≦y≦0.
5、0.95≦b/a≦1.05である)
3. The high temperature fuel cell separator material according to claim 1, wherein the conductive ceramic component is a rare earth / chromite complex oxide represented by the following general formula. [Chemical 1] (L is La or Y, M is at least one element selected from Mg, Sr, Ca and Ba, M ′ is Co, N
i, Fe, Ti, V, Mn, Al, Si, Zn, Cu,
At least one element selected from Mo, Pd, W, Rh, Ir, and Pt, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.
5, 0.95 ≦ b / a ≦ 1.05)
【請求項4】 金属基成分と導電性セラミックス成分と
の体積比が1:9〜5:5である請求項1ないし3のい
ずれかに記載の高温型燃料電池用セパレータ材料。
4. The high temperature fuel cell separator material according to claim 1, wherein the volume ratio of the metal base component to the conductive ceramics component is 1: 9 to 5: 5.
【請求項5】 各所定割合に成分比率を変えて調製した
金属基成分と導電性セラミックス成分からなる多数のフ
イルムを各フイルム間において成分組成が段階的に傾斜
変化するように多層に積層し、一体にプレス成形したの
ち、焼成することを特徴とする高温型燃料電池用セパレ
ータ材料の製造方法。
5. A multiplicity of films comprising a metal-based component and a conductive ceramics component prepared by changing the component ratio to each predetermined ratio are laminated in multiple layers so that the component composition gradually changes between the films, A method for producing a separator material for a high temperature fuel cell, which comprises press-molding integrally and firing.
JP3186936A 1991-07-02 1991-07-02 Separator material for high temperature type fuel cell Pending JPH05121060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186936A JPH05121060A (en) 1991-07-02 1991-07-02 Separator material for high temperature type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186936A JPH05121060A (en) 1991-07-02 1991-07-02 Separator material for high temperature type fuel cell

Publications (1)

Publication Number Publication Date
JPH05121060A true JPH05121060A (en) 1993-05-18

Family

ID=16197314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186936A Pending JPH05121060A (en) 1991-07-02 1991-07-02 Separator material for high temperature type fuel cell

Country Status (1)

Country Link
JP (1) JPH05121060A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164821A (en) * 2004-12-09 2006-06-22 Toyota Motor Corp Fuel cell
JP2007273358A (en) * 2006-03-31 2007-10-18 Kyocera Corp Collector member for fuel cell, cell stack and fuel cell
JP2007317610A (en) * 2006-05-29 2007-12-06 Kyocera Corp Cell stack and fuel battery
JP2008081804A (en) * 2006-09-28 2008-04-10 Kyocera Corp Heat resistant alloy member, current collecting member for fuel cell, fuel cell stack, and fuel cell
JP2010212036A (en) * 2009-03-10 2010-09-24 Noritake Co Ltd Solid oxide fuel cell and interconnector for the cell
WO2013157683A1 (en) * 2012-04-19 2013-10-24 주식회사뉴테크 Ceramic interconnect and synthesis method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164821A (en) * 2004-12-09 2006-06-22 Toyota Motor Corp Fuel cell
JP2007273358A (en) * 2006-03-31 2007-10-18 Kyocera Corp Collector member for fuel cell, cell stack and fuel cell
JP2007317610A (en) * 2006-05-29 2007-12-06 Kyocera Corp Cell stack and fuel battery
JP2008081804A (en) * 2006-09-28 2008-04-10 Kyocera Corp Heat resistant alloy member, current collecting member for fuel cell, fuel cell stack, and fuel cell
JP2010212036A (en) * 2009-03-10 2010-09-24 Noritake Co Ltd Solid oxide fuel cell and interconnector for the cell
WO2013157683A1 (en) * 2012-04-19 2013-10-24 주식회사뉴테크 Ceramic interconnect and synthesis method therefor

Similar Documents

Publication Publication Date Title
US5035962A (en) Layered method of electrode for solid oxide electrochemical cells
US7645535B2 (en) Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks
US9120683B2 (en) Method and device using a ceramic bond material for bonding metallic interconnect to ceramic electrode
EP0338823A1 (en) Solid electrolyte type fuel cells
JP5134949B2 (en) Conductive steel-ceramic composite and method for producing the same
JPH08185870A (en) Separator for solid electrolyte fuel cell
JP2002289248A (en) Unit cell for fuel cell and solid electrolytic fuel cell
JP2010113955A (en) Interconnector for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
JPH05121060A (en) Separator material for high temperature type fuel cell
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JP5706161B2 (en) Functional layer and manufacturing method for high temperature fuel cells
JPH05178664A (en) Composite dense material and its production
JP3533272B2 (en) Solid oxide fuel cell separator
JPH06219834A (en) Sintered compact with electric conductivity at high temperature and its production
US8226858B2 (en) Interconnect material for solid oxide fuel cell and process for the preparation thereof
JPH0681062A (en) Sintered compact with high-temperature electric conductivity and its production
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
KR100832402B1 (en) Metallic interconnects in solid oxide fuel cell and manufacturing method thereof
JPH0250983A (en) Heat-resistant parts
JP3755545B2 (en) Composite ceramics, separator containing the same, and solid oxide fuel cell using the separator
KR20080057550A (en) Seperator for solid oxide fuel cell and preparing method thereof
JPH09265999A (en) Solid electrolyte type fuel cell and its manufacture
JPH08306373A (en) Operation method for high-temperature type fuel cell, and high-temperature type fuel cell