JP2007317610A - Cell stack and fuel battery - Google Patents

Cell stack and fuel battery Download PDF

Info

Publication number
JP2007317610A
JP2007317610A JP2006148574A JP2006148574A JP2007317610A JP 2007317610 A JP2007317610 A JP 2007317610A JP 2006148574 A JP2006148574 A JP 2006148574A JP 2006148574 A JP2006148574 A JP 2006148574A JP 2007317610 A JP2007317610 A JP 2007317610A
Authority
JP
Japan
Prior art keywords
electrode layer
oxygen electrode
layer
current collecting
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006148574A
Other languages
Japanese (ja)
Other versions
JP5013750B2 (en
Inventor
Norimitsu Fukamizu
則光 深水
Kenji Shimazu
健児 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006148574A priority Critical patent/JP5013750B2/en
Publication of JP2007317610A publication Critical patent/JP2007317610A/en
Application granted granted Critical
Publication of JP5013750B2 publication Critical patent/JP5013750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell stack and a fuel battery which can improve bonding strength of a plate collector member to a fuel battery cell. <P>SOLUTION: In the cell stack, respective plate collector members 20 are placed in spaces between a plurality of fuel battery cells 1, in each of which a solid electrolyte layer 3 is sandwiched between an oxygen electrode layer 4 and a fuel electrode layer 2, and the plate collector member 20 is bonded to the oxygen electrode layer 4 of the fuel battery cell 1 for the fuel battery cell 1 and the plate collector member 20 to be electrically connected. The oxygen electrode layer 4 has a first oxygen electrode layer 4a placed on the solid electrolyte layer 3 and a second oxygen electrode layer 4b placed on the first oxygen electrode layer 4a. The first oxygen electrode layer 4a is made of conductive ceramic particles in an average size less than the particles of the second oxygen electrode layer 4b, one main side surface of the plate collector member 20 is bonded to the first oxygen electrode layer 4a, and a side surface of the plate collector member 20 is bonded to the second oxygen electrode layer 4b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の燃料電池セル間にそれぞれ板状集電部材を配置し、燃料電池セルと板状集電部材とを電気的に接続してなるセルスタック及び燃料電池に関する。   The present invention relates to a cell stack and a fuel cell in which a plate current collecting member is disposed between a plurality of fuel cells, and the fuel cell and the plate current collecting member are electrically connected.

次世代エネルギーとして、近年、例えば、燃料電池セルのセルスタックを収納容器内に収容した燃料電池が種々提案されている。固体電解質形燃料電池は、複数の燃料電池セルを電気的に接続したセルスタックを収納容器内に収容して構成され、燃料電池セルの燃料極層側に燃料ガス(水素)を流し、空気極層(酸素極層ともいう。)側に空気(酸素)を流して600〜900℃の高温で発電する。燃料電池セル間を電気的に接続するためには、従来からフェルト状や板状の集電部材が用いられている。   In recent years, various fuel cells in which a cell stack of fuel cells is accommodated in a storage container have been proposed as next-generation energy. A solid oxide fuel cell is configured by storing a cell stack in which a plurality of fuel cells are electrically connected in a storage container, and flowing a fuel gas (hydrogen) to the fuel electrode layer side of the fuel cell, Electricity is generated at a high temperature of 600 to 900 ° C. by flowing air (oxygen) to the layer (also referred to as oxygen electrode layer) side. In order to electrically connect the fuel cells, a felt-like or plate-like current collecting member has been conventionally used.

従来、セルスタックとして、燃料電池セル間に板状の集電部材を配置し、燃料電池セルと板状集電部材とを導電性ペーストで接合し、燃料電池セルと集電部材との間を電気的に接続したものが知られている(例えば、特許文献1参照)。
特開2005−19239号公報
Conventionally, as a cell stack, a plate-shaped current collecting member is disposed between fuel cells, the fuel cell and the plate-shaped current collecting member are joined with a conductive paste, and the space between the fuel cell and the current collecting member is What was electrically connected is known (for example, refer patent document 1).
JP 2005-19239 A

しかしながら、上記特許文献1記載の従来のセルスタックでは、燃料電池セルの酸素極層に、板状集電部材を導電性ペーストで接合していたため、板状集電部材の酸素極層への接合強度が低いという問題があった。   However, in the conventional cell stack described in Patent Document 1, since the plate-like current collecting member is joined to the oxygen electrode layer of the fuel cell by a conductive paste, the plate-like current collecting member is joined to the oxygen electrode layer. There was a problem of low strength.

即ち、燃料電池セルの酸素極層は、酸素を固体電解質層まで供給する必要があったため多孔質であり、酸素極層の固体電解質層への接合強度が低い上、さらに、多孔質酸素極層上に板状集電部材を接合する必要があるため酸素極層と板状集電部材との接合強度も低くなり、板状集電部材が燃料電池セルから剥離することにより、結果として、発電出力が低下するという問題があった。   That is, the oxygen electrode layer of the fuel cell is porous because oxygen needs to be supplied to the solid electrolyte layer, and the bonding strength of the oxygen electrode layer to the solid electrolyte layer is low. Since it is necessary to join the plate-like current collector member on the top, the bonding strength between the oxygen electrode layer and the plate-like current collector member is also reduced, and the plate-like current collector member is peeled off from the fuel cell, resulting in power generation. There was a problem that the output decreased.

本発明は、板状集電部材の燃料電池セルへの接合強度を向上し、接続抵抗を低減して高出力を達成できるセルスタック及び燃料電池を提供することを目的とする。   It is an object of the present invention to provide a cell stack and a fuel cell that can improve the bonding strength of a plate-like current collecting member to a fuel cell, reduce connection resistance, and achieve high output.

本発明のセルスタックは、固体電解質層を酸素極層と燃料極層とで挟持してなる複数の燃料電池セル間に、それぞれ板状集電部材を配置するとともに、前記燃料電池セルの前記酸素極層に前記板状集電部材を接合し、前記燃料電池セルと前記板状集電部材とを電気的に接続してなるセルスタックであって、前記酸素極層を、前記固体電解質層上に設けられた第1酸素極層と、該第1酸素極層上に設けられた第2酸素極層とを具備して構成するとともに、前記第1酸素極層が前記第2酸素極層よりも平均粒径が小さい導電性セラミック粒子から構成し、かつ前記板状集電部材の一方側主面が前記第1酸素極層に接合し、前記板状集電部材の側面が前記第2酸素極層に接合していることを特徴とする。第1酸素極層は平均粒径が1μm以下の導電性セラミック粒子からなることが望ましい。   In the cell stack of the present invention, a plate-shaped current collecting member is disposed between a plurality of fuel cells each having a solid electrolyte layer sandwiched between an oxygen electrode layer and a fuel electrode layer, and the oxygen of the fuel cell A cell stack formed by joining the plate current collector to an electrode layer and electrically connecting the fuel cell and the plate current collector, wherein the oxygen electrode layer is disposed on the solid electrolyte layer. And a second oxygen electrode layer provided on the first oxygen electrode layer, wherein the first oxygen electrode layer is formed from the second oxygen electrode layer. Are formed of conductive ceramic particles having a small average particle diameter, and one side main surface of the plate-like current collecting member is joined to the first oxygen electrode layer, and the side surface of the plate-like current collecting member is the second oxygen It is characterized by being bonded to the extreme layer. The first oxygen electrode layer is preferably made of conductive ceramic particles having an average particle size of 1 μm or less.

このようなセルスタックでは、緻密な固体電解質層上に微粒な導電性セラミック粒子からなる第1酸素極層が強固に接合し、さらに、第1酸素極層は微粒な導電性セラミック粒子同士が強固に接合しているため強度が大きい。このような第1酸素極層上に板状集電部材の主面が接合されているため、第1酸素極層の固体電解質層への接合強度を向上でき、ひいては板状集電部材の固体電解質層への接合強度を向上できる。   In such a cell stack, the first oxygen electrode layer made of fine conductive ceramic particles is firmly bonded on the dense solid electrolyte layer, and further, the first oxygen electrode layer is made of fine conductive ceramic particles firmly bonded to each other. High strength due to bonding. Since the main surface of the plate-like current collecting member is joined on such a first oxygen electrode layer, the bonding strength of the first oxygen electrode layer to the solid electrolyte layer can be improved, and consequently the solid of the plate-like current collecting member. Bonding strength to the electrolyte layer can be improved.

また、本発明のセルスタックは、前記第1酸素極層が、前記第2酸素極層よりも緻密質であることを特徴とする。このようなセルスタックでは、第1酸素極層の固体電解質層への接合強度を向上できるとともに、板状集電部材の第1酸素極層への接合強度を向上でき、従って、板状集電部材の固体電解質層への接合強度を向上できる。   The cell stack of the present invention is characterized in that the first oxygen electrode layer is denser than the second oxygen electrode layer. In such a cell stack, the bonding strength of the first oxygen electrode layer to the solid electrolyte layer can be improved, and the bonding strength of the plate current collector to the first oxygen electrode layer can be improved. The bonding strength of the member to the solid electrolyte layer can be improved.

さらに、本発明のセルスタックは、前記第1酸素極層及び前記第2酸素極層が、La及びFeを含有するペロブスカイト型複合酸化物からなることを特徴とする。このようなセルスタックでは、第1酸素極層及び第2酸素極層が、La及びFeを含有するペロブスカイト型複合酸化物、例えば、LaSrCoFeO系からなるため、LaMnO系と異なり、酸素イオン伝導性と電子伝導性を併せ持つ混合導電性を有し、微粒でかつ緻密な導電性セラミック粒子からなる第1酸素極層であっても、酸素極としての機能を発揮できる。従って、より緻密な第1酸素極層を形成したとしても、酸素極としての機能を発揮できるとともに、板状集電部材の固体電解質層への接合強度を向上できる。 Furthermore, the cell stack of the present invention is characterized in that the first oxygen electrode layer and the second oxygen electrode layer are made of a perovskite complex oxide containing La and Fe. In such a cell stack, a first oxygen electrode layer and a second oxygen electrode layer is a perovskite-type composite oxide containing La and Fe, for example, to become a LaSrCoFeO 3 system, unlike the LaMnO 3 system, the oxygen ion-conducting Even if it is the 1st oxygen electrode layer which has the mixed electroconductivity which has a property and electronic conductivity, and consists of a fine and dense electroconductive ceramic particle, the function as an oxygen electrode can be exhibited. Therefore, even if the denser first oxygen electrode layer is formed, the function as the oxygen electrode can be exhibited, and the bonding strength of the plate-like current collecting member to the solid electrolyte layer can be improved.

また、本発明のセルスタックは、前記板状集電部材が、Crを含有する耐熱性合金の表面に、Znを含有するCr拡散防止層と、LaとFe又はMnとを含有するペロブスカイト型複合酸化物及び亜鉛酸化物を含有する被覆層とを順次積層してなることを特徴とする。   In the cell stack of the present invention, the plate-like current collecting member has a Cr diffusion preventing layer containing Zn on the surface of a heat-resistant alloy containing Cr, and a perovskite type composite containing La and Fe or Mn. A coating layer containing an oxide and a zinc oxide is sequentially laminated.

また、前記板状集電部材が、Crを含有する耐熱性合金の表面に、Znを含有するCr拡散防止層と、前記燃料電池セルの酸素極層を構成する成分の少なくとも一部を含有するペロブスカイト型複合酸化物及び亜鉛酸化物を含有する被覆層とにより順次積層してなることを特徴とする。   Further, the plate-like current collecting member contains at least part of components constituting the Cr diffusion preventing layer containing Zn and the oxygen electrode layer of the fuel cell on the surface of the heat-resistant alloy containing Cr. It is characterized by being sequentially laminated with a coating layer containing a perovskite complex oxide and zinc oxide.

このようなセルスタックでは、Cr拡散防止層により耐熱性合金中のCrが外部に拡散することを防止することができ、燃料電池セルのいわゆるCr被毒を防止することが可能なセルスタックを実現することができる。また、燃料電池セル間に集電部材を配置し、集電部材と燃料電池セルの酸素極層とを接合しても、被覆層が、酸素極層を構成する成分の少なくとも一部を含有するペロブスカイト構造の複合酸化物と、Cr拡散防止層、導電層を構成する亜鉛酸化物とを含有するため、又はLaとFe又はMnとを含有するペロブスカイト型複合酸化物及び亜鉛酸化物を含有するため、被覆層が酸素極層と耐熱合金との中間の熱膨張係数を有することができるため、燃料電池セルの酸素極層と耐熱合金との熱膨張率の差を縮小することができ、酸素極層と板状集電部材との剥離を抑制することができ、燃料電池セル間の電気的接続信頼性を向上できる。   In such a cell stack, the Cr diffusion prevention layer can prevent Cr in the heat-resistant alloy from diffusing outside, and realizes a cell stack that can prevent so-called Cr poisoning of the fuel cell. can do. Moreover, even if it arrange | positions a current collection member between fuel cell and joins a current collection member and the oxygen electrode layer of a fuel cell, a coating layer contains at least one part of the component which comprises an oxygen electrode layer. Because it contains a complex oxide having a perovskite structure and a zinc oxide constituting a Cr diffusion preventing layer and a conductive layer, or because it contains a perovskite type complex oxide and zinc oxide containing La, Fe, or Mn The coating layer can have an intermediate thermal expansion coefficient between the oxygen electrode layer and the heat-resistant alloy, so that the difference in the coefficient of thermal expansion between the oxygen electrode layer and the heat-resistant alloy of the fuel cell can be reduced. The peeling between the layer and the plate-like current collecting member can be suppressed, and the electrical connection reliability between the fuel cells can be improved.

即ち、板状集電部材としては、導電率の高い合金が採用され、さらに高温下で使用されることから、耐熱合金が望ましく採用され、このような導電率の高い耐熱合金として、Crを10〜30質量%含有する合金が一般的に用いられる。しかしながら、Crを含有する合金からなる集電部材を燃料電池セル間に配置し、複数の燃料電池セルを電気的に接続した場合、燃料電池を長期間稼働させると、集電部材中のCrが集電部材の外部に拡散してしまい、拡散したCrは酸素極層と固体電解質層との界面に達し、活性を劣化させてしまう。この現象は、いわゆるCr被毒といわれ、燃料電池セルの発電能力の低下を招くこととなる。   That is, as the plate-like current collecting member, an alloy having a high conductivity is adopted, and since it is used at a high temperature, a heat-resistant alloy is preferably adopted. As such a heat-resistant alloy having a high conductivity, Cr is 10%. An alloy containing -30% by mass is generally used. However, when a current collecting member made of an alloy containing Cr is disposed between fuel cells and a plurality of fuel cells are electrically connected, if the fuel cell is operated for a long time, Cr in the current collecting member It diffuses outside the current collecting member, and the diffused Cr reaches the interface between the oxygen electrode layer and the solid electrolyte layer and degrades the activity. This phenomenon is referred to as so-called Cr poisoning, and causes a decrease in the power generation capacity of the fuel cell.

このようなCr被毒を防止するため、従来、Crを含有する合金の表面をMn、Fe、Co、Niで被覆することが行われている(特表平11−501764号公報)が、Cr含有合金の表面をMn、Fe、Co、Niで被覆した場合、Cr含有合金中のCrが外部に拡散することをある程度抑制することができるものの、未だCrの拡散が多い。また、燃料電池セル間に集電部材が配置され、集電部材と燃料電池セルの部材とが接合され、電気的な接続を実現するが、集電部材を、Crを含有する合金の表面にMn、Fe、Co、Ni等の被覆層を設けて構成した場合、合金の表面の被覆層と、該被覆層が接合する燃料電池セルの部材との熱膨張率の差により、集電部材と燃料電池セル間が剥離し、燃料電池セルの電気的接続ができなくなる虞があった。これに対し、本発明のセルスタックでは、上記したように、Cr拡散防止層により耐熱性合金中のCrが外部に拡散することを防止することができ、燃料電池セルのいわゆるCr被毒を防止することが可能なセルスタックを実現することができるとともに、被覆層が酸素極層と耐熱合金との中間の熱膨張係数を有することができるため、燃料電池セルの酸素極層と耐熱合金との熱膨張率の差を縮小することができ、酸素極層と板状集電部材との剥離を抑制することができ、燃料電池セル間の電気的接続信頼性を向上できる。   In order to prevent such Cr poisoning, conventionally, the surface of an alloy containing Cr is coated with Mn, Fe, Co, and Ni (Japanese Patent Publication No. Hei 11-501764). When the surface of the containing alloy is coated with Mn, Fe, Co, and Ni, it is possible to suppress the diffusion of Cr in the Cr-containing alloy to the outside to some extent, but there is still much diffusion of Cr. In addition, a current collecting member is disposed between the fuel cells, and the current collecting member and the fuel cell member are joined to achieve electrical connection. The current collecting member is attached to the surface of the alloy containing Cr. When a coating layer of Mn, Fe, Co, Ni, etc. is provided, the current collector member is formed by the difference in thermal expansion coefficient between the coating layer on the surface of the alloy and the member of the fuel cell to which the coating layer is joined. There is a possibility that the fuel cells are peeled off and the fuel cells cannot be electrically connected. On the other hand, in the cell stack of the present invention, as described above, Cr in the heat-resistant alloy can be prevented from diffusing outside by the Cr diffusion preventing layer, and so-called Cr poisoning of the fuel cell is prevented. The cell stack can be realized, and the coating layer can have an intermediate thermal expansion coefficient between the oxygen electrode layer and the heat-resistant alloy. The difference in coefficient of thermal expansion can be reduced, peeling between the oxygen electrode layer and the plate current collector can be suppressed, and the reliability of electrical connection between fuel cells can be improved.

本発明の燃料電池は、上記セルスタックを収納容器内に収納してなることを特徴とする。このような燃料電池では、燃料電池セルへの板状集電部材の接合強度を向上でき、燃料電池の長期信頼性を向上できる。   The fuel cell of the present invention is characterized in that the cell stack is stored in a storage container. In such a fuel cell, the joining strength of the plate-like current collecting member to the fuel cell can be improved, and the long-term reliability of the fuel cell can be improved.

本発明のセルスタックでは、第1酸素極層が固体電解質層上に強固に接合し、第1酸素極層に板状集電部材の主面が強固に接合されているため、板状集電部材の固体電解質層への接合強度を向上できる。   In the cell stack of the present invention, the first oxygen electrode layer is firmly bonded onto the solid electrolyte layer, and the main surface of the plate current collector is firmly bonded to the first oxygen electrode layer. The bonding strength of the member to the solid electrolyte layer can be improved.

図1は本発明のセルスタックを示すもので、セルスタックは、複数の燃料電池セル1間に板状集電部材20を配置し、複数の燃料電池セル1を電気的に接続して構成されている。   FIG. 1 shows a cell stack according to the present invention. The cell stack is configured by arranging a plate-like current collecting member 20 between a plurality of fuel cells 1 and electrically connecting the plurality of fuel cells 1. ing.

図2は、板状集電部材20を示す斜視図であり、図3及び図4は図2に示す板状集電部材20の表面層202の被覆状態を示す説明図である。図3は図2に示すA−A線断面図であり、図4は図1の燃料電池セルとの接合構造を拡大して示す断面図である。板状集電部材20は、図2に示すように、例えば耐熱性合金の板を櫛刃状に加工し、隣り合う刃を交互に反対側に折り曲げて構成されている。   FIG. 2 is a perspective view showing the plate-like current collecting member 20, and FIGS. 3 and 4 are explanatory views showing a covering state of the surface layer 202 of the plate-like current collecting member 20 shown in FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 2, and FIG. 4 is an enlarged cross-sectional view showing a joint structure with the fuel cell shown in FIG. As shown in FIG. 2, the plate-like current collecting member 20 is formed, for example, by processing a heat-resistant alloy plate into a comb blade shape and alternately bending adjacent blades to the opposite side.

この集電部材20は、Crを含有する合金からなる耐熱性合金(以下、集電基材という。)201の表面に、Znを含む材料からなる表面層202を設けて構成されている。ここで、表面層202は、Cr拡散防止層202aと被覆層202bとがこの順に集電基材201の表面に積層されるように構成される。また、集電部材20は、図2に示すような形状のものに限定されるものではなく、例えば、円筒状、メッシュ状のものであってもよい。   The current collecting member 20 is configured by providing a surface layer 202 made of a material containing Zn on the surface of a heat resistant alloy (hereinafter referred to as a current collecting base material) 201 made of an alloy containing Cr. Here, the surface layer 202 is configured such that the Cr diffusion preventing layer 202a and the covering layer 202b are laminated on the surface of the current collecting base material 201 in this order. Further, the current collecting member 20 is not limited to the shape shown in FIG. 2, and may be, for example, a cylindrical shape or a mesh shape.

集電基材201としては、導電性及び耐熱性の高いCrを10〜30質量%含有する合金、例えばFe−Cr系合金、Ni−Cr系合金等が用いられる。また、Cr拡散防止層202aは、スピネル構造、コランダム構造、ウルツ鉱構造及び岩塩構造のうち少なくとも一種、またはこれらと類似の構造を持つ金属酸化物である。特に、Cr拡散防止層202aはZn−Mn系スピネルからなるもので、Fe、Cr等の元素を含有してもよい。Cr拡散防止層202aはZn−Mn系スピネル、例えば、(Zn,Mn)Mnから形成される。ZnとMnを含む金属酸化物はCrを固溶しにくいために、Crの拡散を抑制する効果を有している。 As the current collecting base material 201, an alloy containing 10 to 30% by mass of Cr having high conductivity and heat resistance, for example, an Fe—Cr alloy, a Ni—Cr alloy, or the like is used. The Cr diffusion preventing layer 202a is a metal oxide having at least one of a spinel structure, a corundum structure, a wurtzite structure, and a rock salt structure, or a structure similar to these. In particular, the Cr diffusion preventing layer 202a is made of Zn—Mn spinel and may contain elements such as Fe and Cr. The Cr diffusion preventing layer 202a is formed from a Zn—Mn spinel, for example, (Zn, Mn) Mn 2 O 4 . Since the metal oxide containing Zn and Mn hardly dissolves Cr, it has the effect of suppressing the diffusion of Cr.

Cr拡散防止層202aと被覆層202bとの界面に元素として亜鉛を含有する導電層が設けられているのでもよい。この導電層はZnOを含有するものであり、純粋なZnOは絶縁体であるが、Zn1+δOは陽イオン過剰型のn型半導体となり、価数の高い不純物元素を添加することによっても、n型の不純物半導体となる。ここで、ZnO中のZnは、+2価のイオンとなっているため、+3価以上のイオンとなる金属元素を固溶させることによって導電性が付与される。+3価以上のイオンとなる金属元素としては、特にAl、Feが望ましい。Al、Feを固溶させた酸化亜鉛からなる導電層は、大気中、発電温度近傍550℃〜900℃で、1S・cm−1以上の導電率を有することが好ましい。 A conductive layer containing zinc as an element may be provided at the interface between the Cr diffusion preventing layer 202a and the coating layer 202b. This conductive layer contains ZnO, and pure ZnO is an insulator. However, Zn 1 + δ O becomes a cation-rich n-type semiconductor, and by adding a high-valence impurity element, n 1 Type impurity semiconductor. Here, since Zn in ZnO is a +2 valent ion, conductivity is imparted by dissolving a metal element that becomes +3 or higher ion. Al and Fe are particularly desirable as the metal element that becomes +3 or more ions. The conductive layer made of zinc oxide in which Al and Fe are solid-solved preferably has a conductivity of 1 S · cm −1 or more at 550 ° C. to 900 ° C. near the power generation temperature in the atmosphere.

被覆層202bは、燃料電池セルの酸素極層を構成する成分の少なくとも一部を含有するペロブスカイト構造の複合酸化物及び亜鉛酸化物を含有するもので、具体的にはLaとFe又はMnとを含有するペロブスカイト型複合酸化物及び亜鉛酸化物を含有する。さらに具体的には、酸素極層の形成等に用いられるペロブスカイト型複合酸化物、例えば、LaFeO系又はLaMnO系と、ZnOとから構成することができる。 The coating layer 202b contains a composite oxide having a perovskite structure and zinc oxide containing at least a part of the components constituting the oxygen electrode layer of the fuel cell, and specifically includes La and Fe or Mn. It contains perovskite complex oxide and zinc oxide. More specifically, it can be composed of a perovskite complex oxide used for forming an oxygen electrode layer or the like, for example, LaFeO 3 or LaMnO 3 and ZnO.

このような被覆層202bは、酸素極層に用いられるLaFeO系、LaMnO系と、Cr拡散防止層202a、導電層に用いられるZnOとを含有するため、被覆層202bが酸素極層と集電基材のCr拡散防止層202a、導電層との中間の熱膨張係数を有することになり、燃料電池セルと集電部材との接合信頼性を向上でき、電圧低下の少ない長期信頼性に優れた燃料電池を得ることができる。 Such a coating layer 202b contains LaFeO 3 and LaMnO 3 systems used for the oxygen electrode layer, a Cr diffusion prevention layer 202a, and ZnO used for the conductive layer. It has an intermediate thermal expansion coefficient between the Cr diffusion preventing layer 202a of the electric base material and the conductive layer, and can improve the reliability of bonding between the fuel cell and the current collecting member, and has excellent long-term reliability with little voltage drop. A fuel cell can be obtained.

集電基材201中のCrは気化し外部に拡散してしまうので、Cr拡散防止層202aは、集電基材201の少なくとも表面全面を覆うように、緻密に設けることが好ましい。   Since Cr in the current collecting base material 201 is vaporized and diffused to the outside, the Cr diffusion preventing layer 202a is preferably provided densely so as to cover at least the entire surface of the current collecting base material 201.

Cr拡散防止層202aは2μm以下、特には1μm以下であれば、ある程度絶縁性であっても集電部材20としての導電性に影響を与えることがない。   If the Cr diffusion preventing layer 202a is 2 μm or less, particularly 1 μm or less, the conductivity as the current collecting member 20 is not affected even if it is insulating to some extent.

本発明のCr拡散防止層202aは、ディッピングによる場合は、Zn又はZnOを含有するペースト中に集電基材201を浸漬し、熱処理により、或いは発電時の加熱により形成することができる。   In the case of dipping, the Cr diffusion preventing layer 202a of the present invention can be formed by immersing the current collecting base material 201 in a paste containing Zn or ZnO, and by heat treatment or heating during power generation.

即ち、Cr拡散防止層がZn−Mn系スピネルからなる場合には、例えば、Mnを含有する集電基材201を用いて、これを、例えば、Zn又はZnOとFe又はAlとを含有するペースト中に浸漬し、熱処理することにより、集電基材201表面にZn−Mn系スピネルからなるCr拡散防止層202aが形成され、このCr拡散防止層202a表面にZnO中にFe又はAlを含有する導電層を形成することができる。 That is, when the Cr diffusion prevention layer is made of a Zn—Mn spinel, for example, using a current collecting base material 201 containing Mn, this is made of, for example, Zn or ZnO and Fe 2 O 3 or Al 2 O. 3 is immersed in a paste containing 3 and heat-treated to form a Cr diffusion preventing layer 202a made of Zn-Mn spinel on the surface of the current collecting base material 201, and ZnO on the surface of the Cr diffusion preventing layer 202a. A conductive layer containing Fe or Al can be formed.

また、Mnを含有しない集電基材201を用いる場合、これを、例えば、Zn又はZnOと、Fe又はAlと、Mnを含有するペースト中に浸漬し、熱処理することにより、Zn−Mn系スピネルからなるCr拡散防止層202aが形成され、ZnO中にFe又はAlを含有する導電層を形成することもできる。 In the case of using the current collector substrate 201 containing no Mn, it, for example, a Zn or ZnO, and Fe 2 O 3 or Al 2 O 3, it was immersed in the paste in containing Mn, by heat treatment Further, a Cr diffusion preventing layer 202a made of Zn—Mn spinel is formed, and a conductive layer containing Fe or Al in ZnO can also be formed.

さらに、集電基材201にZn−Mn系スピネルからなるCr拡散防止層202aを形成した後、Cr拡散防止層202aが形成された集電基材201を、例えば、Zn又はZnOと、Fe又はAlとを含有するペースト中に浸漬し、熱処理することにより、Zn−Mn系スピネルからなるCr拡散防止層202a上に、ZnO中にFe又はAlを含有する導電層を形成することもできる。 Furthermore, after forming the Cr diffusion prevention layer 202a made of Zn—Mn spinel on the current collection base material 201, the current collection base material 201 on which the Cr diffusion prevention layer 202a is formed is made of, for example, Zn or ZnO and Fe 2. A conductive layer containing Fe or Al in ZnO is formed on the Cr diffusion prevention layer 202a made of Zn-Mn spinel by dipping in a paste containing O 3 or Al 2 O 3 and heat-treating. You can also

導電層の表面に被覆層202bを形成する場合には、酸素極層の形成等に用いられるペロブスカイト構造、LaFeO系、LaMnO系と、ZnOとを含有するペースト中に浸漬し、熱処理することにより形成することができる。 When the coating layer 202b is formed on the surface of the conductive layer, it is immersed in a paste containing a perovskite structure, a LaFeO 3 system, a LaMnO 3 system, and ZnO used for forming an oxygen electrode layer, etc., and heat-treated. Can be formed.

尚、Cr拡散防止層202aの表面に被覆層202bを形成する場合には、Zn−Mn系スピネルを含有するペースト中に集電基材201を浸漬し、熱処理してCr拡散防止層202aを形成した後、酸素極層の形成等に用いられるペロブスカイト構造、LaFeO系、LaMnO系と、ZnOとを含有するペースト中に浸漬し、熱処理することにより形成することができる。 When forming the coating layer 202b on the surface of the Cr diffusion preventing layer 202a, the current collecting base material 201 is immersed in a paste containing Zn—Mn spinel and heat-treated to form the Cr diffusion preventing layer 202a. Then, it can be formed by dipping in a paste containing a perovskite structure, LaFeO 3 system, LaMnO 3 system, and ZnO used for forming an oxygen electrode layer and heat-treating.

Cr拡散防止層202aは、ディッピング(Cr拡散防止層用の亜鉛を含有する液中に集電基材を浸漬する浸漬塗布法)に加え、メッキ、蒸着等の方法を用いて形成されるが、コスト的にはディッピングが望ましい。   The Cr diffusion prevention layer 202a is formed by using a method such as plating or vapor deposition in addition to dipping (a dip coating method in which the current collecting base material is immersed in a liquid containing zinc for the Cr diffusion prevention layer). Dipping is desirable in terms of cost.

導電層の厚みは、集電基材201の耐用時間にもよるが、ディッピングの場合、1〜100μmが好ましく、5〜50μmがより好ましい。厚さを5μm以上とすることにより、エアーの巻き込みなどによる空隙発生を防止できる。又、厚さを50μm以下とすることにより、集電基材201との熱膨張差による内部応力を最小限に抑制できると共に、導電性の低下を抑制し、形成を容易にすることができる。   Although the thickness of a conductive layer is based also on the lifetime of the current collection base material 201, in the case of dipping, 1-100 micrometers is preferable and 5-50 micrometers is more preferable. By setting the thickness to 5 μm or more, generation of voids due to air entrainment or the like can be prevented. Further, by setting the thickness to 50 μm or less, the internal stress due to the difference in thermal expansion from the current collecting base material 201 can be suppressed to the minimum, the decrease in conductivity can be suppressed, and the formation can be facilitated.

燃料電池セル1は、図5に示すように、中空平板型であり、平板状の支持基板10と、平板状の支持基板10の周囲に設けられた燃料極層2、固体電解質層3、酸素極層4、インターコネクタ5、及び酸素極材料層14とを備え、支持基板10は、さらに内部に、燃料電池セル1の積層方向に交わる方向(セル長さ方向)に伸びた複数の燃料ガス通路16を有するように構成される。   As shown in FIG. 5, the fuel battery cell 1 is a hollow flat plate type, and includes a flat support substrate 10, a fuel electrode layer 2, a solid electrolyte layer 3, an oxygen provided around the flat support substrate 10. The electrode substrate 4, the interconnector 5, and the oxygen electrode material layer 14, and the support substrate 10 further includes a plurality of fuel gases extending in a direction (cell length direction) intersecting with the stacking direction of the fuel cells 1. It is configured to have a passage 16.

支持基板10は、例えば、多孔質かつ導電性の材料からなり、図5に示すように横断面が平坦部と平坦部の両端の弧状部とからなっている。平坦部の対向する面の一方とその両端の弧状部を覆うように多孔質の燃料極層2が設けられており、この燃料極層2を覆うように、緻密質な固体電解質層3が積層されており、さらに、この固体電解質層3の上には、燃料極層2に対向するように、多孔質の導電性セラミックからなる酸素極層4が積層されている。また、支持基板10の電極層2、4が設けられた面に対向する面には、緻密なインターコネクタ5が形成されている。このインターコネクタ5の表面には、酸素極材料からなる酸素極材料層14が形成されている。ここで、酸素極材料は、例えばペロブスカイト構造のLa(Fe,Mn)O、(La,Sr)(Co,Fe)O等の酸化物からなる。ただし、この酸素極材料層14については、必ずしも形成する必要はない。燃料極層2及び固体電解質層3は、図5に示すように、インターコネクタ5の両サイドまで延び、支持基板10の表面が外部に露出しないように構成されている。 The support substrate 10 is made of, for example, a porous and conductive material, and has a flat cross section and arcuate portions at both ends of the flat portion as shown in FIG. A porous fuel electrode layer 2 is provided so as to cover one of the opposing surfaces of the flat portion and arc-shaped portions at both ends thereof, and a dense solid electrolyte layer 3 is laminated so as to cover the fuel electrode layer 2. Further, an oxygen electrode layer 4 made of a porous conductive ceramic is laminated on the solid electrolyte layer 3 so as to face the fuel electrode layer 2. A dense interconnector 5 is formed on the surface of the support substrate 10 that faces the surface on which the electrode layers 2 and 4 are provided. An oxygen electrode material layer 14 made of an oxygen electrode material is formed on the surface of the interconnector 5. Here, the oxygen electrode material is made of an oxide such as La (Fe, Mn) O 3 or (La, Sr) (Co, Fe) O 3 having a perovskite structure. However, the oxygen electrode material layer 14 is not necessarily formed. As shown in FIG. 5, the fuel electrode layer 2 and the solid electrolyte layer 3 are configured to extend to both sides of the interconnector 5 so that the surface of the support substrate 10 is not exposed to the outside.

このような構造の燃料電池セル1は、燃料極層2の酸素極層4と対面している部分が燃料極として作動して発電する。即ち、酸素極層4の外側に空気等の酸素含有ガスを流し、且つ支持基板10内のガス通路16に燃料ガス(水素)を流し、所定の作動温度まで加熱することにより、酸素極層4で下記の式(1)の電極反応が生じ、また燃料極層2の燃料極となる部分では例えば下記の式(2)の電極反応が生じることによって発電する。   In the fuel cell 1 having such a structure, the portion of the fuel electrode layer 2 facing the oxygen electrode layer 4 operates as a fuel electrode to generate electric power. That is, an oxygen-containing gas such as air is allowed to flow outside the oxygen electrode layer 4 and a fuel gas (hydrogen) is supplied to the gas passage 16 in the support substrate 10 and heated to a predetermined operating temperature. Then, an electrode reaction of the following formula (1) occurs, and power is generated by, for example, an electrode reaction of the following formula (2) occurring in the portion that becomes the fuel electrode of the fuel electrode layer 2.

酸素極: 1/2O+2e → O2− (固体電解質) (1)
燃料極: O2− (固体電解質)+ H → HO+2e (2)
かかる電極反応によって発生した電流は、支持基板10に取り付けられているインターコネクタ5を介して集電される。
Oxygen electrode: 1 / 2O 2 + 2e → O 2− (solid electrolyte) (1)
Fuel electrode: O 2− (solid electrolyte) + H 2 → H 2 O + 2e (2)
The current generated by the electrode reaction is collected through the interconnector 5 attached to the support substrate 10.

そして、このような複数の燃料電池セル1の間には、図1、4に示すように、集電部材20が介装されて電気的に接続され、これによりセルスタックが構成されている。即ち、集電部材20が、一方の燃料電池セル1の酸素極層4に接合されると共に、隣設する他方の燃料電池セル1のインターコネクタ5に電気的に接続され、これにより、複数の燃料電池セル1が電気的に直列に接続され、セルスタックが構成されている。   As shown in FIGS. 1 and 4, a current collecting member 20 is interposed and electrically connected between the plurality of fuel cells 1, thereby forming a cell stack. That is, the current collecting member 20 is joined to the oxygen electrode layer 4 of one fuel cell 1 and electrically connected to the interconnector 5 of the other fuel cell 1 adjacent thereto, thereby The fuel cells 1 are electrically connected in series to form a cell stack.

酸素極層4は、固体電解質層3上に形成された第1酸素極層4aと、該第1酸素極層4a上に設けられた第2酸素極層4bとを具備して構成され、これらの第1酸素極層4a、第2酸素極層4bは導電性セラミック粒子から形成されている。第1酸素極層4aの平均粒径は第2酸素極層4bの平均粒径よりも小さい導電性セラミック粒子から形成されており、板状集電部材20の櫛刃の一方側主面が第1酸素極層4aに接合し、板状集電部材20の櫛刃の側面が第2酸素極層4bに接合している。   The oxygen electrode layer 4 includes a first oxygen electrode layer 4a formed on the solid electrolyte layer 3 and a second oxygen electrode layer 4b provided on the first oxygen electrode layer 4a. The first oxygen electrode layer 4a and the second oxygen electrode layer 4b are made of conductive ceramic particles. The average particle diameter of the first oxygen electrode layer 4a is made of conductive ceramic particles smaller than the average particle diameter of the second oxygen electrode layer 4b, and the main surface on one side of the comb blade of the plate-like current collecting member 20 is the first one. The side surfaces of the comb blades of the plate-like current collecting member 20 are joined to the second oxygen electrode layer 4b.

第1酸素極層4aは、平均粒径(レーザー回折散乱法50%)が0.7μm以下の導電性セラミック粒子を用いて形成され、厚み20μm以下とされ、第2酸素極層4bは、平均粒径(レーザー回折散乱法50%)が2〜30μmの導電性セラミック粒子を用いて形成され、厚み100μm以上とされている。また、第1酸素極層4aの緻密度は、第2酸素極層4bよりも高く設定されており、言い換えれば、第1酸素極層4aの気孔率は、第2酸素極層4bよりも低くされている。   The first oxygen electrode layer 4a is formed using conductive ceramic particles having an average particle diameter (laser diffraction scattering method 50%) of 0.7 μm or less, and has a thickness of 20 μm or less. The second oxygen electrode layer 4b has an average value of The particle diameter (laser diffraction scattering method 50%) is formed using conductive ceramic particles having a thickness of 2 to 30 μm and has a thickness of 100 μm or more. The density of the first oxygen electrode layer 4a is set higher than that of the second oxygen electrode layer 4b. In other words, the porosity of the first oxygen electrode layer 4a is lower than that of the second oxygen electrode layer 4b. Has been.

第1酸素極層4aは、平均粒径(レーザー回折散乱法50%)が0.7μm以下の一次粒子を用いて形成され、第2酸素極層4bは、第1酸素極層4aの一次粒子が集合した二次粒子(例えば一次粒子を含有するスラリーをスプレードライすることより作製される)を用いて形成されており、これにより、第1酸素極層4aの平均粒径は第2酸素極層4bの平均粒径よりも小さくなり、また、第1酸素極層4aの気孔率は第2酸素極層4bよりも小さくなり、緻密となる。   The first oxygen electrode layer 4a is formed using primary particles having an average particle diameter (laser diffraction scattering method 50%) of 0.7 μm or less, and the second oxygen electrode layer 4b is a primary particle of the first oxygen electrode layer 4a. Are formed using secondary particles (for example, prepared by spray-drying a slurry containing primary particles), whereby the average particle diameter of the first oxygen electrode layer 4a is the second oxygen electrode. The average particle diameter of the layer 4b is smaller, and the porosity of the first oxygen electrode layer 4a is smaller than that of the second oxygen electrode layer 4b and becomes dense.

このようなセルスタックでは、緻密な固体電解質層3上に微粒な導電性セラミック粒子からなる第1酸素極層4aが強固に接合しており、このような第1酸素極層4a上に板状集電部材20の主面が強固に接合されているため、板状集電部材20の固体電解質層3への接合強度を向上できる。尚、酸素極層4としての厚みが不足する場合には、第1酸素極層4aと第2酸素極層4bとの間に、第2酸素極層4bと同一材料からなる中間層を形成することもできる。   In such a cell stack, the first oxygen electrode layer 4a made of fine conductive ceramic particles is firmly bonded on the dense solid electrolyte layer 3, and the plate shape is formed on the first oxygen electrode layer 4a. Since the main surface of the current collecting member 20 is firmly joined, the joining strength of the plate-like current collecting member 20 to the solid electrolyte layer 3 can be improved. When the thickness of the oxygen electrode layer 4 is insufficient, an intermediate layer made of the same material as the second oxygen electrode layer 4b is formed between the first oxygen electrode layer 4a and the second oxygen electrode layer 4b. You can also

また、第2酸素極層4bに板状集電部材20の側面が接合しており、これにより、さらに板状集電部材20の固体電解質層3への接合強度を向上できる。尚、板状集電部材20の側面には、第2酸素極層4bのメニスカスが形成されているが、図4では簡略化して記載した。このメニスカスによっても、板状集電部材20の酸素極層4への接合強度を向上できる。また、図4では、理解を容易にするため、集電部材20の厚みを誇張して記載した。   Moreover, the side surface of the plate-shaped current collection member 20 is joined to the second oxygen electrode layer 4b, whereby the bonding strength of the plate-like current collection member 20 to the solid electrolyte layer 3 can be further improved. In addition, although the meniscus of the 2nd oxygen electrode layer 4b is formed in the side surface of the plate-shaped current collection member 20, it simplified and described in FIG. This meniscus can also improve the bonding strength of the plate-like current collecting member 20 to the oxygen electrode layer 4. In FIG. 4, the thickness of the current collecting member 20 is exaggerated for easy understanding.

第1酸素極層4a、第2酸素極層4bとしては、La及びFeを含有するペロブスカイト型複合酸化物、例えばペロブスカイト構造の(La,Sr)(Co,Fe)Oを用いることができ、この複合酸化物を用いることにより、第1酸素極層4aが多少緻密質であったとしても、酸素極としての機能を有することができる。 As the first oxygen electrode layer 4a and the second oxygen electrode layer 4b, a perovskite complex oxide containing La and Fe, for example, (La, Sr) (Co, Fe) O 3 having a perovskite structure can be used. By using this composite oxide, even if the first oxygen electrode layer 4a is somewhat dense, it can have a function as an oxygen electrode.

また、集電部材20は、一方の燃料電池セル1の酸素極層4に接合されるが、隣設する他方の燃料電池セル1のインターコネクタ5(酸素極材料層14)にも接合される。集電部材20のインターコネクタ5への接合は、インターコネクタ5の表面の酸素極材料層14に形成された、第2酸素極層4bと同様の接合層25に集電部材20の櫛刃を埋設し、その側面を接合層25に接合することにより行われる。   Further, the current collecting member 20 is joined to the oxygen electrode layer 4 of one fuel battery cell 1, but is also joined to the interconnector 5 (oxygen electrode material layer 14) of the other fuel battery cell 1 adjacent thereto. . The current collecting member 20 is joined to the interconnector 5 by using a comb blade of the current collecting member 20 on the joining layer 25 similar to the second oxygen electrode layer 4b formed on the oxygen electrode material layer 14 on the surface of the interconnector 5. It is performed by embedding and bonding the side surface to the bonding layer 25.

ここで、各部材の熱膨張率について説明すると、750℃において、燃料電池セルの酸素極材料として一般に用いられるLaFeO系の熱膨張率は14〜17×10−6/℃、LaMnO系は10〜11×10−6/℃であり、インターコネクタとして用いられるLaCrO系は14×10−6/℃程度であり、集電部材20については、集電基材201は11×10−6/℃程度、Zn−Mn系スピネルからなるCr拡散防止層202a、ZnO中にFe又はAlを含有する導電層は6〜8×10−6/℃である。 Here, the thermal expansion coefficient of each member will be described. At 750 ° C., the thermal expansion coefficient of a LaFeO 3 system generally used as an oxygen electrode material of a fuel cell is 14 to 17 × 10 −6 / ° C., and the LaMnO 3 system is 10 to 11 × 10 −6 / ° C., LaCrO 3 system used as an interconnector is about 14 × 10 −6 / ° C., and for the current collecting member 20, the current collecting substrate 201 is 11 × 10 −6. The Cr diffusion prevention layer 202a made of Zn—Mn spinel and the conductive layer containing Fe or Al in ZnO are 6 to 8 × 10 −6 / ° C.

従って、燃料電池セルと集電部材を接合した場合には、その界面に熱膨張差に基づく応力が発生するが、被覆層202bが、酸素極層の形成等に用いられるペロブスカイト構造、LaFeO系、LaMnO系と、ZnOとを含有するため、その比率を変化させることにより、酸素極層と集電基材201との中間の所望の熱膨張率を有することができ、燃料電池セルと集電部材の接合信頼性を向上することができる。 Therefore, when the fuel cell and the current collecting member are joined, stress based on the difference in thermal expansion is generated at the interface, but the coating layer 202b has a perovskite structure, LaFeO 3 system used for forming an oxygen electrode layer or the like. In addition, since it contains LaMnO 3 system and ZnO, it can have a desired coefficient of thermal expansion intermediate between the oxygen electrode layer and the current collecting base material 201 by changing the ratio thereof. Bonding reliability of the electric member can be improved.

セルスタックの製造方法について説明する。先ず、燃料電池セルの固体電解質層の表面に、(La,Sr)(Co,Fe)O等の空気極材料を含有するスラリーをスクリーン印刷にて塗布し、所定温度で焼き付けて第1酸素極層4aを形成する。この後、第1酸素極層4aの表面、及びインターコネクタ5の酸素極材料層14表面に、(La,Sr)(Co,Fe)O等の空気極材料を含有するスラリーをスクリーン印刷にて塗布し、この状態で、複数の燃料電池セル間に集電部材20を配置し、両側から押圧することにより、集電部材20の櫛刃が第1酸素極層4aに当接するとともに、第2酸素極層、接合層の塗布膜中に埋設され、この状態で、第1酸素極層4aの焼き付け温度よりも低い温度で、第2酸素極層、接合層を焼き付け、本発明のセルスタックを形成することができる。 A method for manufacturing the cell stack will be described. First, a slurry containing an air electrode material such as (La, Sr) (Co, Fe) O 3 is applied to the surface of the solid electrolyte layer of the fuel cell by screen printing, and baked at a predetermined temperature to form the first oxygen The polar layer 4a is formed. Thereafter, a slurry containing an air electrode material such as (La, Sr) (Co, Fe) O 3 is screen printed on the surface of the first oxygen electrode layer 4 a and the surface of the oxygen electrode material layer 14 of the interconnector 5. In this state, the current collecting member 20 is disposed between the plurality of fuel cells and pressed from both sides, whereby the comb blade of the current collecting member 20 comes into contact with the first oxygen electrode layer 4a, and the first The cell stack of the present invention is embedded in the coating film of the two oxygen electrode layer and the bonding layer, and in this state, the second oxygen electrode layer and the bonding layer are baked at a temperature lower than the baking temperature of the first oxygen electrode layer 4a. Can be formed.

このようなセルスタックは、図示しないが燃料ガスが供給されるマニホールドに配置され、マニホールド内に供給された燃料ガスが燃料電池セル1のガス通路16内を通過していくことになる。   Although not shown, such a cell stack is arranged in a manifold to which fuel gas is supplied, and the fuel gas supplied into the manifold passes through the gas passage 16 of the fuel cell 1.

燃料電池は、上記のセルスタックを収納容器内に収容し、この収納容器に、都市ガス等の燃料ガスを供給する燃料ガス導入管及び空気を供給するための空気導入管を配設することにより構成される。   In the fuel cell, the cell stack is accommodated in a storage container, and a fuel gas introduction pipe for supplying fuel gas such as city gas and an air introduction pipe for supplying air are disposed in the storage container. Composed.

まず、平均粒径0.6μmのZnO粉末に平均粒径0.5μmのFe粉末をFe換算で2mol%、平均粒径0.4μmのMn粉末をMn換算で1mol%の割合で調合した混合粉と、溶剤、バインダー、及び分散剤とを調合し、Cr拡散防止層202a、導電層の形成に用いるディッピング液を作製した。 First, 2 mol% of Fe 2 O 3 powder with an average particle diameter of 0.5 μm was converted into Fe in terms of Fe, and 1 mol% of Mn 2 O 3 powder with an average particle diameter of 0.4 μm was converted into Mn in terms of ZnO powder with an average particle diameter of 0.6 μm. A mixed powder prepared in a proportion, a solvent, a binder, and a dispersant were prepared to prepare a dipping liquid used for forming the Cr diffusion preventing layer 202a and the conductive layer.

次に、厚さ0.4mm、幅20mm、及び長さ120mmのFe−Cr系耐熱性合金板(Fe75質量%含有、残部Cr、Mn、Ni含有)からなる集電基材を、ディッピング液との濡れ性を高めるべく大気中750℃で熱処理し、ディッピング液中に浸漬して集電基材全面に塗布し、そして乾燥させた。さらに、温度100℃で1時間、引き続いて温度500℃で2時間脱バインダー処理し、温度1050℃で2時間、炉内で焼付を行い、Feを含有するZnOからなる厚さ10μmの導電層を形成し、該導電層と集電基材表面との間にZn−Mn系スピネルからなる厚み約1μmのCr拡散防止層202aを形成した。   Next, a current collecting substrate made of an Fe—Cr heat resistant alloy plate (containing 75 mass% Fe, containing the remaining Cr, Mn, and Ni) having a thickness of 0.4 mm, a width of 20 mm, and a length of 120 mm is used as a dipping solution. In order to improve the wettability, the film was heat-treated in the atmosphere at 750 ° C., immersed in a dipping solution, applied to the entire surface of the current collecting substrate, and dried. Furthermore, a binder removal treatment was performed at a temperature of 100 ° C. for 1 hour, and subsequently at a temperature of 500 ° C. for 2 hours, followed by baking in a furnace at a temperature of 1050 ° C. for 2 hours to form a 10 μm thick conductive layer made of ZnO containing Fe. Then, a Cr diffusion preventing layer 202a made of Zn—Mn spinel and having a thickness of about 1 μm was formed between the conductive layer and the current collecting base material surface.

次に、平均粒径0.6μmのZnO粉末と平均粒径0.5μmのLa0.6Sr0.4Co0.4Fe0.6(LSCF)粉末とを表1の割合になるように調合し、溶媒(IPA)と直径15mmのZrOボールと共にポリポットに入れ、回転ミルにて12時間混合した。得られた混合液を温度130℃で乾燥し、混合粉を170メッシュパスさせる。さらに、メッシュパス後の調合粉末と、アクリル系バインダーと、溶剤(ミネラルスピリッツ)と、分散剤(DBP)とをポリポットに入れ、回転ミルにて12時間混合した。混合液を温度130℃で乾燥し、この混合粉を用いて被覆層用のディッピング液を作製した。 Next, ZnO powder having an average particle diameter of 0.6 μm and La 0.6 Sr 0.4 Co 0.4 Fe 0.6 O 3 (LSCF) powder having an average particle diameter of 0.5 μm are in the ratio shown in Table 1. The mixture was mixed with a solvent (IPA) and a ZrO 2 ball having a diameter of 15 mm and mixed in a rotary mill for 12 hours. The obtained mixed solution is dried at a temperature of 130 ° C., and the mixed powder is passed through 170 meshes. Furthermore, the mixed powder after the mesh pass, the acrylic binder, the solvent (mineral spirits), and the dispersant (DBP) were put in a polypot and mixed in a rotary mill for 12 hours. The mixed solution was dried at a temperature of 130 ° C., and a dipping solution for a coating layer was prepared using the mixed powder.

次いで、Cr拡散防止層202a、導電層が形成された集電基材201を被覆層用のディッピング液にディッピングし、温度130℃で30分、引き続いて温度500℃で2時間脱バインダー処理を行い、温度1050℃で2時間、炉内で焼付を行い、導電層の表面に厚さ15μmの被覆層202bを形成し、集電部材を作製した。表1は、ZnOとLSCFとの各重量組成比率における熱膨張率と導電率を示す。

Figure 2007317610
Next, the current collecting base material 201 on which the Cr diffusion preventing layer 202a and the conductive layer are formed is dipped in a dipping solution for a coating layer, and debinding is performed at a temperature of 130 ° C. for 30 minutes and subsequently at a temperature of 500 ° C. for 2 hours. Then, baking was carried out in a furnace at a temperature of 1050 ° C. for 2 hours to form a coating layer 202b having a thickness of 15 μm on the surface of the conductive layer, and a current collecting member was produced. Table 1 shows the coefficient of thermal expansion and conductivity at each weight composition ratio of ZnO and LSCF.
Figure 2007317610

表1から、LSCFの重量組成比率の増加に伴い、熱膨張率と導電率が増加することがわかる。また、ZnOとLSCFとの重量組成比率を最適化することにより、LSCFからなる酸素極層の熱膨張率15〜17×10−6/℃と、集電基材の熱膨張率6〜8×10−6/℃との中間の熱膨張率を有することができ、燃料電池用集電部材と燃料電池セルとを接合する場合に、ヒートサイクルによる剥がれや電圧低下等を抑制し信頼性を向上することが可能となる。 From Table 1, it can be seen that the coefficient of thermal expansion and the conductivity increase as the weight composition ratio of LSCF increases. Moreover, by optimizing the weight composition ratio of ZnO and LSCF, the thermal expansion coefficient of the oxygen electrode layer made of LSCF is 15 to 17 × 10 −6 / ° C., and the thermal expansion coefficient of the current collecting substrate is 6 to 8 ×. It has an intermediate coefficient of thermal expansion of 10 −6 / ° C., and improves the reliability by suppressing peeling and voltage drop due to heat cycle when the fuel cell current collector and the fuel cell are joined. It becomes possible to do.

ZnOとLSCFとの重量組成率が50:50のテストピースの断面を、波長分散型EPMA(Electron Probe Micro-Analysis)を行って確認した。EPMA用の分析装置には日本電子製のJXA−8100を用い、測定条件を、加速電圧15kV、プローブ電流1.0×10−7A、及び分析エリア50μm×50μmとした。また、分光結晶には、LiFを用いた。この結果、LSCFにはCrの拡散がないことが確認された。 A cross section of a test piece having a weight composition ratio of 50:50 of ZnO and LSCF was confirmed by performing wavelength dispersion type EPMA (Electron Probe Micro-Analysis). JXA-8100 manufactured by JEOL Ltd. was used as the analyzer for EPMA, and the measurement conditions were an acceleration voltage of 15 kV, a probe current of 1.0 × 10 −7 A, and an analysis area of 50 μm × 50 μm. Moreover, LiF was used for the spectroscopic crystal. As a result, it was confirmed that LSCF had no Cr diffusion.

そして、燃料電池セルの固体電解質層の表面に、平均粒径(レーザー回折散乱法50%)0.4μmの(La,Sr)(Co,Fe)Oの空気極材料(一次粒子)を含有するスラリーをスクリーン印刷にて塗布し、1150℃で焼き付けて、厚み15μmの第1酸素極層4aを形成した。 Further, the air electrode material (primary particles) of (La, Sr) (Co, Fe) O 3 having an average particle diameter (laser diffraction scattering method 50%) 0.4 μm is contained on the surface of the solid electrolyte layer of the fuel cell. The slurry to be applied was applied by screen printing and baked at 1150 ° C. to form a first oxygen electrode layer 4a having a thickness of 15 μm.

この後、第1酸素極層4aの表面に、平均粒径(レーザー回折散乱法50%)3μmの(La,Sr)(Co,Fe)O(一次粒子が凝集した二次粒子)を含有する第2酸素極層のスラリーをスクリーン印刷にて塗布し、この状態で、被覆層が、ZnOとLSCFとの重量組成率が50:50の集電部材20を配置し、燃料電池セル側に押圧することにより、集電部材20の櫛刃を第1酸素極層4aに当接するとともに、第2酸素極層の塗布膜中に埋設させ、櫛刃の側面に第2酸素極層を接合し、この状態で、第1酸素極層4aの焼き付け温度よりも低い1050℃で焼き付け、厚み150μmの第2酸素極層を形成した。 Thereafter, the surface of the first oxygen electrode layer 4a contains (La, Sr) (Co, Fe) O 3 (secondary particles in which primary particles are aggregated) having an average particle diameter (laser diffraction scattering method 50%) of 3 μm. The second oxygen electrode layer slurry is applied by screen printing. In this state, the current collecting member 20 having a weight composition ratio of ZnO and LSCF of 50:50 is disposed as the coating layer, and the fuel cell side is disposed. By pressing, the comb blade of the current collecting member 20 is brought into contact with the first oxygen electrode layer 4a, embedded in the coating film of the second oxygen electrode layer, and the second oxygen electrode layer is bonded to the side surface of the comb blade. In this state, baking was performed at 1050 ° C., which is lower than the baking temperature of the first oxygen electrode layer 4a, to form a second oxygen electrode layer having a thickness of 150 μm.

酸素極層の断面の走査型電子顕微鏡写真により、第1酸素極層と第2酸素極層の(La,Sr)(Co,Fe)O粒子の粒径を比較すると、第2酸素極層よりも第1酸素極層の(La,Sr)(Co,Fe)O粒子が明らかに大きく、また、第1酸素極層の方が第2酸素極層よりも明らかに気孔率が小さく、より緻密であることを確認した。走査型電子顕微鏡写真を用いてインターセプト法により、第1酸素極層と第2酸素極層の(La,Sr)(Co,Fe)O粒子の平均粒径を測定したところ、第1酸素極層の平均粒径は0.6μm、第2酸素極層の平均粒径は5.2μmであった。さらに、走査型電子顕微鏡写真を用いて画像処理により気孔率を測定したところ、第1酸素極層の気孔率は3%であり、第2酸素極層の気孔率は33%であり、第1酸素極層は第2酸素極層よりも緻密質であった。 When the particle diameters of the (La, Sr) (Co, Fe) O 3 particles of the first oxygen electrode layer and the second oxygen electrode layer are compared by a scanning electron micrograph of the cross section of the oxygen electrode layer, the second oxygen electrode layer The (La, Sr) (Co, Fe) O 3 particles of the first oxygen electrode layer are clearly larger, and the porosity of the first oxygen electrode layer is clearly smaller than that of the second oxygen electrode layer, It was confirmed that it was more precise. When the average particle diameter of the (La, Sr) (Co, Fe) O 3 particles of the first oxygen electrode layer and the second oxygen electrode layer was measured by an intercept method using a scanning electron micrograph, the first oxygen electrode was measured. The average particle size of the layer was 0.6 μm, and the average particle size of the second oxygen electrode layer was 5.2 μm. Furthermore, when the porosity was measured by image processing using a scanning electron micrograph, the porosity of the first oxygen electrode layer was 3%, and the porosity of the second oxygen electrode layer was 33%. The oxygen electrode layer was denser than the second oxygen electrode layer.

長さ1cmの剥離試験用に作製した集電部材を接合した燃料電池セルのインターコネクタと、集電部材に引張用部材を接合し、両側に引っ張り、その接合強度を測定したところ、集電部材と酸素極層とが剥離し、その際の接合強度は11Nであった。   The interconnector of the fuel battery cell joined with the current collecting member produced for the peel test having a length of 1 cm and the current collecting member were joined with the tensile member, pulled on both sides, and the joining strength was measured. The oxygen electrode layer was peeled off, and the bonding strength at that time was 11N.

一方、比較例としてのテストピースを、下記のようにして作製した。平均粒径(レーザー回折散乱法50%)0.4μmの(La,Sr)(Co,Fe)Oの空気極材料(一次粒子)を含有する第1酸素極層のスラリーをスクリーン印刷し、その表面に平均粒径(レーザー回折散乱法50%)3μmの(La,Sr)(Co,Fe)O(一次粒子が凝集した二次粒子)を含有する第2酸素極層のスラリーをスクリーン印刷し、第1酸素極層、第2酸素極層を1150℃で同時に焼き付けて形成し、厚み15μmの第1酸素極層と厚み150μmの第2酸素極層を形成した。 On the other hand, a test piece as a comparative example was produced as follows. A slurry of the first oxygen electrode layer containing an air electrode material (primary particles) of (La, Sr) (Co, Fe) O 3 having an average particle diameter (laser diffraction scattering method of 50%) of 0.4 μm is screen-printed, A slurry of the second oxygen electrode layer containing (La, Sr) (Co, Fe) O 3 (secondary particles in which primary particles are aggregated) having an average particle size (laser diffraction scattering method 50%) of 3 μm on the surface is screened The first oxygen electrode layer and the second oxygen electrode layer were baked at 1150 ° C. at the same time to form a first oxygen electrode layer having a thickness of 15 μm and a second oxygen electrode layer having a thickness of 150 μm.

そして、第2酸素極層上に、接合材として、(レーザー回折散乱法50%)3μmの(La,Sr)(Co,Fe)O(一次粒子が凝集した二次粒子)を含有するスラリーをスクリーン印刷し、上記集電部材20を配置し、燃料電池セル側に押圧することにより、集電部材20の櫛刃を第2酸素極層に当接するとともに、接合材の塗布膜中に埋設させ、この状態で、第1、第2酸素極層の焼き付け温度よりも低い1050℃で焼き付けた。 A slurry containing (La, Sr) (Co, Fe) O 3 (secondary particles in which primary particles are aggregated) of 3 μm (laser diffraction scattering method 50%) as a bonding material on the second oxygen electrode layer. Is printed, and the current collecting member 20 is disposed and pressed to the fuel cell side, whereby the comb blade of the current collecting member 20 is brought into contact with the second oxygen electrode layer and embedded in the coating film of the bonding material. In this state, baking was performed at 1050 ° C., which is lower than the baking temperature of the first and second oxygen electrode layers.

酸素極層の断面の走査型電子顕微鏡写真により、第2酸素極層と接合材の(La,Sr)(Co,Fe)O粒子の粒径を比較すると、第2酸素極層と接合材はほぼ同じであり、また、第2酸素極層と接合材の気孔率はほぼ同一であった。上記実施例と同様に、第2酸素極層と接合材の平均粒径、気孔率を測定したところ、第2酸素極層の平均粒径は5.5μm、気孔率は25%であり、接合材の平均粒径は5.2μm、気孔率は32%であった。 When the particle diameters of the (La, Sr) (Co, Fe) O 3 particles of the second oxygen electrode layer and the bonding material are compared by a scanning electron micrograph of the cross section of the oxygen electrode layer, the second oxygen electrode layer and the bonding material are compared. Were substantially the same, and the porosity of the second oxygen electrode layer and the bonding material was substantially the same. As in the above example, the average particle size and porosity of the second oxygen electrode layer and the bonding material were measured. The average particle size of the second oxygen electrode layer was 5.5 μm, and the porosity was 25%. The average particle diameter of the material was 5.2 μm, and the porosity was 32%.

この燃料電池セルのインターコネクタと、集電部材に引張用部材を接合し、両側に引っ張り、その接合強度を測定したところ、集電部材と酸素極層とが剥離し、その際の接合強度は2.5Nであった。   The fuel cell interconnector and the current collecting member were joined with a tensile member, pulled on both sides, and the joint strength was measured. The current collecting member and the oxygen electrode layer were peeled off. 2.5N.

比較例では、平均粒径が大きい(気孔率が大きい)第2酸素極層上に集電部材が接合されるため、接合強度が2.5Nと小さいのに対して、本発明では、微粒の第1酸素極層上に集電部材が接合されているため、比較例よりも接合強度が11Nと大きくなることが判る。   In the comparative example, since the current collecting member is bonded onto the second oxygen electrode layer having a large average particle size (high porosity), the bonding strength is as small as 2.5 N. Since the current collecting member is bonded on the first oxygen electrode layer, it can be seen that the bonding strength is 11 N larger than that of the comparative example.

本発明のセルスタックを示す断面図である。It is sectional drawing which shows the cell stack of this invention. 図1の集電部材を示す斜視図である。It is a perspective view which shows the current collection member of FIG. 図2に示すA−A線に沿った集電部材の断面図である。It is sectional drawing of the current collection member along the AA line shown in FIG. 図1の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of FIG. 燃料電池セルの断面斜視図である。It is a cross-sectional perspective view of a fuel battery cell.

符号の説明Explanation of symbols

1 燃料電池セル
2 燃料極層
3 固体電解質層
4 酸素極層
4a 第1酸素極層
4b 第2酸素極層
5 インターコネクタ
20 板状集電部材
201 集電基材
202 表面層
202a Cr拡散防止層
202b 被覆層
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Fuel electrode layer 3 Solid electrolyte layer 4 Oxygen electrode layer 4a 1st oxygen electrode layer 4b 2nd oxygen electrode layer 5 Interconnector 20 Plate-shaped current collection member 201 Current collection base material 202 Surface layer 202a Cr diffusion prevention layer 202b coating layer

Claims (6)

固体電解質層を酸素極層と燃料極層とで挟持してなる複数の燃料電池セル間に、それぞれ板状集電部材を配置するとともに、前記燃料電池セルの前記酸素極層に前記板状集電部材を接合し、前記燃料電池セルと前記板状集電部材とを電気的に接続してなるセルスタックであって、前記酸素極層を、前記固体電解質層上に設けられた第1酸素極層と、該第1酸素極層上に設けられた第2酸素極層とを具備して構成するとともに、前記第1酸素極層が前記第2酸素極層よりも平均粒径が小さい導電性セラミック粒子から構成し、かつ前記板状集電部材の一方側主面が前記第1酸素極層に接合し、前記板状集電部材の側面が前記第2酸素極層に接合していることを特徴とするセルスタック。 A plate-shaped current collecting member is disposed between each of the plurality of fuel cells formed by sandwiching the solid electrolyte layer between the oxygen electrode layer and the fuel electrode layer, and the plate-shaped current collector is disposed on the oxygen electrode layer of the fuel cell. A cell stack formed by joining electric members and electrically connecting the fuel cell and the plate-like current collecting member, wherein the oxygen electrode layer is a first oxygen provided on the solid electrolyte layer A conductive layer having a polar layer and a second oxygen electrode layer provided on the first oxygen electrode layer, the first oxygen electrode layer having a smaller average particle diameter than the second oxygen electrode layer Made of conductive ceramic particles, one main surface of the plate-shaped current collector is bonded to the first oxygen electrode layer, and a side surface of the plate-shaped current collector is bonded to the second oxygen electrode layer A cell stack characterized by that. 前記第1酸素極層が、前記第2酸素極層よりも緻密質であることを特徴とする請求項1記載のセルスタック。 The cell stack according to claim 1, wherein the first oxygen electrode layer is denser than the second oxygen electrode layer. 前記第1酸素極層及び前記第2酸素極層が、La及びFeを含有するペロブスカイト型複合酸化物からなることを特徴とする請求項1又は2記載のセルスタック。 3. The cell stack according to claim 1, wherein the first oxygen electrode layer and the second oxygen electrode layer are made of a perovskite complex oxide containing La and Fe. 前記板状集電部材が、Crを含有する耐熱性合金の表面に、Znを含有するCr拡散防止層と、LaとFe又はMnとを含有するペロブスカイト型複合酸化物及び亜鉛酸化物を含有する被覆層とを順次積層してなることを特徴とする請求項1乃至3のうちいずれかに記載のセルスタック。 The plate-like current collecting member contains a Cr diffusion preventing layer containing Zn, a perovskite complex oxide containing La, Fe, or Mn and zinc oxide on the surface of a heat-resistant alloy containing Cr. The cell stack according to any one of claims 1 to 3, wherein a coating layer is sequentially laminated. 前記板状集電部材が、Crを含有する耐熱性合金の表面に、Znを含有するCr拡散防止層と、前記燃料電池セルの酸素極層を構成する成分の少なくとも一部を含有するペロブスカイト型複合酸化物及び亜鉛酸化物を含有する被覆層とを順次積層してなることを特徴とする請求項1乃至3のうちいずれかに記載のセルスタック。 The plate-like current collecting member has a perovskite type containing a Cr diffusion preventing layer containing Zn and at least a part of components constituting the oxygen electrode layer of the fuel cell on the surface of a heat-resistant alloy containing Cr. The cell stack according to any one of claims 1 to 3, wherein a composite oxide and a coating layer containing zinc oxide are sequentially laminated. 請求項1乃至5のうちいずれかに記載のセルスタックを収納容器内に収納してなることを特徴とする燃料電池。   6. A fuel cell comprising the cell stack according to claim 1 stored in a storage container.
JP2006148574A 2006-05-29 2006-05-29 Cell stack and fuel cell Active JP5013750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148574A JP5013750B2 (en) 2006-05-29 2006-05-29 Cell stack and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148574A JP5013750B2 (en) 2006-05-29 2006-05-29 Cell stack and fuel cell

Publications (2)

Publication Number Publication Date
JP2007317610A true JP2007317610A (en) 2007-12-06
JP5013750B2 JP5013750B2 (en) 2012-08-29

Family

ID=38851278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148574A Active JP5013750B2 (en) 2006-05-29 2006-05-29 Cell stack and fuel cell

Country Status (1)

Country Link
JP (1) JP5013750B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062145A (en) * 2008-08-28 2010-03-18 General Electric Co <Ge> Barrier coating for interconnection, related device, and method of forming the interconnection
JP2010102867A (en) * 2008-10-22 2010-05-06 Toto Ltd Solid oxide fuel battery cell and fuel battery module equipped with it
WO2010087298A1 (en) * 2009-01-28 2010-08-05 京セラ株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
JP2015122225A (en) * 2013-12-24 2015-07-02 日本特殊陶業株式会社 Solid oxide fuel cell, and manufacturing method of the same
JPWO2014208448A1 (en) * 2013-06-28 2017-02-23 京セラ株式会社 Cell unit, cell stack device, cell unit device and module
JP2017188426A (en) * 2016-03-31 2017-10-12 大阪瓦斯株式会社 Method for producing a cell for a solid oxide fuel cell

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227362A (en) * 1988-03-04 1989-09-11 Mitsubishi Heavy Ind Ltd Manufacture of solid electrolyte fuel cell
JPH05121060A (en) * 1991-07-02 1993-05-18 Tonen Corp Separator material for high temperature type fuel cell
JPH08185870A (en) * 1994-12-27 1996-07-16 Tonen Corp Separator for solid electrolyte fuel cell
JPH10275622A (en) * 1997-03-31 1998-10-13 Kyocera Corp Cylindrical solid electrolyte fuel cell
JPH1173976A (en) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd Cell of solid electrolyte fuel cell and its manufacture
JP2001015128A (en) * 1999-06-28 2001-01-19 Kyocera Corp Cylindrical solid electrolyte type fuel cell and its manufacture
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP2004265739A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP2004265741A (en) * 2003-02-28 2004-09-24 Kyocera Corp Collector member
JP2004265734A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP2005019239A (en) * 2003-06-26 2005-01-20 Kyocera Corp Cell stack and fuel cell
JP2005190981A (en) * 2003-12-05 2005-07-14 Kyocera Corp Fuel cell
JP2005259518A (en) * 2004-03-11 2005-09-22 Ngk Insulators Ltd Assembly for electrochemical cell and electrochemical cell
JP2005339904A (en) * 2004-05-25 2005-12-08 Kyocera Corp Fuel cell stack and fuel cell
JP2006092837A (en) * 2004-09-22 2006-04-06 Kyocera Corp Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP2007273358A (en) * 2006-03-31 2007-10-18 Kyocera Corp Collector member for fuel cell, cell stack and fuel cell

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227362A (en) * 1988-03-04 1989-09-11 Mitsubishi Heavy Ind Ltd Manufacture of solid electrolyte fuel cell
JPH05121060A (en) * 1991-07-02 1993-05-18 Tonen Corp Separator material for high temperature type fuel cell
JPH08185870A (en) * 1994-12-27 1996-07-16 Tonen Corp Separator for solid electrolyte fuel cell
JPH10275622A (en) * 1997-03-31 1998-10-13 Kyocera Corp Cylindrical solid electrolyte fuel cell
JPH1173976A (en) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd Cell of solid electrolyte fuel cell and its manufacture
JP2001015128A (en) * 1999-06-28 2001-01-19 Kyocera Corp Cylindrical solid electrolyte type fuel cell and its manufacture
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP2004265739A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP2004265741A (en) * 2003-02-28 2004-09-24 Kyocera Corp Collector member
JP2004265734A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP2005019239A (en) * 2003-06-26 2005-01-20 Kyocera Corp Cell stack and fuel cell
JP2005190981A (en) * 2003-12-05 2005-07-14 Kyocera Corp Fuel cell
JP2005259518A (en) * 2004-03-11 2005-09-22 Ngk Insulators Ltd Assembly for electrochemical cell and electrochemical cell
JP2005339904A (en) * 2004-05-25 2005-12-08 Kyocera Corp Fuel cell stack and fuel cell
JP2006092837A (en) * 2004-09-22 2006-04-06 Kyocera Corp Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP2007273358A (en) * 2006-03-31 2007-10-18 Kyocera Corp Collector member for fuel cell, cell stack and fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062145A (en) * 2008-08-28 2010-03-18 General Electric Co <Ge> Barrier coating for interconnection, related device, and method of forming the interconnection
JP2010102867A (en) * 2008-10-22 2010-05-06 Toto Ltd Solid oxide fuel battery cell and fuel battery module equipped with it
WO2010087298A1 (en) * 2009-01-28 2010-08-05 京セラ株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
US20110281194A1 (en) * 2009-01-28 2011-11-17 Kyocera Corporation Heat-Resistant Alloy, Alloy Member for Fuel Cell, Fuel Cell Stack Device, Fuel Cell Module, and Fuel Cell Device
CN102292859A (en) * 2009-01-28 2011-12-21 京瓷株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
JP5377519B2 (en) * 2009-01-28 2013-12-25 京セラ株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module and fuel cell device
US8993189B2 (en) * 2009-01-28 2015-03-31 Kyocera Corporation Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
JPWO2014208448A1 (en) * 2013-06-28 2017-02-23 京セラ株式会社 Cell unit, cell stack device, cell unit device and module
JP2015122225A (en) * 2013-12-24 2015-07-02 日本特殊陶業株式会社 Solid oxide fuel cell, and manufacturing method of the same
JP2017188426A (en) * 2016-03-31 2017-10-12 大阪瓦斯株式会社 Method for producing a cell for a solid oxide fuel cell

Also Published As

Publication number Publication date
JP5013750B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5072305B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
JP5110816B2 (en) Current collecting member for fuel cell, fuel cell stack, and fuel cell
JP5044628B2 (en) Coating body
JP5080749B2 (en) Current collecting member for fuel cell, cell stack, and fuel cell
JP4818069B2 (en) Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell
JP5266930B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
JP5013750B2 (en) Cell stack and fuel cell
WO2007049759A1 (en) Heat resistant alloy member, alloy member for fuel cell, power collecting member for fuel cell, cell stack and fuel cell
JP5283323B2 (en) Fuel cell interconnector and cell stack
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP7172481B2 (en) Structures and solid oxide fuel cell stacks
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP2006092837A (en) Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP5000158B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
JP4932307B2 (en) Heat-resistant alloy member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, and fuel cell
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JP6160386B2 (en) Fuel cell
JP4931423B2 (en) Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell
JP5215443B2 (en) Solid oxide fuel cell
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP3894103B2 (en) Current collector material for solid oxide fuel cells
JP5311931B2 (en) Fuel cell stack and fuel cell module using the same
JP4136062B2 (en) Separator material
JP2016085921A (en) Cell support and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150