JP2001015128A - Cylindrical solid electrolyte type fuel cell and its manufacture - Google Patents

Cylindrical solid electrolyte type fuel cell and its manufacture

Info

Publication number
JP2001015128A
JP2001015128A JP11182087A JP18208799A JP2001015128A JP 2001015128 A JP2001015128 A JP 2001015128A JP 11182087 A JP11182087 A JP 11182087A JP 18208799 A JP18208799 A JP 18208799A JP 2001015128 A JP2001015128 A JP 2001015128A
Authority
JP
Japan
Prior art keywords
air electrode
molded body
solid electrolyte
layer
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11182087A
Other languages
Japanese (ja)
Other versions
JP3686788B2 (en
Inventor
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18208799A priority Critical patent/JP3686788B2/en
Publication of JP2001015128A publication Critical patent/JP2001015128A/en
Application granted granted Critical
Publication of JP3686788B2 publication Critical patent/JP3686788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical solid electrolyte type fuel cell and its manufacturing method, causing power generating characteristics and yield to be enhanced, by enhancing the adhesive force of an air electrode layer to a solid electrolyte layer. SOLUTION: This cylindrical solid electrolyte type fuel cell is made up of a cylindrical first air electrode 11, a second air electrode 12 formed on an outer circumferential surface of the first air electrode 11, a solid electrolyte layer 13 formed on an outer circumferential surface of the second air electrode 12, and a fuel electrode layer 14 formed on an outer circumferential surface of the solid electrolyte layer 13. The thickness of the solid electrolyte layer 13 is 20 to 150 μm and the thickness of the second air electrode 12 is 50 to 300 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は円筒状固体電解質型
燃料電池セルおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical solid oxide fuel cell and a method for producing the same.

【0002】[0002]

【従来技術】固体電解質型燃料電池セルは、発電効率が
高く、また高品質の熱を発生することから第3世代の燃
料電池として大いに期待され、各研究機関により精力的
に研究開発が進められている。
2. Description of the Related Art Solid-electrolyte fuel cells are highly expected as third-generation fuel cells because of their high power generation efficiency and high-quality heat. ing.

【0003】円筒状固体電解質型燃料電池セルは、図2
に示すようにLaMnO3 系材料からなる空気極1の表
面に、例えばY2 3 含有の安定化ZrO2 等の固体電
解質層2が形成され、さらにこの表面に燃料極層3とし
てNi/ZrO2 (Y2 3含有)が形成されている。
また、セル間の接続のためLaCrO3 系材料からなる
インターコネクタ層4が固体電解質層2を貫通して、空
気極層1と接するように形成されている。これにより複
数のセルがこのインターコネクタ層4を介して接続され
る。発電は、空気極1の内部に空気(酸素)を、燃料極
層3の外部に水素、メタン等を供給して1000℃で行
われる。
[0003] A cylindrical solid oxide fuel cell is shown in FIG.
As shown in FIG. 1, a solid electrolyte layer 2 of, for example, stabilized ZrO 2 containing Y 2 O 3 is formed on the surface of an air electrode 1 made of a LaMnO 3 -based material, and a Ni / ZrO 2 is formed on this surface as a fuel electrode layer 3. 2 (containing Y 2 O 3 ) is formed.
An interconnector layer 4 made of a LaCrO 3 -based material is formed so as to penetrate the solid electrolyte layer 2 and contact the air electrode layer 1 for connection between cells. Thus, a plurality of cells are connected via the interconnector layer 4. Power generation is performed at 1000 ° C. by supplying air (oxygen) inside the air electrode 1 and hydrogen, methane, etc. outside the fuel electrode layer 3.

【0004】このような燃料電池セルは、一般的には例
えば空気極からなる支持体を作製し、この表面に固体電
解質、インターコネクタおよび燃料極が、スラリーコー
ト法、溶射法、電気化学蒸着法(EVD)等を用いて形
成される。また、場合によってはそれらを組合わせた方
法により固体電解質、インターコネクタおよび燃料極が
順次形成する方法が採用される。
[0004] In such a fuel cell, generally, a support made of, for example, an air electrode is prepared, and a solid electrolyte, an interconnector and a fuel electrode are formed on the surface of the support by a slurry coating method, a thermal spraying method, an electrochemical deposition method. (EVD) or the like. In some cases, a method in which a solid electrolyte, an interconnector, and a fuel electrode are sequentially formed by a method combining them is adopted.

【0005】しかしながら、上記のような製法によれ
ば、作製工程自体が複雑でまた装置が極めて高価である
ことに加えて、セル構成部材数が多いため、上述の従来
の製法ではセルの製造コストが極めて高くなるという欠
点があった。
However, according to the above-described manufacturing method, the manufacturing process itself is complicated, the apparatus is extremely expensive, and the number of cell components is large. However, there was a drawback that was extremely high.

【0006】そこで、従来、少なくとも空気極からなる
円筒状成形体に、固体電解質材料からなるシート状の固
体電解質層成形体を巻き付け、これを同時焼成すること
が行われており、このような方法によれば、非常に簡単
で、且つ少ない工程で燃料電池セルが作製できる(特開
平10−162847号公報等参照)。
Therefore, conventionally, a sheet-shaped solid electrolyte layer molded body made of a solid electrolyte material is wound around a cylindrical molded body composed of at least an air electrode, and this is simultaneously fired. According to the method, a fuel cell can be manufactured in a very simple and small number of steps (see Japanese Patent Application Laid-Open No. H10-162847).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記特
開平10−162847号公報に開示された製法におい
ては、薄いシート状の固体電解質層成形体の取り扱いが
難しくなり、その結果セル作製の歩留まりが悪くなると
いう問題があった。また、単純に空気極材料からなる円
筒状の空気極成形体に固体電解質材料からなるシート状
の固体電解質層成形体を巻き付け、同時焼成する方法が
開示されているが、これだけでは空気極と固体電解質層
の接着が弱く、その結果発電性能が低いという問題もあ
った。
However, in the manufacturing method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 10-162847, it is difficult to handle a thin sheet-like solid electrolyte layer molded body, and as a result, the yield of cell production is poor. There was a problem of becoming. Further, a method is disclosed in which a sheet-shaped solid electrolyte layer formed body made of a solid electrolyte material is simply wound around a cylindrical air electrode formed body made of an air electrode material and fired at the same time. There was also a problem that the adhesion of the electrolyte layer was weak, resulting in low power generation performance.

【0008】本発明は、空気極と固体電解質層の接着力
を向上でき、発電特性、歩留まりを向上できる円筒状固
体電解質型燃料電池セルおよびその製造方法を提供する
ことを目的とする。
An object of the present invention is to provide a cylindrical solid electrolyte fuel cell capable of improving the adhesive force between an air electrode and a solid electrolyte layer and improving power generation characteristics and yield, and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明の円筒状固体電解
質型燃料電池セルは、円筒状の第1空気極と、該第1空
気極の外周面に形成された第2空気極層と、該第2空気
極層の外周面に形成された固体電解質層と、該固体電解
質層の外周面に形成された燃料極層とを具備してなるも
のである。ここで、固体電解質層の厚みが20〜150
μm、第2空気極層の厚みが50〜300μmであるこ
とが望ましい。
According to the present invention, there is provided a cylindrical solid oxide fuel cell unit comprising: a first air electrode having a cylindrical shape; a second air electrode layer formed on an outer peripheral surface of the first air electrode; It comprises a solid electrolyte layer formed on the outer peripheral surface of the second air electrode layer, and a fuel electrode layer formed on the outer peripheral surface of the solid electrolyte layer. Here, the thickness of the solid electrolyte layer is 20 to 150.
μm, and the thickness of the second air electrode layer is desirably 50 to 300 μm.

【0010】また、本発明の円筒状固体電解質型燃料電
池セルの製造方法は、空気極形成材料からなる円筒状の
第1空気極成形体を作製する工程と、空気極形成材料か
らなるシート状の第2空気極層成形体を作製する工程
と、前記固体電解質形成材料からなるシート状の固体電
解質層成形体を作製する工程と、前記第2空気極層成形
体に前記固体電解質層成形体を積層した複合シート成形
体を作製する工程と、前記第1空気極成形体の外周面
に、前記複合シート成形体を、その第2空気極層成形体
が前記第1空気極成形体に当接するように巻き付けて積
層する工程と、該円筒状積層成形体を焼成する工程とを
具備する方法である。
Further, the method for manufacturing a cylindrical solid oxide fuel cell according to the present invention comprises the steps of: forming a cylindrical first air electrode formed body made of an air electrode forming material; Producing a second air electrode layer molded article, producing a sheet-shaped solid electrolyte layer molded article made of the solid electrolyte forming material, and applying the solid electrolyte layer molded article to the second air electrode layer molded article. And forming a composite sheet compact on the outer peripheral surface of the first cathode compact, and applying the second cathode layer compact to the first cathode compact. This is a method including a step of winding and laminating so as to be in contact with each other, and a step of firing the cylindrical laminated molded body.

【0011】ここで、さらに、燃料極形成材料からなる
シート状の燃料極層成形体を作製する工程、インターコ
ネクタ形成材料からなるシート状のインターコネクタ層
成形体を作製する工程を具備し、複合シート成形体を巻
き付けて積層する工程の後に、前記複合シート成形体の
表面に燃料極層成形体を積層する工程と、前記固体電解
質層成形体の両端面間における露出した前記第2空気極
層成形体の表面に前記インターコネクタ層成形体を積層
する工程とを具備することが望ましい。
Here, the method further includes a step of producing a sheet-shaped fuel electrode layer molded article made of the fuel electrode forming material, and a step of producing a sheet-shaped interconnector layer molded article made of the interconnector forming material. A step of laminating a fuel electrode layer molded article on the surface of the composite sheet molded article after the step of winding and laminating the sheet molded article, and exposing the second air electrode layer between both end faces of the solid electrolyte layer molded article. And laminating the interconnector layer molded body on the surface of the molded body.

【0012】また、第1空気極成形体を作製する工程の
後に、前記第1空気極成形体を仮焼する工程を具備する
とともに、複合シート成形体を巻き付けて積層する工程
が、第1空気極仮焼体の外周面に、前記複合シート成形
体を、その第2空気極層成形体が前記第1空気極仮焼体
に当接するように巻き付けて積層する工程であることが
望ましい。
Further, after the step of producing the first cathode electrode molded body, a step of calcining the first cathode electrode molded body is provided, and the step of winding and laminating the composite sheet molded body is performed by the first air electrode forming step. Preferably, a step of winding and laminating the composite sheet compact on the outer peripheral surface of the pole calcined body such that the second cathode layer compact abuts on the first cathode calcined body is desirable.

【0013】[0013]

【作用】本発明の円筒状固体電解質型燃料電池セルによ
れば、円筒状の第1空気極の外周面に第2空気極層を形
成し、この第2空気極層の外周面に固体電解質層を形成
したので、第1空気極と固体電解質層との接合強度が向
上し、セルの性能を向上できる。固体電解質層の厚みを
20〜150μm、第2空気極層の厚みを50〜300
μmとすることにより、さらに第1空気極と固体電解質
層との接合強度を向上できるとともに、セルの性能をさ
らに向上できる。
According to the cylindrical solid electrolyte fuel cell of the present invention, the second air electrode layer is formed on the outer peripheral surface of the first cylindrical air electrode, and the solid electrolyte is formed on the outer peripheral surface of the second air electrode layer. Since the layer is formed, the bonding strength between the first air electrode and the solid electrolyte layer is improved, and the performance of the cell can be improved. The thickness of the solid electrolyte layer is 20 to 150 μm, and the thickness of the second air electrode layer is 50 to 300 μm.
By setting the thickness to μm, the joining strength between the first air electrode and the solid electrolyte layer can be further improved, and the performance of the cell can be further improved.

【0014】また、このような円筒状固体電解質型燃料
電池セルは、空気極形成材料からなる円筒状の第1空気
極成形体、空気極形成材料からなるシート状の第2空気
極層成形体、固体電解質形成材料からなるシート状の固
体電解質層成形体を作製し、第2空気極層成形体に固体
電解質層成形体を積層した複合シート成形体を作製し、
第1空気極成形体の外周面に、複合シート成形体を巻き
付けて積層し、該円筒状積層成形体を焼成することによ
り、容易に得ることができる。
In addition, such a cylindrical solid oxide fuel cell has a cylindrical first air electrode formed body made of an air electrode forming material, and a sheet-shaped second air electrode layer formed body made of an air electrode forming material. Producing a sheet-shaped solid electrolyte layer molded body made of a solid electrolyte forming material, producing a composite sheet molded body in which the solid electrolyte layer molded body is laminated on the second air electrode layer molded body,
It can be easily obtained by winding and laminating a composite sheet molded body on the outer peripheral surface of the first air electrode molded body and firing the cylindrical laminated molded body.

【0015】また、このような製造方法を採用すること
により、円筒状の第1空気極成形体に巻き付ける複合シ
ート成形体の厚みが厚いため取扱いが容易となり、巻き
付け時に製造歩留りを向上できる。さらに、予め、第2
空気極層成形体に固体電解質層成形体を積層し、この
後、第1空気極成形体の外周面に、複合シート成形体
を、その第2空気極層成形体が第1空気極成形体に当接
するように巻き付けて積層するため、第2空気極層成形
体と第1空気極成形体、第2空気極層成形体と固体電解
質層成形体とのなじみが良好であり、しかも、第1空気
極成形体と第2空気極層成形体は、同じ空気極形成材料
からなるためなじみが良好であり、全体として、焼成後
における第1空気極と固体電解質層との接合強度を向上
できる。また、第2空気極層成形体と固体電解質層成形
体との界面のコンタクトが良好となり、コンタクトの悪
さに起因する分極抵抗を減少させることができ、その結
果発電特性を向上できる。
Further, by employing such a manufacturing method, the thickness of the composite sheet molded body wound around the cylindrical first air electrode molded body is large, so that the handling becomes easy, and the production yield at the time of winding can be improved. In addition, the second
The solid electrolyte layer molded body is laminated on the air electrode layer molded body, and thereafter, the composite sheet molded body is formed on the outer peripheral surface of the first air electrode molded body, and the second air electrode layer molded body is formed of the first air electrode molded body. The second air electrode layer molded body and the first air electrode molded body, and the second air electrode layer molded body and the solid electrolyte layer molded body are well conformed to each other because they are wound and laminated so as to contact with each other. The first air electrode molded body and the second air electrode layer molded body are made of the same air electrode forming material, so that the conformity is good, and as a whole, the bonding strength between the first air electrode and the solid electrolyte layer after firing can be improved. . Further, the contact at the interface between the second air electrode layer molded body and the solid electrolyte layer molded body becomes good, and the polarization resistance caused by the poor contact can be reduced, and as a result, the power generation characteristics can be improved.

【0016】さらに、第1空気極、第2空気極層、固体
電解質層、燃料極層、インターコネクタ層を一挙に同時
焼成できるため、円筒状固体電解質型燃料電池セルの製
造工程を大幅に削減でき、さらに容易に作製できる。
Further, since the first air electrode, the second air electrode layer, the solid electrolyte layer, the fuel electrode layer, and the interconnector layer can be simultaneously fired at once, the manufacturing process of the cylindrical solid electrolyte fuel cell can be greatly reduced. Yes, and more easily.

【0017】また、第1空気極成形体を作製する工程の
後に、第1空気極成形体を仮焼する工程を具備するとと
もに、複合シート成形体を巻き付けて積層する工程を、
第1空気極仮焼体の外周面に、前記複合シート成形体
を、その第2空気極層成形体が記第1空気極仮焼体に当
接するように巻き付けて積層する工程としたので、第1
空気極成形体よりも第1空気極仮焼体の方が強度が高い
ため、複合シート成形体の巻き付ける時における製造歩
留りを向上できる。
Further, after the step of manufacturing the first cathode electrode molded body, the method further comprises a step of calcining the first cathode electrode molded body, and a step of winding and laminating the composite sheet molded body.
Since the composite sheet compact was wound and laminated on the outer peripheral surface of the first cathode calcined body so that the second cathode layer compact was in contact with the first cathode calcined body, First
Since the first air electrode calcined body has higher strength than the air electrode molded body, it is possible to improve the production yield when winding the composite sheet molded body.

【0018】[0018]

【発明の実施の形態】本発明の円筒状固体電解質型燃料
電池セルを、図1に基いて説明する。図1において、燃
料電池セルは、円筒状の第1空気極11と、該第1空気
極11の外周面に形成された第2空気極層12と、該第
2空気極層12の外周面に形成された固体電解質層13
と、該固体電解質層13の外周面に形成された燃料極層
14と、第2空気極層12に接続し、表面が外部に露出
するインターコネクタ層15とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A cylindrical solid oxide fuel cell according to the present invention will be described with reference to FIG. In FIG. 1, the fuel cell includes a cylindrical first air electrode 11, a second air electrode layer 12 formed on the outer peripheral surface of the first air electrode 11, and an outer peripheral surface of the second air electrode layer 12. Solid electrolyte layer 13 formed on
And a fuel electrode layer 14 formed on the outer peripheral surface of the solid electrolyte layer 13, and an interconnector layer 15 connected to the second air electrode layer 12 and having a surface exposed to the outside.

【0019】固体電解質層13の厚みは20〜150μ
m、第2空気極層12の厚みは50〜300μmとされ
ている。固体電解質層13の厚みは特に50〜100μ
mが望ましく、第2空気極層12の厚みは特に100〜
200μmが望ましい。
The thickness of the solid electrolyte layer 13 is 20 to 150 μm.
m, the thickness of the second air electrode layer 12 is 50 to 300 μm. The thickness of the solid electrolyte layer 13 is particularly 50 to 100 μm.
m is desirable, and the thickness of the second air electrode layer 12 is particularly 100 to 100.
200 μm is desirable.

【0020】固体電解質層13の厚みが20μmより薄
い場合、および第2空気極層12の厚みが50μmより
薄いと、発電性能は優れるが、固体電解質層13および
第2空気極層12を作製するための成形用シートの取扱
いが困難となり、セル作製の歩留りが悪化するからであ
る。また、固体電解質層13の厚みが150μmより厚
い場合、第2空気極層12の厚みが300μmより厚い
場合には、固体電解質層13と第2空気極層12との接
合状態が悪くなり、発電時の出力密度が低下する傾向が
あるからである。
When the thickness of the solid electrolyte layer 13 is less than 20 μm and when the thickness of the second air electrode layer 12 is less than 50 μm, the power generation performance is excellent, but the solid electrolyte layer 13 and the second air electrode layer 12 are manufactured. This makes it difficult to handle the molding sheet, and the yield of cell production deteriorates. When the thickness of the solid electrolyte layer 13 is greater than 150 μm, and when the thickness of the second air electrode layer 12 is greater than 300 μm, the bonding state between the solid electrolyte layer 13 and the second air electrode layer 12 is deteriorated, and This is because the output density at the time tends to decrease.

【0021】本発明の円筒状固体電解質型燃料電池セル
の製造方法について説明する。先ず、空気極形成材料か
らなる円筒状の第1空気極成形体、空気極形成材料から
なるシート状の第2空気極層成形体、固体電解質形成材
料からなるシート状の固体電解質層成形体を作製する。
A method for manufacturing a cylindrical solid oxide fuel cell according to the present invention will be described. First, a cylindrical first air electrode molding made of an air electrode forming material, a sheet-shaped second air electrode layer molding made of an air electrode forming material, and a sheet solid electrolyte layer molding made of a solid electrolyte forming material are prepared. Make it.

【0022】円筒状の第1空気極成形体は、例えば、空
気極形成材料を押し出し成形や静水圧成形(ラバープレ
ス)等の方法により所定の寸法に作製されるが、厚みと
しては1〜3mmが適当である。この際、空気極形成材
料としては、LaMnO3 系組成物からなり、詳細には
Laの一部を10〜20原子%のCa、Sr、Baなど
のアルカリ土類元素で置換したLaMnO3 系組成物
と、所望の有機成分とからなるものが用いられる。
The cylindrical first air electrode molded body is produced to a predetermined size by a method such as extrusion molding or hydrostatic molding (rubber press) of an air electrode forming material, and has a thickness of 1 to 3 mm. Is appropriate. At this time, as the air electrode-forming material consists of LaMnO 3 based compositions, Ca part of La 10-20 atomic% in particular, Sr, LaMnO 3 based composition substituted with alkaline earth elements such as Ba A substance comprising a substance and a desired organic component is used.

【0023】また、シート状の第2空気極層成形体、シ
ート状の固体電解質層成形体は、ドクターブレード法や
押出法等の周知の方法によりそれぞれシート状の成形体
を作製することにより得られる。この際、第2空気極層
成形体は上記の第1空気極成形体と同一材料を用いれば
良い。また、固体電解質層成形体はY、Yb、Sc、S
m、NbおよびDy等の希土類元素からなる酸化物を3
〜20モル%含有する部分安定化ZrO2 粉末または安
定化ZrO2 粉末と、所望の有機成分とからなる固体電
解質形成材料が用いられる。
The sheet-shaped second air electrode layer molded article and the sheet-shaped solid electrolyte layer molded article can be obtained by preparing sheet-shaped molded articles by a well-known method such as a doctor blade method or an extrusion method. Can be In this case, the second air electrode layer molded body may use the same material as the first air electrode molded body. Further, the solid electrolyte layer molded body is Y, Yb, Sc, S
oxides composed of rare earth elements such as m, Nb and Dy
A partially stabilized ZrO 2 powder or stabilized ZrO 2 powder containing 20 mol%, the solid electrolyte-forming material comprising the desired organic component is used.

【0024】固体電解質層成形体の厚みとしては約30
〜200μmが、第2空気極層成形体の厚みとしては約
70〜350μmが適切である。
The thickness of the solid electrolyte layer molded body is about 30
The thickness of the second air electrode layer molded body is suitably about 70 to 350 μm.

【0025】次に、第2空気極層成形体と固体電解質層
成形体を積層し接合した複合シート成形体を作製する。
この複合シート成形体は静水圧成形あるいは50℃前後
の温度に加熱されたロールの間を通して互いに接合する
ことができる。また、複合シート成形体を加熱した状態
で2軸のプレスにより接合してもよい。この際、複合シ
ート成形体に印加される圧力としては0.1〜0.5t
/cm2 と比較的小さな圧力が好ましい。また、第2空
気極層成形体と固体電解質層成形体との間に、接着力を
強化させる目的で、アクリル樹脂や有機溶剤などを介在
させて接合しても良く、さらに、空気極形成材料および
/または固体電解質形成材料と市販のバインダーを混合
した接着剤を介在させてもよい。
Next, a composite sheet molded body is prepared by laminating and joining the second air electrode layer molded body and the solid electrolyte layer molded body.
The composite sheet compacts can be joined together by isostatic pressing or by passing between rolls heated to a temperature of around 50 ° C. Further, the composite sheet molded body may be joined by a biaxial press in a heated state. At this time, the pressure applied to the composite sheet molded body is 0.1 to 0.5 t.
A relatively small pressure of / cm 2 is preferred. Further, an acrylic resin or an organic solvent may be interposed between the second air electrode layer molded body and the solid electrolyte layer molded body for the purpose of strengthening the adhesive force. And / or an adhesive obtained by mixing a solid electrolyte forming material and a commercially available binder may be interposed.

【0026】この後、第1空気極成形体の外周面に、複
合シート成形体を、その第2空気極層成形体が第1空気
極成形体に当接するように巻き付けて積層し、接合す
る。この際、上記と同様にアクリル樹脂や有機溶剤など
を介在させて接合することが好ましい。
Thereafter, a composite sheet compact is wound around the outer peripheral surface of the first cathode compact, wound and laminated so that the second cathode layer compact is in contact with the first cathode compact, and joined. . At this time, it is preferable that the bonding is performed with an acrylic resin, an organic solvent, or the like interposed in the same manner as above.

【0027】次に、第1空気極成形体の外周面に複合シ
ート成形体を巻き付け接合した円筒状積層成形体を焼成
する。焼成は、酸化性雰囲気中で1300〜1500℃
で3〜10時間同時焼成し、少なくとも固体電解質層が
相対密度で96%以上の緻密質となるようにする。この
際、第1空気極成形体、第2空気極層成形体については
相対密度が60〜80%程度であれば充分である。
Next, the cylindrical laminated molded article formed by winding and joining the composite sheet molded article on the outer peripheral surface of the first air electrode molded article is fired. Baking is performed at 1300-1500 ° C. in an oxidizing atmosphere.
At the same time for 3 to 10 hours so that at least the solid electrolyte layer becomes dense with a relative density of 96% or more. At this time, it is sufficient that the relative density of the first air electrode molded body and the second air electrode layer molded body is about 60 to 80%.

【0028】円筒状固体電解質型燃料電池セルには、図
1に示したように、インターコネクタ層15や燃料極層
14が存在する。これらインターコネクタ層15や燃料
極層14は、第1空気極成形体、第2空気極層成形体、
固体電解質層成形体の同時焼成後に形成することができ
る。
As shown in FIG. 1, an interconnector layer 15 and a fuel electrode layer 14 are present in a cylindrical solid oxide fuel cell. The interconnector layer 15 and the fuel electrode layer 14 are composed of a first air electrode molded body, a second air electrode layer molded body,
It can be formed after the simultaneous firing of the solid electrolyte layer molded body.

【0029】具体的には、上述のようにして得られた固
体電解質層表面に燃料極形成材料をスラリーディップに
より塗布するか、あるいはドクターブレード法により作
製した燃料極形成材料からなるシート状の燃料極層成形
体を巻き付け、酸化性雰囲気で1300〜1400℃で
焼き付け、または焼結させて燃料極層を形成することが
できる。
Specifically, a fuel electrode forming material is applied to the surface of the solid electrolyte layer obtained as described above by slurry dipping, or a sheet-like fuel made of the fuel electrode forming material manufactured by a doctor blade method. The electrode layer can be wound and baked or sintered at 1300 to 1400 ° C. in an oxidizing atmosphere to form a fuel electrode layer.

【0030】同様に、インターコネクタ層15も、固体
電解質層の両端面間における第2空気極層上にインター
コネクタ形成材料をスラリーディップにより塗布する
か、あるいはドクターブレード法により作製したインタ
ーコネクタ形成材料からなるシート状のインターコネク
タ成形体を貼り付け、酸化性雰囲気で1300〜150
0℃で焼き付け、または焼結させてインターコネクタ層
を形成することができる。
Similarly, the interconnector layer 15 is formed by applying an interconnector forming material on the second air electrode layer between both end faces of the solid electrolyte layer by slurry dipping, or by using an interconnector forming material prepared by a doctor blade method. A sheet-like interconnector molded body made of 1300-150 in an oxidizing atmosphere
Baking or sintering at 0 ° C. can form an interconnector layer.

【0031】尚、製造工程の簡略化という点からは、第
1空気極、第2空気極層、固体電解質層と同時に、燃料
極層、あるいは燃料極層およびインターコネクタ層を形
成することが望ましい。
From the viewpoint of simplifying the manufacturing process, it is desirable to form the fuel electrode layer or the fuel electrode layer and the interconnector layer simultaneously with the first air electrode, the second air electrode layer, and the solid electrolyte layer. .

【0032】具体的には、第2空気極層成形体に固体電
解質層成形体を積層した複合シート成形体を第1空気極
成形体に巻き付けて積層し、複合シート成形体の表面に
燃料極層成形体を積層し、固体電解質層成形体の両端面
間における露出した第2空気極層成形体の表面にインタ
ーコネクタ層成形体を積層し、これらを同時焼成する方
法である。
Specifically, a composite sheet molded body obtained by laminating the solid electrolyte layer molded body on the second air electrode layer molded body is wound around the first air electrode molded body and laminated, and the fuel electrode is formed on the surface of the composite sheet molded body. This is a method in which layer molded bodies are laminated, an interconnector layer molded body is laminated on the exposed surface of the second air electrode layer molded body between both end faces of the solid electrolyte layer molded body, and these are simultaneously fired.

【0033】他に、それらの中間的な方法として、第1
空気極成形体、第2空気極層成形体、固体電解質層成形
体、インターコネクタ層成形体からなる円筒状成形体を
同時焼成し、その後固体電解質表面に燃料極形成材料を
スラリーディップにより塗布するか、あるいはドクター
ブレード法により作製した燃料極形成材料からなるシー
ト状の燃料極層成形体を貼り付け、酸化性雰囲気で13
00〜1400℃で温度焼き付けして燃料極層を形成し
てもよい。
In addition, as an intermediate method between them, the first method
A cylindrical molded body composed of the air electrode molded body, the second air electrode layer molded body, the solid electrolyte layer molded body, and the interconnector layer molded body is simultaneously fired, and then the fuel electrode forming material is applied to the surface of the solid electrolyte by slurry dipping. Alternatively, a sheet-like fuel electrode layer formed body made of a fuel electrode forming material produced by a doctor blade method is attached and
The fuel electrode layer may be formed by baking at a temperature of 00 to 1400 ° C.

【0034】燃料極形成材料としては、NiO/ZrO
2 (Y2 3 含有)が、またインターコネクタ形成材料
としてはLaCrO3 系組成物が用いられるが、インタ
ーコネクタ形成材料として特にLaの一部をCa、Sr
で、あるいはCrの一部をMgで置換したLaCrO3
系組成物が好ましい。
As a fuel electrode forming material, NiO / ZrO
2 (containing Y 2 O 3 ), and a LaCrO 3 -based composition is used as a material for forming an interconnector.
LaCrO 3 in which Cr is partially substituted by Mg
A system composition is preferred.

【0035】円筒状固体電解質型燃料電池セルの作製
は、経済的な観点から、第1空気極成形体、第2空気極
層成形体に、固体電解質層成形体、燃料極層成形体、イ
ンターコネクタ層成形体を同時焼成することが最も望ま
しい。
The production of the cylindrical solid oxide fuel cell is carried out from the economical point of view by adding the solid electrolyte layer molded article, the fuel electrode layer molded article, and the first air electrode molded article to the second air electrode layer molded article. It is most desirable that the connector layer molded body be co-fired.

【0036】尚、複合シート成形体を第1空気極成形体
外周面に巻き付けて積層した後、複合シート成形体を構
成する第2空気極層成形体、固体電解質層成形体を仮焼
しても良い。この場合には、インターコネクタ層成形体
および/または燃料極層成形体を積層する場合の取扱い
が容易となる。
After the composite sheet molded body is wound around the outer periphery of the first air electrode molded body and laminated, the second air electrode layer molded body and the solid electrolyte layer molded body constituting the composite sheet molded body are calcined. Is also good. In this case, handling when laminating the interconnector layer molded body and / or the fuel electrode layer molded body is facilitated.

【0037】[0037]

【実施例】いづれも市販の純度が99.9%以上の粉末
で、空気極形成材料として平均結晶粒径が10μmのL
0.85Sr0.15MnO3 粉末と、固体電解質形成材料と
して平均結晶粒径が0.5μmの10モル%Y2 3
含有する安定化ZrO2 粉末と、燃料極形成材料として
平均結晶粒径が3μmのNiO/ZrO2 (Y2 3
有)の混合粉末と、インターコネクタ形成材料として平
均結晶粒径が1μmのLa0.8 Ca0.22CrO3 粉末を
それぞれ準備した。
EXAMPLES Each of the powders is a commercially available powder having a purity of 99.9% or more and has an average crystal grain size of 10 μm as an air electrode forming material.
a 0.85 Sr 0.15 MnO 3 powder, stabilized ZrO 2 powder containing 10 mol% Y 2 O 3 having an average crystal grain size of 0.5 μm as a solid electrolyte forming material, and an average crystal grain size as a fuel electrode forming material A mixed powder of 3 μm NiO / ZrO 2 (containing Y 2 O 3 ) and a La 0.8 Ca 0.22 CrO 3 powder having an average crystal grain size of 1 μm were prepared as interconnector forming materials.

【0038】先ず、上記の空気極形成粉末を水を溶媒と
して押出用のハイドを作製し、押出成形装置により、長
さ200mmで外径16mm、内径11mmの中空の円
筒状の第1空気極成形体を作製した。一方、空気極形成
材料および固体電解質形成材料を用いて、ドクターブレ
ード法により種々の厚みのシート状に成形し、第2空気
極層成形体と固体電解質層成形体を作製した。また、同
様に水を溶媒としてスラリーを形成し、ドクターブレー
ド法によりそれぞれ100μmの厚さのシート状のイン
ターコネクタ層成形体および燃料極層成形体を作製し
た。
First, a powder for extruding the above-mentioned air electrode forming powder using water as a solvent was prepared, and a hollow cylindrical first air electrode having a length of 200 mm, an outer diameter of 16 mm and an inner diameter of 11 mm was formed by an extruder. The body was made. On the other hand, the air electrode forming material and the solid electrolyte forming material were formed into sheets of various thicknesses by a doctor blade method to produce a second air electrode layer formed body and a solid electrolyte layer formed body. Similarly, a slurry was formed using water as a solvent, and a sheet-shaped interconnector layer molded article and a fuel electrode layer molded article each having a thickness of 100 μm were prepared by a doctor blade method.

【0039】この後、固体電解質層成形体と第2空気極
層成形体を0.5(t/cm2 )の静水圧成形により接
合し、複合シート成形体を作製した。この複合シート成
形体を、アクリル樹脂の接着剤を用いて、上記の円筒状
の第1空気極成形体に巻き付けた後、インターコネクタ
層成形体および燃料極層成形体を積層して円筒状積層成
形体を作製し、この後、空気中1450℃で3時間焼成
を行い、図1に示したような円筒状固体電解質型燃料電
池セルを作製した。
Thereafter, the molded body of the solid electrolyte layer and the molded body of the second air electrode layer were joined by hydrostatic pressure molding of 0.5 (t / cm 2 ) to produce a composite sheet molded body. The composite sheet molded body is wound around the cylindrical first air electrode molded body using an acrylic resin adhesive, and then the interconnector layer molded body and the fuel electrode layer molded body are laminated to form a cylindrical laminated body. A molded body was prepared, and thereafter, baked in air at 1450 ° C. for 3 hours to prepare a cylindrical solid oxide fuel cell as shown in FIG.

【0040】一方、比較のため、空気極形成材料からな
る円筒状成形体に、固体電解質成形体、インターコネク
タ層成形体および燃料極層成形体を順次積層し、空気中
1450℃で3時間焼成を行い、図2に示したような円
筒状固体電解質型燃料電池セルを作製した。
On the other hand, for comparison, a solid electrolyte molded body, an interconnector layer molded body and a fuel electrode layer molded body were sequentially laminated on a cylindrical molded body made of an air electrode forming material, and fired at 1450 ° C. for 3 hours in air. Was performed to produce a cylindrical solid oxide fuel cell as shown in FIG.

【0041】このようにして作製した燃料電池セルはい
づれの場合も、空気極層、固体電解質層、燃料極層およ
びインターコネクタ層の相対密度はそれぞれ60〜65
%、97〜99%、60〜70%、96〜99%であっ
た。また、固体電解質層および第2空気極層の厚みは破
断面の走査型電子顕微鏡観察により測定し、その結果を
表1に示した。
In any of the fuel cells manufactured as described above, the relative densities of the air electrode layer, the solid electrolyte layer, the fuel electrode layer, and the interconnector layer are 60 to 65, respectively.
%, 97-99%, 60-70%, 96-99%. The thicknesses of the solid electrolyte layer and the second air electrode layer were measured by observing the fractured surface with a scanning electron microscope, and the results are shown in Table 1.

【0042】この後、空気極側に酸素を、燃料極側に水
素を流し、1000℃で発電した結果を合わせて表1に
示した。尚、製造歩留りは、100個作製した場合の良
品の割合を記載した。良品か不良品かどうかは、走査型
電子顕微鏡観察により固体電解質層と空気極との界面が
剥離している場合を不良とした。これらの結果を表1に
記載した。
After that, oxygen was supplied to the air electrode side and hydrogen was supplied to the fuel electrode side, and the results of power generation at 1000 ° C. are shown in Table 1. In addition, the manufacturing yield described the ratio of non-defective products when 100 pieces were manufactured. A non-defective product or a defective product was determined to be defective when the interface between the solid electrolyte layer and the air electrode was peeled off by observation with a scanning electron microscope. Table 1 shows the results.

【0043】[0043]

【表1】 [Table 1]

【0044】この表1より、第2空気極層を有しない図
2の円筒状固体電解質型燃料電池セル(試料No.1)で
は、出力密度が0.32W/cm2 と低く、しかも製造
歩留りは73%であった。
From Table 1, it can be seen that the cylindrical solid oxide fuel cell (No. 1) of FIG. 2 having no second air electrode layer has a low output density of 0.32 W / cm 2 and a high production yield. Was 73%.

【0045】一方、本発明の円筒状固体電解質型燃料電
池セルでは、出力密度が0.41W/cm2 以上、製造
歩留りも88%以上であり、本発明の試料は製造歩留り
が良好であり、出力密度が高いことが判る。
On the other hand, the cylindrical solid oxide fuel cell of the present invention has an output density of 0.41 W / cm 2 or more and a production yield of 88% or more, and the sample of the present invention has a good production yield. It can be seen that the power density is high.

【0046】[0046]

【発明の効果】本発明の円筒状固体電解質型燃料電池セ
ルでは、第1空気極と固体電解質層との接合強度が向上
し、セルの性能を向上できる。固体電解質層の厚みを2
0〜150μm、第2空気極層の厚みを50〜300μ
mとすることにより、さらに第1空気極と固体電解質層
との接合強度を向上できるとともに、セルの性能をさら
に向上できる。
According to the cylindrical solid oxide fuel cell of the present invention, the bonding strength between the first air electrode and the solid electrolyte layer is improved, and the performance of the cell can be improved. Set the thickness of the solid electrolyte layer to 2
0 to 150 μm, the thickness of the second air electrode layer is 50 to 300 μm
By setting m, the joining strength between the first air electrode and the solid electrolyte layer can be further improved, and the performance of the cell can be further improved.

【0047】また、本発明の円筒状固体電解質型燃料電
池セルの製造方法によれば、上記円筒状固体電解質型燃
料電池セルを容易に得ることができるとともに、円筒状
の第1空気極成形体に巻き付ける複合シート成形体の厚
みを厚くすることができるため取扱いが容易となり、巻
き付け時における製造歩留りを向上できる。
According to the method for manufacturing a cylindrical solid oxide fuel cell of the present invention, the cylindrical solid oxide fuel cell can be easily obtained, and the cylindrical first air electrode molded body can be obtained. Since the thickness of the composite sheet molded article to be wound can be increased, handling becomes easy, and the production yield at the time of winding can be improved.

【0048】さらに、予め、第2空気極層成形体に固体
電解質層成形体を積層し、この後、第1空気極成形体の
外周面に、複合シート成形体を巻き付けて積層するた
め、第2空気極層成形体と第1空気極成形体、第2空気
極層成形体と固体電解質層成形体とのなじみが良好であ
り、しかも、第1空気極成形体と第2空気極層成形体
は、同じ空気極形成材料からなるためなじみが良好であ
り、全体として、焼成後における第1空気極と固体電解
質層との接合強度を向上できる。
Further, in order to laminate the solid electrolyte layer molded body on the second air electrode layer molded body in advance, and to wind and laminate the composite sheet molded body on the outer peripheral surface of the first air electrode molded body, 2 The air electrode layer molded body and the first air electrode molded body, the second air electrode layer molded body and the solid electrolyte layer molded body have good conformity, and the first air electrode molded body and the second air electrode layer molded body Since the body is made of the same air electrode forming material, the body has good conformity, and as a whole, the bonding strength between the first air electrode and the solid electrolyte layer after firing can be improved.

【0049】また、第2空気極層成形体と固体電解質層
成形体との界面のコンタクトが良好となり、コンタクト
の悪さに起因する分極抵抗を減少させることができ、そ
の結果発電特性を向上できる。
Further, the contact at the interface between the second air electrode layer molded body and the solid electrolyte layer molded body becomes good, and the polarization resistance caused by the poor contact can be reduced, and as a result, the power generation characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状固体電解質型燃料電池セルを示
す斜視図である。
FIG. 1 is a perspective view showing a cylindrical solid oxide fuel cell according to the present invention.

【図2】従来の円筒状固体電解質型燃料電池セルを示す
斜視図である。
FIG. 2 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

11・・・第1空気極 12・・・第2空気極層 13・・・固体電解質層 14・・・燃料極層 15・・・インターコネクタ層 DESCRIPTION OF SYMBOLS 11 ... 1st air electrode 12 ... 2nd air electrode layer 13 ... Solid electrolyte layer 14 ... Fuel electrode layer 15 ... Interconnector layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】円筒状の第1空気極と、該第1空気極の外
周面に形成された第2空気極層と、該第2空気極層の外
周面に形成された固体電解質層と、該固体電解質層の外
周面に形成された燃料極層とを具備してなることを特徴
とする円筒状固体電解質型燃料電池セル。
1. A first air electrode having a cylindrical shape, a second air electrode layer formed on an outer peripheral surface of the first air electrode, and a solid electrolyte layer formed on an outer peripheral surface of the second air electrode layer. And a fuel electrode layer formed on the outer peripheral surface of the solid electrolyte layer.
【請求項2】固体電解質層の厚みが20〜150μm、
第2空気極層の厚みが50〜300μmであることを特
徴とする請求項1記載の円筒状固体電解質型燃料電池セ
ル。
2. The solid electrolyte layer has a thickness of 20 to 150 μm.
The cylindrical solid oxide fuel cell according to claim 1, wherein the thickness of the second air electrode layer is 50 to 300 m.
【請求項3】空気極形成材料からなる円筒状の第1空気
極成形体を作製する工程と、前記空気極形成材料からな
るシート状の第2空気極層成形体を作製する工程と、固
体電解質形成材料からなるシート状の固体電解質層成形
体を作製する工程と、前記第2空気極層成形体に前記固
体電解質層成形体を積層した複合シート成形体を作製す
る工程と、前記第1空気極成形体の外周面に、前記複合
シート成形体を、その第2空気極層成形体が前記第1空
気極成形体に当接するように巻き付けて積層する工程
と、該円筒状積層成形体を焼成する工程とを具備するこ
とを特徴とする円筒状固体電解質型燃料電池セルの製造
方法。
3. A step of producing a cylindrical first air electrode molded body made of an air electrode forming material; a step of producing a sheet-shaped second air electrode layer molded article made of said air electrode forming material; A step of producing a sheet-shaped solid electrolyte layer molded article made of an electrolyte-forming material; a step of producing a composite sheet molded article obtained by laminating the solid electrolyte layer molded article on the second air electrode layer molded article; Winding and laminating the composite sheet compact on the outer peripheral surface of the cathode compact so that the second cathode laminate is in contact with the first cathode compact; and forming the cylindrical laminate compact. And a step of firing the solid-state fuel cell.
【請求項4】さらに、燃料極形成材料からなるシート状
の燃料極層成形体を作製する工程、インターコネクタ形
成材料からなるシート状のインターコネクタ層成形体を
作製する工程を具備し、複合シート成形体を巻き付けて
積層する工程の後に、前記複合シート成形体の表面に燃
料極層成形体を積層する工程と、前記固体電解質層成形
体の両端面間における露出した前記第2空気極層成形体
の表面に前記インターコネクタ層成形体を積層する工程
とを具備することを特徴とする請求項3記載の円筒状固
体電解質型燃料電池セルの製造方法。
4. A composite sheet comprising a step of producing a sheet-like fuel electrode layer molded body made of a fuel electrode forming material and a step of producing a sheet-shaped interconnector layer molded article made of an interconnector forming material. A step of laminating a fuel electrode layer molded body on the surface of the composite sheet molded body after the step of winding and laminating the molded body; and forming the exposed second air electrode layer between both end surfaces of the solid electrolyte layer molded body. Laminating the interconnector layer molded body on the surface of the body. The method for producing a cylindrical solid oxide fuel cell according to claim 3, further comprising:
【請求項5】第1空気極成形体を作製する工程の後に、
前記第1空気極成形体を仮焼する工程を具備するととも
に、複合シート成形体を巻き付けて積層する工程が、第
1空気極仮焼体の外周面に、前記複合シート成形体を、
その第2空気極層成形体が前記第1空気極仮焼体に当接
するように巻き付けて積層する工程であることを特徴と
する請求項3または4記載の円筒状固体電解質型燃料電
池セルの製造方法。
5. After the step of producing the first air electrode molded body,
A step of calcining the first air electrode molded body, and the step of winding and laminating the composite sheet molded body includes, on the outer peripheral surface of the first air electrode calcined body, the composite sheet molded body,
5. The cylindrical solid oxide fuel cell according to claim 3, wherein the second air electrode layer molded body is wound and laminated so as to abut on the first air electrode calcined body. Production method.
JP18208799A 1999-06-28 1999-06-28 Method for manufacturing cylindrical solid oxide fuel cell Expired - Fee Related JP3686788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18208799A JP3686788B2 (en) 1999-06-28 1999-06-28 Method for manufacturing cylindrical solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18208799A JP3686788B2 (en) 1999-06-28 1999-06-28 Method for manufacturing cylindrical solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2001015128A true JP2001015128A (en) 2001-01-19
JP3686788B2 JP3686788B2 (en) 2005-08-24

Family

ID=16112145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18208799A Expired - Fee Related JP3686788B2 (en) 1999-06-28 1999-06-28 Method for manufacturing cylindrical solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3686788B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228740A (en) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp Manufacturing method of solid oxide fuel cell
JP2007317610A (en) * 2006-05-29 2007-12-06 Kyocera Corp Cell stack and fuel battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228740A (en) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp Manufacturing method of solid oxide fuel cell
JP2007317610A (en) * 2006-05-29 2007-12-06 Kyocera Corp Cell stack and fuel battery

Also Published As

Publication number Publication date
JP3686788B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP4462727B2 (en) Solid electrolyte fuel cell
JP3342616B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP3434883B2 (en) Method for manufacturing fuel cell
KR101109011B1 (en) Manufacturing method of tubular anode-supported electrolyte and tubular solid oxide fuel cell
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2001015128A (en) Cylindrical solid electrolyte type fuel cell and its manufacture
JP3339998B2 (en) Cylindrical fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3342611B2 (en) Manufacturing method of cylindrical fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JPH07282823A (en) Manufacture of cell of cylindrical fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP2002110193A (en) Solid electrolyte fuel cell and its manufacturing method
JP3358640B2 (en) Manufacturing method of electrode substrate
JP3238086B2 (en) Solid oxide fuel cell
JP3359497B2 (en) Method for manufacturing cylindrical solid oxide fuel cell
JP3677387B2 (en) Solid oxide fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH11111308A (en) Cylindrical fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees