JPH0250983A - Heat-resistant parts - Google Patents

Heat-resistant parts

Info

Publication number
JPH0250983A
JPH0250983A JP63228348A JP22834888A JPH0250983A JP H0250983 A JPH0250983 A JP H0250983A JP 63228348 A JP63228348 A JP 63228348A JP 22834888 A JP22834888 A JP 22834888A JP H0250983 A JPH0250983 A JP H0250983A
Authority
JP
Japan
Prior art keywords
lanthanum
heat
oxide
earth metal
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63228348A
Other languages
Japanese (ja)
Other versions
JP2604437B2 (en
Inventor
Fumiya Ishizaki
石崎 文也
Toshihiko Yoshida
利彦 吉田
Atsushi Tsunoda
淳 角田
Hiroyuki Iwasaki
岩崎 浩之
Tsukasa Shima
島 司
Isao Mukaizawa
向沢 功
Satoshi Sakurada
桜田 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP63228348A priority Critical patent/JP2604437B2/en
Publication of JPH0250983A publication Critical patent/JPH0250983A/en
Application granted granted Critical
Publication of JP2604437B2 publication Critical patent/JP2604437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Fuel Cell (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To produce the title heat-resistant parts having resistance to oxidation and reduction by forming a coating film of La, etc., on the surface of a base alloy contg. Cr, Co, Ni, Fe, and Mn. CONSTITUTION:The surface of a base alloy contg. Cr, Co, Ni, Fe, or Mn or those metals is coated with one kind selected from a group consisting of lanthanum, lanthanum oxide, lanthanum and an alkaline-earth metal, lanthanum oxide and an alkaline-earth metal, lanthanum and an alkaline-earth metal oxide, and lanthanum oxide and an alkaline-earth metal oxide. The thickness of the coating is preferably controlled to about 0.1-1mu, and the molar ratio of M1/La of the alkaline-earth metal M1 to lanthanum La to about 0-0.7. The coating film reacts with the metal in the base alloy to form a perovskite composite oxide La1-xM M<2>O3 (M<1> is an alkaline-earth metal, M<2> is Cr, Co, Ni, Fe, or Mn, and 0<=x<1). By this method, a heat-resistant high-conductivity metal parts useful for the bonding body, current collecting body, etc., of a high-temp. fuel cell is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱部品に係り、特に高温燃料電池のカソード
とアノードとの接合体及びカソード集重体に関する。よ
り詳しく述べると、本発明は耐熱性金属基材の表面を耐
酸化性及び耐還元性を有する導電性被膜で覆った耐熱部
品に関し、この耐熱部品は高温燃料電池に限らず、ガス
タービン、MHD発電用途などの高温において電気伝導
性を必要とするすべての分野において有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to heat-resistant parts, and particularly to a cathode-anode assembly and a cathode aggregate of a high-temperature fuel cell. More specifically, the present invention relates to a heat-resistant component in which the surface of a heat-resistant metal base material is covered with a conductive film having oxidation resistance and reduction resistance. It is useful in all fields that require electrical conductivity at high temperatures, such as power generation applications.

〔従来の技術および発明が解決しようとする課題〕高温
型燃料電池には650℃で使用する溶融塩型と800〜
1000°Cで使用する固体電解質型がある。
[Prior art and problems to be solved by the invention] High-temperature fuel cells include molten salt type fuel cells used at 650°C and 800°C
There is a solid electrolyte type that can be used at 1000°C.

固体電解質燃料電池の基本構造は、第8図に示す如く、
固体電解質(例えば部分安定化ジルコニア)■を挾んで
カソード(例えば、ペロブスカイト型Lao、n5ro
、MnO:+) 2及びアノード(例えばNio/Zr
O,) 3を膜状に形成し、カソード2側に酸素又は空
気、アノード3側に燃料、例えば水素を供給するように
なっている。ジルコニア(ZrO□)は1000℃で0
.5Ω−’ cm −’の電気伝導性を示し、これはイ
オン電導即ち02−の移動によるものであるが、ジルコ
ニアは非常に脆いので、カルシラl、やイツトリウムで
安定化しである。この例のような電池の反応は カソード:48−十02→202 アノード: 02− +H2−+Hzo + 2 eで
表され、072−はジルコニア中を輸送される。
The basic structure of a solid electrolyte fuel cell is as shown in Figure 8.
A solid electrolyte (e.g. partially stabilized zirconia) is sandwiched between the cathode (e.g. perovskite type Lao, n5ro).
, MnO:+) 2 and anode (e.g. Nio/Zr
O, ) 3 is formed into a film, and oxygen or air is supplied to the cathode 2 side, and fuel, such as hydrogen, is supplied to the anode 3 side. Zirconia (ZrO□) is 0 at 1000℃
.. It exhibits an electrical conductivity of 5 Ω-'cm-', and this is due to ionic conduction, that is, the movement of 02-, but since zirconia is very brittle, it must be stabilized with calcilyl or yttrium. The reaction of a cell like this example is represented by cathode: 48-102→202 anode: 02- + H2- + Hzo + 2 e, where 072- is transported in zirconia.

又、これは単位セルの構造であるが、単位セルを集積し
て複数の単位セルを並列(又は九タリ)に接続するため
には、隣り合う単位セルの電極間を接合体(インターコ
ネクター)で接続する。そして、実際の燃料電池の構造
は単位セルの集積の仕方で決まり、これまでいくつかの
集積構造が提案され、実用化のための開発が進められて
いる。
Also, although this is the structure of a unit cell, in order to integrate unit cells and connect multiple unit cells in parallel (or in parallel), an interconnector is used between the electrodes of adjacent unit cells. Connect with. The actual structure of a fuel cell is determined by the way the unit cells are integrated, and several integrated structures have been proposed so far, and development for practical use is progressing.

ところで、このような固定電解質燃料電池の接合体とし
ては次のような条件を満たすことが好ましいとされてい
る。
By the way, it is said that it is preferable for such a fixed electrolyte fuel cell assembly to satisfy the following conditions.

1)高温での酸化および還元雰囲気下で安定。1) Stable under oxidizing and reducing atmospheres at high temperatures.

2)高温での、酸化および還元雰囲気で良好な導電体。2) Good electrical conductor in oxidizing and reducing atmospheres at high temperatures.

3)酸化物イオン導電性固体例えば安定化ジルコニアの
熱膨張係数と近い熱膨張係数をもつ。
3) It has a coefficient of thermal expansion close to that of an oxide ion conductive solid, such as stabilized zirconia.

4)電極材の熱膨張係数と近い熱膨張係数をもつ。4) It has a thermal expansion coefficient close to that of the electrode material.

また、カソード集電体としては、次の条件が要求される
Further, the following conditions are required for the cathode current collector.

1)高温での酸化雰囲気下で安定。1) Stable in oxidizing atmosphere at high temperatures.

2)高温での酸化雰囲気下で良好な導電体。2) Good electrical conductor under oxidizing atmosphere at high temperature.

3)酸化物イオン導電性固体例えば安定化ジルコニアの
熱膨張係数と近い熱膨張係数をもつ。
3) It has a coefficient of thermal expansion close to that of an oxide ion conductive solid, such as stabilized zirconia.

4)酸素電極材の熱膨張係数と近い熱膨張係数をもつ。4) It has a thermal expansion coefficient close to that of the oxygen electrode material.

従来、接合体、集電体としては金属又は導電性セラミッ
クスを用いている。しかしなから、金属製を600°C
以上で用いると表面酸化層が形成され、接触抵抗が著し
く増加して、電力の抵抗損失を大きくし、燃料電池特性
を悪化させる。また、導電性セラミックスとしては金属
複合酸化物、例えばLal−XM’、 M2O3(M’
はSr、Ca又はBa、M2はGo  、Fe  、M
n  、Ni又はCrである、0≦x〈1)で表される
ペロブスカイI・型酸化物、特にLa1−x Sr、 
CrO3が上記の要件を満たすものとして提案されてい
る。しかしながら、このようなセラミックスは、導電性
であるとはいえ抵抗が無視できず、例えば米国ウェスチ
ングハウス社が提案しているペロブスカイト型酸化物を
カソード材料として用いる薄膜円筒型燃料電池セルでは
カソードの抵抗が全電池抵抗の約65%を占め、燃料電
池のエネルギー効率を向上させる上で障害となる。
Conventionally, metals or conductive ceramics have been used as bonded bodies and current collectors. However, since metal is heated to 600°C
If used above, a surface oxidation layer will be formed, contact resistance will increase significantly, resistance loss of electric power will increase, and fuel cell characteristics will deteriorate. Further, as conductive ceramics, metal composite oxides such as Lal-XM', M2O3(M'
is Sr, Ca or Ba, M2 is Go, Fe, M
Perovsky type I oxides with 0≦x<1), in particular La1-x Sr, where n is Ni or Cr,
CrO3 has been proposed as meeting the above requirements. However, although such ceramics are conductive, their resistance cannot be ignored, and for example, in the thin film cylindrical fuel cell proposed by Westinghouse Corporation in the United States, which uses perovskite oxide as the cathode material, the cathode Resistance accounts for about 65% of the total cell resistance and is an obstacle to improving the energy efficiency of fuel cells.

一方、近年、より高性能な燃料電池の開発を目的として
新しい構造の電池が提案されている。その例を第6図及
び第7図に示す。第6図は部分安定化ジルコニアなどの
固体電解質でハニカム構造5を作り、ハニカム構造の細
孔(セル)の1つおきに燃料6と空気(酸素)7を向流
的に供給し、燃料6を供給する細孔内の壁面にアノード
、空気(酸素)7を供給する細孔内の壁面にカソードを
形成したものである。第7図は複数の固体電解質隔壁1
1によって形成される層状空間12 、13の1つおき
に燃料14と空気(酸素)15を直角方向に供給し、隔
壁11の燃料14側にアノード16、空気(酸素)側に
カソード17を形成したものである。これらの型の電池
は単位体積あたりきわめて高いエネルギー密度が期待で
き、かつ、従来のセラミックス技術が応用でき大量生産
に向いていると考えられる。しかし最大の問題は、第6
図の構造では集電体であり、第5図の構造では接合体で
ある。
On the other hand, in recent years, batteries with new structures have been proposed with the aim of developing higher performance fuel cells. Examples are shown in FIGS. 6 and 7. In Figure 6, a honeycomb structure 5 is made of a solid electrolyte such as partially stabilized zirconia, and fuel 6 and air (oxygen) 7 are supplied countercurrently to every other pore (cell) of the honeycomb structure. An anode is formed on the wall inside the pore that supplies air (oxygen) 7, and a cathode is formed on the wall inside the pore that supplies air (oxygen) 7. Figure 7 shows multiple solid electrolyte partition walls 1
Fuel 14 and air (oxygen) 15 are supplied perpendicularly to every other layered space 12 and 13 formed by the partition wall 11, and an anode 16 is formed on the fuel 14 side of the partition wall 11, and a cathode 17 is formed on the air (oxygen) side. This is what I did. These types of batteries can be expected to have extremely high energy density per unit volume, and are thought to be suitable for mass production as conventional ceramic technology can be applied. However, the biggest problem is the 6th
In the structure shown in the figure, it is a current collector, and in the structure shown in FIG. 5, it is a joined body.

本発明は、特に、このような集電体あるいは接合体に適
した耐熱導電性部品を提供することを目的としてなされ
たものである。
The present invention has been made especially for the purpose of providing a heat-resistant conductive component suitable for such a current collector or a bonded body.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を、クロム、コバルト、ニッケル、鉄
若しくはマンガンを含む合金又はクロム若しくはコバル
ト純金属の基材表面に、(I)ランタン、(II)ラン
タンとアルカリ土類金属、(IIi )酸化ランタンと
アルカリ土類金属、(iv )ランタンとアルカリ土類
金属酸化物、及び(V)酸化ランタンとアルカリ土類金
属酸化物からなる群のいずれかを被覆して成ることを特
徴とする耐熱部品を提供することによって解決する。
The present invention solves the above problems by applying (I) lanthanum, (II) lanthanum and alkaline earth metal, (IIi) oxidation A heat-resistant component coated with any one of the group consisting of lanthanum and an alkaline earth metal, (iv) lanthanum and an alkaline earth metal oxide, and (V) lanthanum oxide and an alkaline earth metal oxide. Solved by providing.

この被膜は、高温酸素雰囲気で基材中のクロム、コバル
ト、ニッケル、鉄又はマンガンと反応して、La+−x
 M’x M2O3(M’ はアルカリ土類金属、M2
はクロム、コバルト、ニッケル、鉄又はマンガン、0≦
X<1である)ペロブスカイト型複合酸化物を生成する
。特に、このペロブスカイト型複合酸化物は高温で、安
定であると同時に、電気伝導にすぐれ10〜1000Ω
−1cm−1の値をもつ。このため、合金又は純金属の
みでは高温で酸化被膜をつくり表面が絶縁化されるのに
対し、本発明による部品は複合酸化物被膜の生成のため
に表面電気伝導性にもすぐれ、接合体、集合体に最適で
ある。また、耐熱部品の本体は耐熱性の合金又は純金属
なので、その剛性、加工性及び電気伝導性のすべての点
で優れ、この耐熱部品の実用性を高めている。
This film reacts with chromium, cobalt, nickel, iron, or manganese in the base material in a high-temperature oxygen atmosphere to form a layer of La+-x
M'x M2O3 (M' is alkaline earth metal, M2
is chromium, cobalt, nickel, iron or manganese, 0≦
A perovskite-type composite oxide (X<1) is produced. In particular, this perovskite-type composite oxide is stable at high temperatures and has excellent electrical conductivity of 10 to 1000Ω.
It has a value of −1 cm−1. For this reason, whereas alloys or pure metals alone form an oxide film at high temperatures and insulate the surface, the parts according to the present invention have excellent surface electrical conductivity due to the formation of a composite oxide film, and the joined body, Perfect for gatherings. Furthermore, since the main body of the heat-resistant component is made of a heat-resistant alloy or pure metal, it is excellent in all aspects of rigidity, workability, and electrical conductivity, increasing the practicality of this heat-resistant component.

基材金属はクロム、コバルト、ニッケル、鉄若しくはマ
ンガンを含む合金又はクロム若しくはコバルトの純金属
であればよいが、合金ではクロム、コバルト、ニッケル
、鉄又はマンガンを9wt%以上含むいわゆる耐熱合金
が好ましい。例えば、Ni 10.0. Cr 20.
0. W15.0. Fe 1.5 、 Co残り、あ
るいは後出実施例に示すような組成を有するものが有用
である。
The base metal may be an alloy containing chromium, cobalt, nickel, iron, or manganese, or a pure metal of chromium or cobalt, but the alloy is preferably a so-called heat-resistant alloy containing 9 wt% or more of chromium, cobalt, nickel, iron, or manganese. . For example, Ni 10.0. Cr20.
0. W15.0. Fe 1.5 , Co remaining, or those having compositions as shown in Examples below are useful.

被膜中の酸化ランタンおよびアルカリ土類酸化物の組成
比x/(I−x)は特に限定されるものではないが、M
、/L、比(M、:アルカリ土類金属)はモル比でO〜
0.7、特に0〜0.5が好ましい。この範囲で電気伝
導性と耐酸化性にすぐれるからである。
The composition ratio x/(I-x) of lanthanum oxide and alkaline earth oxide in the film is not particularly limited, but M
, /L, ratio (M,: alkaline earth metal) is O ~ in molar ratio
0.7, especially 0 to 0.5 is preferred. This is because electrical conductivity and oxidation resistance are excellent within this range.

合金又は純金属上に被膜を形成する方法は、特に限定さ
れるものではなく、被覆法としては塗布法、溶射法、ス
パック−法、蒸着法、プラズマCVD法、MBE法、M
OCVD法、CVD法、イオンブレーティング法、プラ
ズマ溶射法等あらゆる成膜技術が利用できるが特に緻密
性と接着性に優れる溶射法、スパッタ法、イオンブレー
ティング法が好ましい。
The method of forming a film on an alloy or pure metal is not particularly limited, and coating methods include a coating method, a thermal spraying method, a spackle method, a vapor deposition method, a plasma CVD method, an MBE method, and an MBE method.
Although any film forming technique such as OCVD, CVD, ion blating, plasma spraying, etc. can be used, thermal spraying, sputtering, and ion blating are particularly preferred because of their excellent density and adhesion.

被膜の厚さは0.1側〜17/II+の範囲内であるこ
とが好ましい。0.1 tmより薄すぎると表面保護の
効果が十分でなく、一方1uIIlより厚くなりすぎる
と導電性が低下するからである。
The thickness of the coating is preferably within the range of 0.1 to 17/II+. This is because if it is too thin than 0.1 tm, the surface protection effect will not be sufficient, while if it is too thick than 1uIIl, the conductivity will decrease.

本発明の耐熱部品の被膜がペロブスカイト型複合酸化物
La+−x M’x M20zになる条件はL++とM
lとの組成比、基材の組成(特にM2)、被膜の膜厚、
雰囲気などに依存するが、一般に、100(I’c、1
時間程度の熱処理によって複合酸化物に変化する。
The conditions for the film of the heat-resistant component of the present invention to become a perovskite-type composite oxide La+-x M'x M20z are L++ and M
The composition ratio with L, the composition of the base material (especially M2), the thickness of the coating,
Although it depends on the atmosphere etc., generally 100 (I'c, 1
It changes into a composite oxide by heat treatment for about an hour.

このような熱処理は本発明の耐熱部品を実用に供する前
に被膜を所期の複合酸化物にするために特別に行っても
よく、あるいは本発明の耐熱部品を実用に供した場合に
その実用される高温条件によって行われてもよい。
Such heat treatment may be specially performed to convert the film into the desired composite oxide before putting the heat-resistant parts of the present invention into practical use, or may be performed to improve the practical use of the heat-resistant parts of the present invention when the heat-resistant parts of the present invention are put into practical use. It may also be carried out under high temperature conditions.

また、本発明の耐熱部品の被膜を熱処理して得うレルL
a+−x M’XM2O3ペロブスカイト型複合酸化物
は、前記の如く高温で高い導電性(I00〜10010
00S’)を示すと共に、その熱膨張係数(9×10−
6/”C)は基材のそれ(一般に16〜19X10−6
/℃程度)とも近く、しかも熱処理の際基材中に含まれ
るクロム、コバルト、ニッケル、鉄又はマンガンと反応
して極めて緻密な被膜になるという特徴、利点を有する
。また、この複合酸化物の熱膨張係数は固体電解質のそ
れ(I0x 10−6/ ”c )とも比較的近いもの
で固体電解質燃料電池への本発明の耐熱部品の応用をよ
り適したものとする。本発明の耐熱部品は特に固体電解
質燃料電池の集電体及び接合体への応用を目的としてな
されたものであるが、その有用性はこれに限定されず、
例えばガスタービン、MHD発電用部品など耐熱性が要
求される分野において広く利用できる。
Moreover, the layer L obtained by heat-treating the film of the heat-resistant component of the present invention may also be used.
a+-x M'XM2O3 perovskite type composite oxide has high conductivity at high temperatures (I00-10010
00S') and its coefficient of thermal expansion (9×10-
6/”C) is that of the base material (generally 16~19X10-6
/°C), and has the characteristic and advantage that it reacts with chromium, cobalt, nickel, iron, or manganese contained in the base material during heat treatment to form an extremely dense film. Furthermore, the coefficient of thermal expansion of this composite oxide is relatively close to that of the solid electrolyte (I0x 10-6/''c), making the heat-resistant component of the present invention more suitable for application to solid electrolyte fuel cells. Although the heat-resistant component of the present invention is particularly intended for application to current collectors and assemblies of solid electrolyte fuel cells, its usefulness is not limited thereto.
For example, it can be widely used in fields where heat resistance is required, such as gas turbines and MHD power generation parts.

〔実施例〕〔Example〕

尖隻拠上 コバルト基合金板(I01菖×10mII×1■■、組
成:W14.57%、Co 52.51%、Cr 19
.69%、Ni 9.39%、C0,10%、Si0.
48%、Mn1.51%)上に常法に従い、Rfスパッ
ター法によって、La20.−5rO(SrO/Laz
Ozのモル比は2:1)混合物を両面に約1−の厚さに
被着した。Rfスパッター法はマルゴンガス比2〜5ミ
リトール、電力100〜200Wで1時間行った。この
試料を空気中1000℃で24時間加熱した。
Cobalt-based alloy plate on apex base (I01 irises x 10mII x 1■■, composition: W14.57%, Co 52.51%, Cr 19
.. 69%, Ni 9.39%, C0.10%, Si0.
La20.48%, Mn1.51%) by Rf sputtering according to a conventional method. -5rO(SrO/Laz
The molar ratio of Oz was 2:1) and the mixture was applied to both sides to a thickness of about 1. The Rf sputtering method was performed at a margon gas ratio of 2 to 5 mTorr and a power of 100 to 200 W for 1 hour. This sample was heated in air at 1000°C for 24 hours.

加熱後室温まで徐冷し表面の反応生成物をX線回折装置
によって同定した結果、La+−X Srx Cr03
(X=0.1〜0.5)であることが認められた。
After heating, the product was slowly cooled to room temperature and the reaction product on the surface was identified using an X-ray diffraction device.
(X=0.1-0.5).

(M2が、Crとなり、Coが確認されなかったのは、
Crの反応性がCoよりも高い為と思われる) 第1図に上記試料を1000°C空気中で加熱したとき
の時間に対する重量変化および表面抵抗変化を示した。
(M2 became Cr and Co was not confirmed because
(This is thought to be because the reactivity of Cr is higher than that of Co.) Figure 1 shows the weight change and surface resistance change with respect to time when the above sample was heated in air at 1000°C.

表面抵抗は常法に従い4探針法により測定した。比較の
ために表面にLa203−8rOT’J膜をつけない同
種の合金の重量変化をも示した。
The surface resistance was measured by the four-probe method according to a conventional method. For comparison, the weight change of the same type of alloy without the La203-8rOT'J film on the surface is also shown.

合金のみの場合には、約100時間加熱で重量増が最大
となりその後は減少した。この重量減少は合金表面に生
成した酸化物、主に酸化クロム、および酸化コバルトの
剥離によるものである。なお合金のみの試料の表面抵抗
は1000℃で24時間加熱することにより絶縁体に近
い値を示したが、これは表面で酸化クロム、および酸化
コバルトが形成されたためである。なお1000℃還元
雰囲気下(水!10%、アルゴン90%)ではこのコバ
ルト基合金は表面の変化および抵抗の増大は認められな
かった。
In the case of only the alloy, the weight increase reached its maximum after about 100 hours of heating and decreased thereafter. This weight loss is due to the exfoliation of oxides, mainly chromium oxide and cobalt oxide, formed on the alloy surface. Note that the surface resistance of the alloy-only sample showed a value close to that of an insulator when heated at 1000° C. for 24 hours, but this was due to the formation of chromium oxide and cobalt oxide on the surface. Note that under a reducing atmosphere of 1000° C. (10% water, 90% argon), no change in the surface or increase in resistance was observed in this cobalt-based alloy.

次1」しし工i 実施例2と同様にして、表1に示す組成(重量%)を有
する各合金板上にRfスパッター法でLa20:+−3
rCOz (La203/SrCO3モル比3:1)混
合物を両面に約1廁の厚さに被着し、空気中1000℃
で24時間加熱した。
Next 1 "Shishi process i" In the same manner as in Example 2, La20: +-3
A mixture of rCOz (La203/SrCO3 molar ratio 3:1) was coated on both sides to a thickness of about 1 yuan, and heated at 1000°C in air.
It was heated for 24 hours.

合金表面の反応生成物をX線回折分析した結果、それぞ
れ表2に示すものが生成していることが確認された。
As a result of X-ray diffraction analysis of the reaction products on the alloy surface, it was confirmed that the products shown in Table 2 were produced.

La2O2−3rCO:+被着後の試料を空気中100
0°Cで加熱したときの重量変化を第2図に示す。比較
のために表面にLazO+−3rCO3を被着しない合
金の同様な加熱による重量変化を第3図に示す。
La2O2-3rCO: + sample after deposition in air 100%
Figure 2 shows the weight change when heated at 0°C. For comparison, FIG. 3 shows the weight change due to similar heating of an alloy without LazO+-3rCO3 deposited on the surface.

また、上記加熱後の被覆合金及び裸の合金の表面の電気
抵抗を表2に示す。
Further, Table 2 shows the electrical resistance of the surface of the coated alloy and the bare alloy after the heating.

表  1 j「−影 空気中1000℃加熱処理 ヘインズ社の商品、 インコ社の商品、 三菱金属社の商品 実施例1と同様にして、コバルト純金属板(I0mXI
QmmX l m)の両面にRfスパッタ法で金属ラン
タンを厚さ2〜3μmにスパッタ成H’Aした。それか
ら、空気中1000”cで5時間熱処理した。
Table 1: Heat treatment at 1000°C in the air A cobalt pure metal plate (I0mXI) was prepared in the same way as in Example 1.
Metal lanthanum was sputter-deposited on both sides of the QmmXlm) to a thickness of 2 to 3 μm using the Rf sputtering method. It was then heat treated in air at 1000''c for 5 hours.

加熱後室温まで徐冷し表面の反応生成物をX線回折法で
分析したところ、LaCoO3であることが確認された
After heating, it was slowly cooled to room temperature, and the reaction product on the surface was analyzed by X-ray diffraction, and it was confirmed that it was LaCoO3.

この試料を空気中1000’cで5時間加熱したとき、
363cm−’の電気伝導度を示し、非常に良好な結果
を示した。そして、168時間後も経時変化は見られず
、降温後も被膜の剥離は見られなかった。
When this sample was heated in air at 1000'C for 5 hours,
It showed an electrical conductivity of 363 cm-', which was a very good result. No change over time was observed even after 168 hours, and no peeling of the film was observed even after the temperature was lowered.

第4図にこのようにして調べた被覆物の空気伝導度を測
定温度に関して示す。
FIG. 4 shows the air conductivity of the coating thus investigated with respect to the measured temperature.

第5図に本発明の耐熱部品を応用した固体電解質型燃料
電池の積層構造を展開図として示す。同図中、21は固
体電解質(例、Ca安定化ジルコニア)のシートで上面
にアノード(例、Lao、qSro、 1Mn0:+)
 22、下面にカソード(例、NiO/ZrO□サーメ
ット)23が形成されている。24が接合体で本発明の
耐熱部品(例、上記実施例のコバルト基合金上にLa2
0.、−3rO被膜)で作られている。25は24と同
しく耐熱部品であるが、外部出力端子として使われる。
FIG. 5 shows a developed diagram of the stacked structure of a solid oxide fuel cell to which the heat-resistant component of the present invention is applied. In the figure, 21 is a sheet of solid electrolyte (e.g., Ca-stabilized zirconia) with an anode (e.g., Lao, qSro, 1Mn0:+) on the top surface.
22, a cathode (eg, NiO/ZrO□ cermet) 23 is formed on the lower surface. 24 is a joined body, which is a heat-resistant component of the present invention (e.g., La2 on the cobalt-based alloy of the above example).
0. , -3rO coating). 25 is a heat-resistant component like 24, but is used as an external output terminal.

第5図に見られる通り、接合体24はそれに形成された
溝によって空気26及び燃料(例、水素)27の流路を
構成しかつ空気26と燃料27を分離するセパレータで
あると共に、隣接する単位セルのカソード23とアノー
ド22とを電気的に接続する役割をも担うものである。
As seen in FIG. 5, the joined body 24 constitutes a flow path for the air 26 and the fuel (eg, hydrogen) 27 by the grooves formed therein, and serves as a separator for separating the air 26 and the fuel 27, and also serves as a separator for separating the air 26 and the fuel 27. It also plays the role of electrically connecting the cathode 23 and anode 22 of the unit cell.

外部出力端子25は集積された単位セルの両端部におい
て空気26と燃料29の流路を形成すると共にカソード
23又はアノード22との電気的接続を行う部材でもあ
り、これも本発明の耐熱部品で構成する。また、第5図
は2つの単位セルを集積した燃料電池を示したが、3つ
以上の単位セルを集積することも可能で、その場合には
各単位セル間に接合体24を挿入する。
The external output terminal 25 is a member that forms a flow path for air 26 and fuel 29 at both ends of the integrated unit cell, and is also a member that electrically connects with the cathode 23 or anode 22, and is also a heat-resistant component of the present invention. Configure. Further, although FIG. 5 shows a fuel cell in which two unit cells are integrated, it is also possible to integrate three or more unit cells, and in that case, the assembly 24 is inserted between each unit cell.

このような燃料電池を1000℃の高温下で空気と燃料
(水素)を供給して使用すると、接合体24及び外部出
力端子25の耐熱部品の被膜(La20+5rO)は使
用後直ちに複合酸化物(La+−x Srx CrO:
+)になり、抵抗が低下し、以後長時間安定して電力を
発生する。
When such a fuel cell is used by supplying air and fuel (hydrogen) at a high temperature of 1000°C, the coating (La20+5rO) of the heat-resistant parts of the assembly 24 and the external output terminal 25 immediately turns into a composite oxide (La+5rO) after use. -x Srx CrO:
+), the resistance decreases, and power is generated stably for a long time thereafter.

また、本発明の耐熱部品は第6図および第7図の燃料電
池の集電体及び接合体としてもきわめて有用である。
Furthermore, the heat-resistant component of the present invention is extremely useful as a current collector and an assembly for the fuel cells shown in FIGS. 6 and 7.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温で酸化性及び還元性雰囲気に耐え
る良導電性被覆を施した耐熱良導電性金属部品が提供さ
れ、高温燃料電池の接合体及び集電体をはしめ、高温で
電気伝導性接触を要するすべての分野において有用であ
る。例えば、1000℃以上の高温で酸化還元性雰囲気
に耐えかつ10〜10003 cm −’の電気伝導度
を有する保護被膜を有する良導電性耐熱金属機材からな
る耐熱部品が提供される。
According to the present invention, there is provided a heat-resistant, highly conductive metal component coated with a highly conductive coating that can withstand oxidizing and reducing atmospheres at high temperatures. Useful in all areas that require sexual contact. For example, a heat-resistant component made of a highly conductive heat-resistant metal material having a protective coating that can withstand a redox atmosphere at a high temperature of 1000° C. or higher and has an electrical conductivity of 10 to 10003 cm −′ is provided.

この発明の耐酸化還元性金属導電体(耐熱部品)を用い
ることにより従来の高温固体電解質燃料電池に較べて格
段にすぐれた性能が期待できる一体型構造の高温固体電
解質燃料電池の作成が可能となる。
By using the redox-resistant metal conductor (heat-resistant parts) of the present invention, it is possible to create a high-temperature solid electrolyte fuel cell with an integrated structure that is expected to have significantly superior performance compared to conventional high-temperature solid electrolyte fuel cells. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の被膜物の1000’c空気中での重量
変化及び抵抗変化を表すグラフ図、第2図及び第3図は
実施例の被覆物及び未被覆合金の1000℃空気中の重
量変化を示すグラフ図、第4図は実施例の被覆物の電気
伝導度の温度変化を示すグラフ図、第5図は本発明の耐
熱部品を接合体として用いた高温固体電解質燃料電池の
構造模式展開図、第6図及び第7図は高温固体電解質燃
料電池の模式図、第8図は固体電解質燃料電池のw木構
造を示す模式図である。 ■・・・固体電解質、   2・・・カソード、3・・
・アノード、     6・・・燃料、7・・・空気、
       11・・・固体電解質、14・・・燃料
、     15・・・空気、16・・・アノード、 
   17・・・カソード、21・・・固体電解質、 
 22・・・アノード、23・・・カソード、   2
4・・・接合体、25・・・外部出力端子、 26・・
・空気、27・・・燃料。 プラカー型固体電解質燃料電池(2段直列型)第5図 26・・・空気 第 図 15・・・空気
Fig. 1 is a graph showing the weight change and resistance change of the coated material of the example in 1000°C air, and Figs. 2 and 3 are graphs showing the weight change and resistance change of the coated material of the example and the uncoated alloy in 1000°C air. A graph showing the weight change, FIG. 4 is a graph showing the temperature change in the electrical conductivity of the coating of the example, and FIG. A schematic development diagram, FIGS. 6 and 7 are schematic diagrams of a high-temperature solid electrolyte fuel cell, and FIG. 8 is a schematic diagram showing a W-tree structure of a solid electrolyte fuel cell. ■...Solid electrolyte, 2...Cathode, 3...
・Anode, 6...Fuel, 7...Air,
11... Solid electrolyte, 14... Fuel, 15... Air, 16... Anode,
17... Cathode, 21... Solid electrolyte,
22... Anode, 23... Cathode, 2
4... Joined body, 25... External output terminal, 26...
・Air, 27...Fuel. Plaker type solid electrolyte fuel cell (two-stage series type) Fig. 5 26... Air Fig. 15... Air

Claims (1)

【特許請求の範囲】[Claims] 1、クロム、コバルト、ニッケル、鉄若しくはマンガン
又はこれらの金属を含む合金の基材表面に、( I )ラ
ンタン、(II)酸化ランタン、(III)ランタンとアル
カリ土類金属、(IV)酸化ランタンとアルカリ土類金属
、(V)ランタンとアルカリ土類金属酸化物、及び(V
I)酸化ランタンとアルカリ土類金属酸化物からなる群
のいずれかを被覆して成ることを特徴とする耐熱部品。
1. On the surface of the base material of chromium, cobalt, nickel, iron or manganese, or alloys containing these metals, (I) lanthanum, (II) lanthanum oxide, (III) lanthanum and alkaline earth metals, (IV) lanthanum oxide and alkaline earth metal, (V) lanthanum and alkaline earth metal oxide, and (V
I) A heat-resistant component coated with any one of the group consisting of lanthanum oxide and alkaline earth metal oxide.
JP63228348A 1987-10-15 1988-09-14 High-temperature fuel cell interelectrode assembly and high-temperature fuel cell cathode current collector Expired - Fee Related JP2604437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228348A JP2604437B2 (en) 1987-10-15 1988-09-14 High-temperature fuel cell interelectrode assembly and high-temperature fuel cell cathode current collector

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP25832087 1987-10-15
JP12395888 1988-05-23
JP63-123958 1988-05-23
JP62-258320 1988-05-23
JP63228348A JP2604437B2 (en) 1987-10-15 1988-09-14 High-temperature fuel cell interelectrode assembly and high-temperature fuel cell cathode current collector

Publications (2)

Publication Number Publication Date
JPH0250983A true JPH0250983A (en) 1990-02-20
JP2604437B2 JP2604437B2 (en) 1997-04-30

Family

ID=27314836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228348A Expired - Fee Related JP2604437B2 (en) 1987-10-15 1988-09-14 High-temperature fuel cell interelectrode assembly and high-temperature fuel cell cathode current collector

Country Status (1)

Country Link
JP (1) JP2604437B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212108A (en) * 1996-12-12 1998-08-11 United Technol Corp <Utc> Heat barrier coating system, material therefor, gas turbine parts using the material and metallic substrate
JP2008503058A (en) * 2004-06-15 2008-01-31 フュエルセル エナジー, インコーポレイテッド Hardware on the cathode side of carbonate fuel cell
JP2009212046A (en) * 2008-03-06 2009-09-17 Nissan Motor Co Ltd Metallic member for solid oxide fuel cell
JP2009534538A (en) * 2006-04-26 2009-09-24 テクニカル ユニヴァーシティー オブ デンマーク Multilayer coating
FR2996065A1 (en) * 2012-09-26 2014-03-28 Commissariat Energie Atomique COMPONENT COMPRISING AN EHT ELECTROLYSER INTERCONNECTOR OR SOFC FUEL CELL AND METHODS OF MAKING SAME
WO2019171905A1 (en) * 2018-03-06 2019-09-12 住友電気工業株式会社 Cell structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161777A (en) * 1982-03-19 1983-09-26 Toshiba Corp Heat-resistant structure
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
JPS63270450A (en) * 1987-04-24 1988-11-08 Matsushita Electric Ind Co Ltd Production of thick film oxide super conductor
JPS6427116A (en) * 1987-07-22 1989-01-30 Toshiba Corp Superconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161777A (en) * 1982-03-19 1983-09-26 Toshiba Corp Heat-resistant structure
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
JPS63270450A (en) * 1987-04-24 1988-11-08 Matsushita Electric Ind Co Ltd Production of thick film oxide super conductor
JPS6427116A (en) * 1987-07-22 1989-01-30 Toshiba Corp Superconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212108A (en) * 1996-12-12 1998-08-11 United Technol Corp <Utc> Heat barrier coating system, material therefor, gas turbine parts using the material and metallic substrate
JP2008503058A (en) * 2004-06-15 2008-01-31 フュエルセル エナジー, インコーポレイテッド Hardware on the cathode side of carbonate fuel cell
JP2009534538A (en) * 2006-04-26 2009-09-24 テクニカル ユニヴァーシティー オブ デンマーク Multilayer coating
US8859116B2 (en) 2006-04-26 2014-10-14 Technical University Of Denmark Multi-layer coating
JP2009212046A (en) * 2008-03-06 2009-09-17 Nissan Motor Co Ltd Metallic member for solid oxide fuel cell
FR2996065A1 (en) * 2012-09-26 2014-03-28 Commissariat Energie Atomique COMPONENT COMPRISING AN EHT ELECTROLYSER INTERCONNECTOR OR SOFC FUEL CELL AND METHODS OF MAKING SAME
WO2014049523A1 (en) * 2012-09-26 2014-04-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Component constituting an hte electrolyser interconnector or sofc fuel cell interconnector and associated production processes
AU2013322252B2 (en) * 2012-09-26 2018-02-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Component constituting an HTE electrolyser interconnector or SOFC fuel cell interconnector and associated production processes
US11078579B2 (en) 2012-09-26 2021-08-03 Commissariat A L'Energie Atomique Et Aux Energies Alternative Component constituting an HTE electrolyser interconnector or SOFC fuel cell interconnector and associated production processes
WO2019171905A1 (en) * 2018-03-06 2019-09-12 住友電気工業株式会社 Cell structure

Also Published As

Publication number Publication date
JP2604437B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US6007683A (en) Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
US7632602B2 (en) Thin film buried anode battery
CA1241879A (en) High performance cermet electrodes
JPS61171064A (en) Pneumatic electrode material for high temperature electrochemical battery
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
CN101484606A (en) Method for producing an electrically conducting layer
JPH08185870A (en) Separator for solid electrolyte fuel cell
US4803134A (en) High energy density lithium-oxygen secondary battery
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
JPH0250983A (en) Heat-resistant parts
JPH10172590A (en) Solid electrolyte type fuel cell
JP2661692B2 (en) Electrode assembly for high temperature fuel cells
JP5550223B2 (en) Ceramic electrolyte processing method and related products
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
JPH0963603A (en) Multilayer solid electrolyte for solid fuel cell
JPH09265999A (en) Solid electrolyte type fuel cell and its manufacture
JPH05121060A (en) Separator material for high temperature type fuel cell
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
JP3533272B2 (en) Solid oxide fuel cell separator
JPH07201340A (en) Solid electrolyte fuel cell
JPH08306373A (en) Operation method for high-temperature type fuel cell, and high-temperature type fuel cell
JP2004165074A (en) Current collector material for solid oxide fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
WO2003043108A1 (en) Buried anode lithium thin film battery and process for forming the same
JPH05178664A (en) Composite dense material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees