JP2004165074A - Current collector material for solid oxide fuel cell - Google Patents

Current collector material for solid oxide fuel cell Download PDF

Info

Publication number
JP2004165074A
JP2004165074A JP2002331640A JP2002331640A JP2004165074A JP 2004165074 A JP2004165074 A JP 2004165074A JP 2002331640 A JP2002331640 A JP 2002331640A JP 2002331640 A JP2002331640 A JP 2002331640A JP 2004165074 A JP2004165074 A JP 2004165074A
Authority
JP
Japan
Prior art keywords
current collector
fuel cell
oxide fuel
solid oxide
collector material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002331640A
Other languages
Japanese (ja)
Other versions
JP3894103B2 (en
Inventor
Azuma So
東 宋
Masaharu Hatano
正治 秦野
Keiko Kushibiki
圭子 櫛引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002331640A priority Critical patent/JP3894103B2/en
Publication of JP2004165074A publication Critical patent/JP2004165074A/en
Application granted granted Critical
Publication of JP3894103B2 publication Critical patent/JP3894103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin current collector material for a solid oxide fuel cell aiming for lowering of contact resistance and prevention of exfoliation, and to provide a manufacturing method of the same and a unit cell for the solid oxide fuel cell. <P>SOLUTION: The current collector material for a solid oxide fuel cell is made of matrix particles covered by a conductive material with high conductivity, and manufactured by coating the conductive material on the surface of the matrix particles through a sputtering method, a coprecipitation method, a sol-gel method, a plating and immersion method or the like. The unit cell for the solid oxide fuel cell is formed by laminating a gas-separating separator on a battery element and arranging a current collector made of the above current collector material between a fuel electrode or an air electrode and the separator. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルに係り、更に詳細には、界面抵抗を抑制し、耐久性及び電池性能を向上させた固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルに関する。
【0002】
【従来の技術】
燃料電池とは、イオンの移動により電気が流れる電解質に、燃料(水素など)と酸化剤(空気など)を電気化学的に結合させて発電するエネルギー変換デバイスである。その中の一種である固体酸化物形燃料電池(以下「SOFC」と省略する)は、その全てが固体(セラミックスと金属)で構成され、更に比較的高温(〜1000℃)で運転されることから、他の燃料電池に比べ優位な特徴を有する。例えば、材料面では、貴金属などの高価な材料を利用しないこと、燃料電池中に液体を使用しないことから管理が容易である。また、水素以外の燃料を直接導入できるというメリットもある。
【0003】
一方、SOFCの欠点は、構成材料への制約が厳しいことである。
例えば、空気極の集電体としては、従来から1000℃の酸化雰囲気中で十分な導電性が得られ、劣化の少ない白金メッシュが使用されていた。しかし、白金は経済的に高価であるため、インコネルなどの繊維状合金からなる合金フェルトを使用しコストを低減させている。
しかしながら、合金フェルトを酸化剤極側の集電材料として用いた場合には、酸化極側の反応ガスである空気によって繊維状合金が酸化され、フェルトの表面に酸化皮膜が生成し、導電性が低下し、合金フェルトと空気電極又はセパレータとの接触抵抗が増大する。
従って、例えば、特開平7−114931号公報では、接触抵抗を減らすため、集電体の繊維状フェルトの表面にぺロブスカイト型酸化物を担持させることが提案されている。具体的には、繊維状インコネル合金表面に酸化剤電極スラリーを担持する手法などがある。
【0004】
【発明が解決しようとする課題】
上述のように、従来から合金フェルトの表面に酸化物を担持させたものを空気極上に重ねて使用する場合は、合金フェルトは比較的電極の何十倍の厚さがあるため、セルを積層して行く際に全体の体積が増大し、コンパクト化が困難であるという問題点があった。また、フェルト状合金を空気極と接合させたときに、集電体と空気極の接合部位に接触抵抗が生じ易く、更に、高温で作動する場合はフェルト集電体が電極から剥がれ易いという問題点があった。このような接触抵抗の増大や集電体の剥離は電池性能の低下という問題を招くことになる。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、薄膜化、接触抵抗の低減及び剥離防止を図り、電池性能を向上させた固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルを提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、導電材を被覆したマトリックス粒子を含ませた集電体材料を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0007】
【発明の実施の形態】
以下、本発明の固体酸化物形燃料電池用集電体材料について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。また、本集電体材料は、固体酸化物形燃料電池(又は固体酸化物形燃料電池用単セル)において、燃料極及び/又は空気極とセパレータとの間に配設され集電体となるが、説明の便宜上、適宜代表的な実施形態である空気極側集電体のみを説明する。
【0008】
上述の如く、本発明の固体酸化物形燃料電池用集電体材料は、マトリックス粒子と導電材を含んで成る。また、この導電材は、マトリックス粒子より導電率が高く、マトリックス粒子の表面の一部又は全部に被覆されて成る。
このような集電体材料で形成された集電体は、電極の反応場として機能し得るので反応界面が大きくなり、電池性能がより一層向上する。
【0009】
ここで、上記マトリックス粒子は、金属粒子及び/又は合金粒子であることが好適である。このときは、ミクロオーダーの粒子から集電体を構成できるので、集電体と電極との接触状態が良好となり、高温での熱膨張による集電体の剥離を抑制できる。言い換えれば、高温での連続運転に対する耐久性が向上し得る。
金属粒子や合金粒子の形状は、代表的には球状であり、これらの粒径は、0.5〜10μmであることが好適である。0.5μm未満の場合は、高温において焼結しやすくなり、集電体に要求されるガス透過性が悪くなってしまう可能性がある。また、10μmより大きい場合は、粒子表面は完全に被覆できない可能性があり、この非被覆部分が生じることによって金属粒子が参加され内部抵抗が大きくなってしまい、セル出力が低下してしまうことになる。
なお、マトリックス粒子の形状は、最大径が上記範囲内であれば球状以外でも良く、例えば繊維状金属なども使用できる。
【0010】
また、金属粒子や合金粒子の種類は特に限定されないが、貴金属以外の方が経済的により望ましい。代表的には、上記金属粒子は、銀(Ag)、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、銅(Cu)、チタン(Ti)、タングステン(W)、錫(Sn)、アルミニウム(Al)又はコバルト(Co)、及びこれらの任意の組合せに係る金属から得ることができる。上記合金粒子も特に限定されないが、これらと同様の金属を含む合金から得られる。このときは、十分な導電性を有する集電体を形成できる。なお、導電材(酸化物など)との熱膨張係数が金属材料より近い合金を用いるときは熱耐久性を更に向上できる。
【0011】
上記導電材としては、安価で環境負荷の少ない材料を用いることが望ましい。これより、高温酸化雰囲気による金属粒子や合金粒子の酸化を防止できる。
具体的には、耐高温性且つ耐酸化性であるLaCrO、La0.75Sr0.25FeO、SnO、Fe、LaCoO、ITO、ZnO又はFeSi2−x(xはSiの欠陥組織を示す)、及びこれらの任意の組合せに係る導電性酸化物が挙げられる。金属粒子や合金粒子の表面に導電性酸化物(酸素イオン導電性を有するもの)を被覆すると酸素の還元反応の反応場が更に増加するため、燃料電池に用いるときは電極の反応速度が上がりセル全体に大電流を流すことができる。
【0012】
また、上記導電材は、ペロブスカイト型酸化物であることが好適である。特に、混合イオン導電性(酸素イオン導電性と電子導電性)のペロブスカイト型酸化物に限定することが望ましく、例えば、LaSrMnO(以下「LSM」と略する)、LaSrCoO(以下「LSC」と略する)、Sr0.5Co0.5(以下「SSC」と略する)などが挙げられる。図1にSSCを担持したAg粒子を拡大したTEM写真を示す。
これらは基本的に空気電極の構成材料となり得るものであり、このような材料で金属粒子や合金粒子の表面を被覆することによって、集電体(集電体層)も電極と同様に反応場として働き、フェルト材で形成された場合に比べて反応界面が拡大され電池出力を増大し得るので、電池性能をより一層向上できる。また、空気電極との接触が良好となり易く、接触抵抗を大きく低減できる。更に、熱膨張係数が非常に近似するため、高温での連続運転による集電層の剥離が抑えられ、熱耐久性も良好となり易い。
【0013】
更に、上記導電材の被覆厚さが0.05〜5.0μmであると、集電効果が良好となり易い。厚さが0.05μm未満の場合は、担持層の酸化防止効果が十分に働かないことがある。また、5.0μmを超えると、酸化物層による導電率が低減してしまい、電池の出力低下の原因になることがある。
【0014】
次に、本発明の固体酸化物形燃料電池用単セルについて詳細に説明する。
本発明の単セルは、電解質が燃料極及び空気極に挟持されて成る電池要素に、ガスを分離するセパレータを積層して成る。また、燃料極、空気極のいずれか一方又は双方とセパレータとの間には、上述の集電体材料で形成した集電体(集電体層)を配設して成る。
かかる単セルでは、従来のフェルト状金属などを集電体材料として用いた場合に比べて集電体が薄膜化されているので、電極との接合性が向上し耐久性に優れる。また、電池要素を全体的にコンパクト化できるとともに、電極として機能する面積が増大するので、電池出力も向上する。電極上に配設する集電体層の厚さは10μm以下とすることが望ましい。また、集電体材料中には、上記マトリックス粒子及び導電材の他、分散剤や結着剤などを適宜添加することができる。
なお、本明細書において、「単セル」とは電解質を空気極及び燃料極で挟持し、電極の表面に集電体(集電体層)を配設したものを示す。また、「固体酸化物形燃料電池」は、複数の単セル(燃料電池セル)を電気的に接続すると共に、隣接する単セルとの間隙にガスを分離するセパレータを設けたものを示す。
【0015】
次に、本発明の固体酸化物形燃料電池用集電体材料の製造方法について詳細に説明する。
本発明の製造方法では、スパッタリング法、共沈法、ゾル−ゲル法、めっき又は含浸法、及びこれらを任意に組合わせた方法により、導電材をマトリックス粒子の表面に被覆し、上述の固体酸化物形燃料電池用集電体材料を得る。
これらの方法を用いることで、導電材(導電性酸化物の粒子など)がマトリックス粒子(金属粒子や合金粒子)の表面全体に均一的に被覆される。また、導電材やマトリックス粒子の種類や大きさなどに応じて、被覆厚さを適宜制御することも可能である。
【0016】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0017】
(実施例1)
本発明の集電体材料を空気極側に用いた固体酸化物形燃料電池セルを作製した。このときの集電体層の断面を図2に示す。
固体電解質として緻密な焼結体であるLSGM(La0.9Sr0.1Ga0.8Mg0.2)、燃料極としてNi−CeOサーメット、空気極としてぺロブスカイト型酸化物であるSSC(Sm0.5Sr0.5CoO)を使用した。また、空気極及び燃料極の表面に集電体層を形成した。この燃料極側集電体層にはNiフェルト、空気側電極集電体層には金属粒子の表面にLSC溶液中に含浸したものを使用した。
【0018】
ここで、上記構成を有する燃料電池セルの作製について詳細に説明する。
<セルの作製>
1)電解質焼結体の準備
膜厚300μmのLSGM焼結体をセルの支持体として使用した。
2)燃料極の作製
Ni:SDC=7:3になるように原料粉を混合して、バインダ(ポリビニルブチラール樹脂)と、溶媒(エチルセルロース)とを各々十分混合し、脱泡し、燃料極用スラリーを得た。このスラリーを電解質の一方の面に被覆して燃料極とした。
3)空気極の作製
空気極材料にSSCを用い、燃料極と同様の操作により空気極用スラリーを得た。このスラリーを電解質の他方の面に被覆して空気極とした。
4)空気極側集電体層の作製
集電体材料として平均粒子径が1μmのAg粒子を使用した。このAg粒子をLSCの溶液中に30秒を浸し、溶媒を飛ばし、残った粉を500℃で焼成して集電体用原料粉を得た。この粉を電極材料と同様の操作によりスラリーとし、スプレー法で空気極の表面に10μmの厚さで被覆した。電極上へスプレーした後、1000℃で、1時間焼結を行い集電体層を得た。
ここでLSCを用いたのは、LSCはSSCよりも電子導電性が高く、集電効果が高いためである。
【0019】
(実施例2)
空気側集電体材料のマトリックス粒子として合金Fe−Crを用い、この表面に導電材としてLSCの薄膜層を被覆した以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0020】
(実施例3)
空気極側集電材料として、Ag表面にスパッタリング法によってLSCを担持させた以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0021】
(実施例4〜6)
含浸法によってAgの表面に0.01μm、0.1μm及び1.0μmのLSC膜を担持させた以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0022】
(比較例1)
空気極側集電体層として、AgフェルトをLSC溶液に含浸した以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0023】
<性能評価>
各例で得えられた燃料電池セルについて、以下の条件で連続発電試験を行った。
・評価温度 :800℃
・評価雰囲気:H/O(Hは10%加湿した)
このような評価条件で200時間連続運転し、初回目及び200時間連続運転後のセルOVC、セル出力及び空気極と集電体層の接触抵抗を求めた。この結果を表1に示す。
【0024】
【表1】

Figure 2004165074
【0025】
表1より、本発明の好適形態である実施例1〜6で得られた燃料電池セルでは導電性酸化物LSCで金属粒子の表面を担持することによって、集電により生じる接触抵抗が低下するのに対し、比較例1で得られた燃料電池セルでは金属フェルトが電極との接触抵抗が大きく、これによってセルの出力が低下してしまうことがわかる。
【0026】
【発明の効果】
以上説明したように、本発明によれば、導電材を被覆したマトリックス粒子を含ませた集電体材料を用いることとしたため、薄膜化、接触抵抗の低減及び剥離防止を図り、電池性能を向上させた固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルを提供することができる。
【図面の簡単な説明】
【図1】SSCを担持したAg粒子を示すTEM写真である。
【図2】集電体層の概略を示す断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a current collector material for a solid oxide fuel cell, a method for producing the same, and a single cell for a solid oxide fuel cell, and more particularly, to suppressing interface resistance and improving durability and cell performance. The present invention relates to a collector material for a solid oxide fuel cell, a method for producing the same, and a single cell for a solid oxide fuel cell.
[0002]
[Prior art]
A fuel cell is an energy conversion device that generates electricity by electrochemically combining a fuel (such as hydrogen) and an oxidant (such as air) with an electrolyte through which electricity flows by the movement of ions. One of the solid oxide fuel cells (hereinafter abbreviated as "SOFC") is that it is composed entirely of solids (ceramics and metals) and is operated at a relatively high temperature (up to 1000 ° C). Therefore, it has advantages over other fuel cells. For example, in terms of materials, management is easy because expensive materials such as noble metals are not used, and no liquid is used in the fuel cell. Another advantage is that a fuel other than hydrogen can be directly introduced.
[0003]
On the other hand, a drawback of SOFC is that the restrictions on the constituent materials are severe.
For example, as a current collector of an air electrode, a platinum mesh that has sufficient conductivity and has little deterioration in an oxidizing atmosphere at 1000 ° C. has been used. However, since platinum is economically expensive, an alloy felt made of a fibrous alloy such as Inconel is used to reduce the cost.
However, when alloy felt is used as the current collecting material on the oxidant electrode side, the fibrous alloy is oxidized by air, which is the reaction gas on the oxidizing electrode side, and an oxide film is formed on the surface of the felt, resulting in poor conductivity. And the contact resistance between the alloy felt and the air electrode or separator increases.
Therefore, for example, Japanese Patent Application Laid-Open No. H7-114931 proposes that a perovskite-type oxide be supported on the surface of a fibrous felt of a current collector in order to reduce contact resistance. Specifically, there is a method of supporting an oxidant electrode slurry on the surface of a fibrous inconel alloy.
[0004]
[Problems to be solved by the invention]
As described above, when an alloy felt with an oxide supported on the surface is used on an air electrode, the alloy felt has a thickness several tens of times the thickness of the electrode. However, there is a problem in that the whole volume increases during the process and it is difficult to make the device compact. In addition, when the felt-like alloy is joined to the air electrode, contact resistance tends to occur at the junction between the current collector and the air electrode, and when operating at high temperatures, the felt current collector tends to peel off from the electrode. There was a point. Such an increase in the contact resistance and the peeling of the current collector cause a problem that the battery performance deteriorates.
[0005]
The present invention has been made in view of such problems of the prior art, and has as its object to improve the battery performance by reducing the thickness, reducing the contact resistance and preventing peeling, and improving the battery performance. It is an object of the present invention to provide a current collector material for a solid fuel cell, a method for producing the same, and a single cell for a solid oxide fuel cell.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by using a current collector material containing matrix particles coated with a conductive material. It was completed.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the current collector material for a solid oxide fuel cell of the present invention will be described in detail. In addition, in this specification, "%" shows a mass percentage unless otherwise specified. In the solid oxide fuel cell (or a single cell for a solid oxide fuel cell), the current collector material is disposed between the fuel electrode and / or the air electrode and the separator to become a current collector. However, for convenience of explanation, only the air electrode side current collector, which is a typical embodiment, will be appropriately described.
[0008]
As described above, the current collector material for a solid oxide fuel cell of the present invention comprises matrix particles and a conductive material. The conductive material has a higher conductivity than the matrix particles, and is formed by coating a part or all of the surface of the matrix particles.
A current collector formed of such a current collector material can function as a reaction field of an electrode, and thus has a large reaction interface and further improves battery performance.
[0009]
Here, the matrix particles are preferably metal particles and / or alloy particles. At this time, since the current collector can be formed from particles of a micro order, the contact state between the current collector and the electrode is improved, and peeling of the current collector due to thermal expansion at a high temperature can be suppressed. In other words, durability against continuous operation at high temperatures can be improved.
The shape of the metal particles or alloy particles is typically spherical, and the particle size thereof is preferably 0.5 to 10 μm. If it is less than 0.5 μm, sintering is likely to occur at high temperatures, and the gas permeability required for the current collector may be deteriorated. On the other hand, if it is larger than 10 μm, the particle surface may not be able to be completely covered, and this uncovered portion may cause metal particles to participate and increase internal resistance, resulting in a decrease in cell output. Become.
The shape of the matrix particles may be other than spherical as long as the maximum diameter is within the above range. For example, fibrous metal or the like can be used.
[0010]
The type of metal particles or alloy particles is not particularly limited, but it is more economically preferable to use other than noble metals. Typically, the metal particles are silver (Ag), iron (Fe), chromium (Cr), nickel (Ni), copper (Cu), titanium (Ti), tungsten (W), tin (Sn), It can be obtained from metals according to aluminum (Al) or cobalt (Co), and any combination thereof. The alloy particles are not particularly limited, but can be obtained from an alloy containing the same metal as these. In this case, a current collector having sufficient conductivity can be formed. Note that when an alloy whose coefficient of thermal expansion with a conductive material (such as an oxide) is closer to that of a metal material is used, the thermal durability can be further improved.
[0011]
As the conductive material, it is desirable to use a material that is inexpensive and has low environmental impact. Thereby, oxidation of metal particles and alloy particles due to a high-temperature oxidizing atmosphere can be prevented.
Specifically, LaCrO 3 , La 0.75 Sr 0.25 FeO 3 , SnO 2 , Fe 3 O 4 , LaCoO 3 , ITO, ZnO, or FeSi 2-x (x: And a conductive oxide according to any combination thereof. When the surface of metal particles or alloy particles is coated with a conductive oxide (having oxygen ion conductivity), the reaction field of the oxygen reduction reaction further increases. A large current can flow through the whole.
[0012]
The conductive material is preferably a perovskite oxide. In particular, it is desirable to limit to perovskite-type oxides of mixed ion conductivity (oxygen ion conductivity and electron conductivity), for example, LaSrMnO 3 (hereinafter abbreviated as “LSM”), LaSrCoO 3 (hereinafter “LSC”). Abbreviated), Sr 0.5 Co 0.5 O 3 (hereinafter abbreviated as “SSC”), and the like. FIG. 1 shows an enlarged TEM photograph of Ag particles carrying SSC.
Basically, these can be constituent materials of the air electrode. By coating the surface of the metal particles or alloy particles with such a material, the current collector (current collector layer) also reacts similarly to the electrode. , And the reaction interface can be enlarged and the battery output can be increased as compared with the case where it is formed of a felt material, so that the battery performance can be further improved. Further, the contact with the air electrode is likely to be good, and the contact resistance can be greatly reduced. Furthermore, since the thermal expansion coefficients are very close, the current collector layer is prevented from peeling off due to continuous operation at a high temperature, and the thermal durability tends to be good.
[0013]
Furthermore, when the coating thickness of the conductive material is 0.05 to 5.0 μm, the current collecting effect tends to be good. If the thickness is less than 0.05 μm, the effect of preventing the support layer from oxidizing may not work sufficiently. On the other hand, when the thickness exceeds 5.0 μm, the conductivity of the oxide layer is reduced, which may cause a decrease in the output of the battery.
[0014]
Next, the single cell for a solid oxide fuel cell of the present invention will be described in detail.
The single cell of the present invention is formed by stacking a separator for separating gas on a battery element in which an electrolyte is sandwiched between a fuel electrode and an air electrode. Further, a current collector (current collector layer) formed of the above-described current collector material is provided between one or both of the fuel electrode and the air electrode and the separator.
In such a single cell, the current collector is made thinner than in the case where a conventional felt-like metal or the like is used as the current collector material, so that the junction with the electrode is improved and the durability is excellent. In addition, the battery element can be made compact as a whole, and the area that functions as an electrode increases, so that the battery output also improves. The thickness of the current collector layer provided on the electrode is desirably 10 μm or less. Further, in addition to the matrix particles and the conductive material, a dispersant, a binder, and the like can be appropriately added to the current collector material.
In this specification, a “single cell” refers to a cell in which an electrolyte is sandwiched between an air electrode and a fuel electrode, and a current collector (current collector layer) is provided on the surface of the electrode. Further, the “solid oxide fuel cell” refers to a fuel cell in which a plurality of single cells (fuel cells) are electrically connected and a separator for separating gas is provided in a gap between adjacent single cells.
[0015]
Next, a method for producing the current collector material for a solid oxide fuel cell of the present invention will be described in detail.
In the production method of the present invention, the conductive material is coated on the surface of the matrix particles by a sputtering method, a coprecipitation method, a sol-gel method, a plating or impregnation method, and a method in which these are arbitrarily combined. A current collector material for a physical fuel cell is obtained.
By using these methods, the entire surface of the matrix particles (metal particles and alloy particles) is uniformly coated with the conductive material (conductive oxide particles and the like). Further, the coating thickness can be appropriately controlled according to the type and size of the conductive material and the matrix particles.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0017]
(Example 1)
A solid oxide fuel cell using the current collector material of the present invention on the air electrode side was manufactured. FIG. 2 shows a cross section of the current collector layer at this time.
As the solid electrolyte is a dense sintered body LSGM (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3), Ni-CeO 2 cermet as the fuel electrode, with perovskite-type oxide as a cathode A certain SSC (Sm 0.5 Sr 0.5 CoO 3 ) was used. Further, a current collector layer was formed on the surfaces of the air electrode and the fuel electrode. For the fuel electrode side current collector layer, Ni felt was used, and for the air side electrode current collector layer, metal particles whose surfaces were impregnated with an LSC solution were used.
[0018]
Here, the fabrication of the fuel cell having the above configuration will be described in detail.
<Preparation of cell>
1) Preparation of Electrolyte Sintered Body An LSGM sintered body having a film thickness of 300 μm was used as a cell support.
2) Preparation of fuel electrode The raw material powder is mixed so that Ni: SDC = 7: 3, the binder (polyvinyl butyral resin) and the solvent (ethyl cellulose) are sufficiently mixed, and defoamed. A slurry was obtained. This slurry was coated on one surface of the electrolyte to form a fuel electrode.
3) Preparation of air electrode A slurry for the air electrode was obtained by using SSC as the air electrode material and performing the same operation as that for the fuel electrode. This slurry was coated on the other surface of the electrolyte to form an air electrode.
4) Preparation of air electrode side current collector layer Ag particles having an average particle diameter of 1 μm were used as a current collector material. The Ag particles were immersed in an LSC solution for 30 seconds, the solvent was removed, and the remaining powder was fired at 500 ° C. to obtain a raw material powder for a current collector. This powder was formed into a slurry by the same operation as the electrode material, and the surface of the air electrode was coated with a thickness of 10 μm by a spray method. After spraying on the electrode, sintering was performed at 1000 ° C. for 1 hour to obtain a current collector layer.
Here, LSC was used because LSC has higher electronic conductivity and higher current collecting effect than SSC.
[0019]
(Example 2)
A solid oxide fuel cell was obtained by repeating the same operation as in Example 1 except that alloy Fe—Cr was used as matrix particles of the air-side current collector material, and the surface thereof was coated with an LSC thin film layer as a conductive material. A cell was prepared.
[0020]
(Example 3)
A solid oxide fuel cell was produced by repeating the same operation as in Example 1 except that LSC was carried on the Ag surface by a sputtering method as an air electrode side current collecting material.
[0021]
(Examples 4 to 6)
A solid oxide fuel cell was manufactured by repeating the same operation as in Example 1 except that the LSC films of 0.01 μm, 0.1 μm, and 1.0 μm were supported on the surface of Ag by the impregnation method.
[0022]
(Comparative Example 1)
A solid oxide fuel cell was manufactured by repeating the same operation as in Example 1 except that the LSC solution was impregnated with Ag felt as the air electrode side current collector layer.
[0023]
<Performance evaluation>
A continuous power generation test was performed on the fuel cell obtained in each example under the following conditions.
・ Evaluation temperature: 800 ° C
Evaluation atmosphere: H 2 / O 2 (H 2 was humidified by 10%)
Under such evaluation conditions, the cell was continuously operated for 200 hours, and the cell OVC, the cell output, and the contact resistance between the air electrode and the current collector layer at the first time and after the continuous operation for 200 hours were determined. Table 1 shows the results.
[0024]
[Table 1]
Figure 2004165074
[0025]
According to Table 1, in the fuel cells obtained in Examples 1 to 6, which are preferable embodiments of the present invention, the contact resistance caused by current collection is reduced by supporting the surface of the metal particles with the conductive oxide LSC. On the other hand, in the fuel cell obtained in Comparative Example 1, the metal felt has a large contact resistance with the electrode, and the output of the cell is thereby reduced.
[0026]
【The invention's effect】
As described above, according to the present invention, since the current collector material containing the matrix particles coated with the conductive material is used, the thinning, the reduction of the contact resistance, the prevention of the separation, and the improvement of the battery performance are achieved. The present invention can provide a current collector material for a solid oxide fuel cell, a method for producing the same, and a single cell for a solid oxide fuel cell.
[Brief description of the drawings]
FIG. 1 is a TEM photograph showing Ag particles carrying SSC.
FIG. 2 is a cross-sectional view schematically showing a current collector layer.

Claims (10)

固体酸化物形燃料電池において、燃料極及び/又は空気極とセパレータとの間に配設される集電体材料であって、
マトリックス粒子及びこのマトリックス粒子より導電率が高い導電材を含み、当該導電材がマトリックス粒子の表面の一部又は全部に被覆されて成ることを特徴とする固体酸化物形燃料電池用集電体材料。
In a solid oxide fuel cell, a current collector material disposed between a fuel electrode and / or an air electrode and a separator,
A current collector material for a solid oxide fuel cell, comprising: matrix particles; and a conductive material having higher conductivity than the matrix particles, wherein the conductive material is coated on part or all of the surface of the matrix particles. .
上記マトリックス粒子が、金属粒子及び/又は合金粒子であることを特徴とする請求項1に記載の固体酸化物形燃料電池用集電体材料。The current collector material for a solid oxide fuel cell according to claim 1, wherein the matrix particles are metal particles and / or alloy particles. 上記金属粒子及び/又は合金粒子の粒径が、0.5〜10μmであることを特徴とする請求項2に記載の固体酸化物形燃料電池用集電体材料。The current collector material for a solid oxide fuel cell according to claim 2, wherein the metal particles and / or alloy particles have a particle size of 0.5 to 10 m. 上記金属粒が、銀、鉄、クロム、ニッケル、銅、チタン、タングステン、アルミニウム及び錫から成る群より選ばれた少なくとも1種の金属であることを特徴とする請求項2又は3に記載の固体酸化物形燃料電池用集電体材料。The solid according to claim 2, wherein the metal particles are at least one metal selected from the group consisting of silver, iron, chromium, nickel, copper, titanium, tungsten, aluminum and tin. Current collector material for oxide fuel cells. 上記合金粒子が、銀、鉄、クロム、銅、アルミニウム、チタン及びコバルトから成る群より選ばれた少なくとも1種の金属を含んで成ることを特徴とする請求項2又は3に記載の固体酸化物形燃料電池用集電体材料。The solid oxide according to claim 2, wherein the alloy particles comprise at least one metal selected from the group consisting of silver, iron, chromium, copper, aluminum, titanium, and cobalt. Collector material for solid fuel cells. 上記導電材が、LaCrO、La0.75Sr0.25FeO、SnO、Fe、LaCoO、ITO、ZnO及びFeSi2−x(xはSiの欠陥組織を示す)から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1〜5のいずれか1つの項に記載の固体酸化物形燃料電池用集電体材料。The conductive material is composed of LaCrO 3 , La 0.75 Sr 0.25 FeO 3 , SnO 2 , Fe 3 O 4 , LaCoO 3 , ITO, ZnO, and FeSi 2-x (x indicates a defect structure of Si). The current collector material for a solid oxide fuel cell according to any one of claims 1 to 5, wherein the current collector material is at least one member selected from the group. 上記導電材が、ペロブスカイト型酸化物であることを特徴とする請求項1〜6のいずれか1つの項に記載の固体酸化物形燃料電池用集電体材料。The current collector material for a solid oxide fuel cell according to any one of claims 1 to 6, wherein the conductive material is a perovskite oxide. 上記導電材の被覆厚さが0.05〜5μmであることを特徴とする請求項1〜7のいずれか1つの項に記載の固体酸化物形燃料電池用集電体材料。8. The current collector material for a solid oxide fuel cell according to claim 1, wherein a coating thickness of the conductive material is 0.05 to 5 μm. 9. 請求項1〜8のいずれか1つの項に記載の固体酸化物形燃料電池用集電体材料を製造する方法であって、
上記マトリックス粒子の表面に、スパッタリング法、共沈法、めっき、ゾル−ゲル法及び含浸法から成る群より選ばれた少なくとも1種の方法を用いて上記導電材を被覆することを特徴とする固体酸化物形燃料電池用集電体材料の製造方法。
A method for producing a current collector material for a solid oxide fuel cell according to any one of claims 1 to 8,
A solid characterized in that the surface of the matrix particles is coated with the conductive material using at least one method selected from the group consisting of a sputtering method, a coprecipitation method, plating, a sol-gel method, and an impregnation method. A method for producing a current collector material for an oxide fuel cell.
電解質を介して燃料極と空気極とが相対向する電池要素に、ガスを分離するセパレータを積層して成る固体酸化物形燃料電池用単セルであって、
上記燃料極及び/又は空気極とセパレータとの間に請求項1〜8のいずれか1つの項に記載の固体酸化物形燃料電池用集電体材料で形成した集電体を配設して成ることを特徴とする固体酸化物形燃料電池用単セル。
A single cell for a solid oxide fuel cell formed by stacking a separator for separating a gas on a battery element in which a fuel electrode and an air electrode face each other through an electrolyte,
A current collector formed of the current collector material for a solid oxide fuel cell according to any one of claims 1 to 8, between the fuel electrode and / or the air electrode and the separator. A single cell for a solid oxide fuel cell, comprising:
JP2002331640A 2002-11-15 2002-11-15 Current collector material for solid oxide fuel cells Expired - Fee Related JP3894103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331640A JP3894103B2 (en) 2002-11-15 2002-11-15 Current collector material for solid oxide fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331640A JP3894103B2 (en) 2002-11-15 2002-11-15 Current collector material for solid oxide fuel cells

Publications (2)

Publication Number Publication Date
JP2004165074A true JP2004165074A (en) 2004-06-10
JP3894103B2 JP3894103B2 (en) 2007-03-14

Family

ID=32808950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331640A Expired - Fee Related JP3894103B2 (en) 2002-11-15 2002-11-15 Current collector material for solid oxide fuel cells

Country Status (1)

Country Link
JP (1) JP3894103B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004521A (en) * 2005-11-14 2008-01-10 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
US7449262B2 (en) * 2004-12-09 2008-11-11 Praxair Technology, Inc. Current collector to conduct an electrical current to or from an electrode layer
JP2009134982A (en) * 2007-11-30 2009-06-18 Noritake Co Ltd Method of manufacturing solid oxide fuel cell, and calcining tool used for the method
JP2013069521A (en) * 2011-09-22 2013-04-18 Nissan Motor Co Ltd Fuel cell, fuel cell stack, and manufacturing method for fuel cell or fuel cell stack
CN110773194A (en) * 2019-10-17 2020-02-11 厦门大学 CO (carbon monoxide) 2Catalyst for preparing methane by hydrogenation and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449262B2 (en) * 2004-12-09 2008-11-11 Praxair Technology, Inc. Current collector to conduct an electrical current to or from an electrode layer
JP2008004521A (en) * 2005-11-14 2008-01-10 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2009134982A (en) * 2007-11-30 2009-06-18 Noritake Co Ltd Method of manufacturing solid oxide fuel cell, and calcining tool used for the method
JP2013069521A (en) * 2011-09-22 2013-04-18 Nissan Motor Co Ltd Fuel cell, fuel cell stack, and manufacturing method for fuel cell or fuel cell stack
CN110773194A (en) * 2019-10-17 2020-02-11 厦门大学 CO (carbon monoxide) 2Catalyst for preparing methane by hydrogenation and preparation method thereof

Also Published As

Publication number Publication date
JP3894103B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP5044628B2 (en) Coating body
US7553573B2 (en) Solid state electrochemical composite
WO2011096939A1 (en) Method and device using a ceramic bond material for bonding metallic interconnect to ceramic electrode
JP5368139B2 (en) Solid oxide fuel cell
JP6370696B2 (en) Cell structure, electrolyte membrane-electrode assembly, and fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP2011119178A (en) Solid oxide fuel cell
JP5170815B2 (en) Solid oxide fuel cell unit and stack
JP2002280026A (en) Air electrode current collector for solid electrolyte fuel cell
JP3894103B2 (en) Current collector material for solid oxide fuel cells
JPH10172590A (en) Solid electrolyte type fuel cell
JP2001102060A (en) Fuel pole for solid electrolyte fuel electrode
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP5350893B2 (en) Solid oxide fuel cell
JP3342621B2 (en) Solid oxide fuel cell
WO2019167437A1 (en) Fuel cell
JP2016085921A (en) Cell support and solid oxide fuel cell
JP4426267B2 (en) SOFC fuel electrode resistant to carbon deposition and method for producing the same
JP2005005025A (en) Electrode for fuel cell, solid oxide fuel cell using this, and its manufacturing method
JP2000067889A (en) Method for preparing interconnector film for solid electrolyte fuel cell
JP2005100816A (en) Manufacturing method of cell of fuel cell
KR20190100610A (en) Method for fabricating solid oxide fuel cell
JP2006032183A (en) Electrical conductive material and solid oxide fuel cell using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees