JP2001102060A - Fuel pole for solid electrolyte fuel electrode - Google Patents

Fuel pole for solid electrolyte fuel electrode

Info

Publication number
JP2001102060A
JP2001102060A JP28104399A JP28104399A JP2001102060A JP 2001102060 A JP2001102060 A JP 2001102060A JP 28104399 A JP28104399 A JP 28104399A JP 28104399 A JP28104399 A JP 28104399A JP 2001102060 A JP2001102060 A JP 2001102060A
Authority
JP
Japan
Prior art keywords
electrode
cell
fuel
average particle
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28104399A
Other languages
Japanese (ja)
Inventor
Reiichi Chiba
玲一 千葉
Bunichi Yoshimura
文一 吉村
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28104399A priority Critical patent/JP2001102060A/en
Publication of JP2001102060A publication Critical patent/JP2001102060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel electrode for a solid electrolyte fuel cell having better performance than that of prior art with keeping conventional property of electron conduction and coefficient of thermal expansion. SOLUTION: A fuel electrode comprises two layers of an electrode reacting layer adjacent to a solid electrolyte and an electron conductive layer adjacent to the electrode reacting layer, wherein the electron reacting layer being a mixture body with a conductive body of fine Ni and of fine oxygen ion and all of their average particle length being less than 0.5 micron, the electron conductive layer being mixture of fine Ni and fine oxide powder and all of their average particle length being not only between Ni: oxide=1:2 and 1:20, but also the average particle length of the oxide being more than 1 micron. It can obtain an electrode having an excellent electrode property and a coefficient of thermal expansion over prior art by separating the electrode reacting layer and the electron conductive layer. It has significantly contributed to a high efficiency operation of fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池用
燃料極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode for a solid oxide fuel cell.

【0002】[0002]

【従来の技術および問題点】近年、酸素イオン伝導体を
用いた固体電解質燃料電池に関心が高まりつつある。特
にエネルギーの有効利用という観点から、固体燃料電池
はカルノー効率の制約を受けないため本質的に高いエネ
ルギー変換効率を有し、さらに良好な環境保全が期待さ
れるなどの優れた特長を持っている。固体電解質燃料電
池は、約800℃から1000℃の高温で動作させる必
要があるため、セルはセラミック材によって構成されて
いる。セルは酸素イオン伝導体である固体電解質を挟ん
で電子伝導体である空気極と燃料極が配置されている。
これらの電極は、ガスが拡散しやすくする為に多孔質体
を用いる。このセルを積み重ねる為にセル間に電子伝導
体であるインターコネクタ材を使用する。
2. Description of the Related Art In recent years, interest has been growing in solid electrolyte fuel cells using oxygen ion conductors. In particular, from the viewpoint of effective use of energy, solid fuel cells have essentially high energy conversion efficiencies because they are not restricted by Carnot efficiency, and have excellent features such as better environmental protection. . Since the solid oxide fuel cell needs to operate at a high temperature of about 800 ° C. to 1000 ° C., the cell is made of a ceramic material. In the cell, an air electrode serving as an electron conductor and a fuel electrode are arranged with a solid electrolyte serving as an oxygen ion conductor interposed therebetween.
For these electrodes, a porous body is used to facilitate gas diffusion. To stack the cells, an interconnector material, which is an electronic conductor, is used between the cells.

【0003】これら要素材について、従来検討されてき
た材料を表1に示した。これらの20℃から1000℃
までの熱膨張係数の平均値についても示してある。固体
電解質としては従来YSZ(イットリウム安定化ジルコ
ニア)、空気極にはLa0.8Sr0.2MnO3(LS
M)、燃料極にはNi−YSZ、そしてインターコネク
タ材料にはLa0.9Sr0.1CrO3が最も有望視されて
いる。
[0003] With respect to these element materials, Table 1 shows materials which have been conventionally studied. From 20 ° C to 1000 ° C
The average values of the thermal expansion coefficients up to are also shown. Conventionally, YSZ (yttrium-stabilized zirconia) was used as the solid electrolyte, and La 0.8 Sr 0.2 MnO 3 (LS
M), Ni-YSZ for the fuel electrode, and La 0.9 Sr 0.1 CrO 3 for the interconnect material are most promising.

【0004】電極は緻密な固体電解質に接続されている
ため、これらの熱膨張係数が近いことが望まれる。なぜ
なら、固体電解質型燃料電池の動作温度が室温に比べ極
めて高いため、運転停止に伴う熱サイクルに伴い熱膨張
係数の違う材料同士が応力のために接合部分で剥がれる
ことがあるからである。
Since the electrodes are connected to a dense solid electrolyte, it is desirable that their thermal expansion coefficients be close to each other. This is because the operating temperature of the solid oxide fuel cell is much higher than room temperature, and materials having different coefficients of thermal expansion may be separated from each other at the joint due to stress due to the thermal cycle following the shutdown.

【0005】ここで、燃料極はNiとジルコニアやセリ
アなどの酸素イオン伝導体との混合体を用いているの
で、Niとこれらセラミック材料の平均された熱膨張係
数を持つ。Niは熱膨張係数がセリアやジルコニアなど
の電解質材料に比べて極めて高いことから、固体電解質
との熱膨張係数の整合性を保つためには燃料極内のNi
の体積をなるべく少なくする必要がある。しかしこれは
電子伝導を確保する観点からNiの体積を増やすことと
相反する。
Here, since the fuel electrode uses a mixture of Ni and an oxygen ion conductor such as zirconia or ceria, the fuel electrode has an average thermal expansion coefficient of Ni and these ceramic materials. Since Ni has a much higher thermal expansion coefficient than electrolyte materials such as ceria and zirconia, Ni in the fuel electrode must be maintained in order to maintain consistency of the thermal expansion coefficient with the solid electrolyte.
Needs to be as small as possible. However, this conflicts with increasing the volume of Ni from the viewpoint of ensuring electron conduction.

【0006】このため、従来は、Niの平均粒径を小さ
く取り、酸素イオン導伝体の平均粒径を大きくとること
で、Ni粒子が酸素イオン導伝体の大きな粒子の表面を
覆わせている。これによりNiの体積を少なく保ちつ
つ、電子伝導度を確保することができる。この様に、熱
膨張係数と電子伝導度の観点からはNiと酸素イオン導
伝体との平均粒径比を大きくとることが必要となる。
For this reason, conventionally, the average particle diameter of Ni is made small and the average particle diameter of the oxygen ion conductor is made large, so that the Ni particles cover the surface of the large particles of the oxygen ion conductor. I have. Thereby, the electron conductivity can be secured while keeping the volume of Ni small. As described above, it is necessary to increase the average particle size ratio between Ni and the oxygen ion conductor from the viewpoint of the thermal expansion coefficient and the electron conductivity.

【0007】ところで、燃料極においてNiが酸素イオ
ン伝導体との混合体とすることで電解質と密着し、電解
質との界面付近に電気化学反応に必要な反応ガス、電
子、イオンが共存する三相界面を提供している。この電
気化学反応は電解質と電極の界面上の限られた領域(三
相界面)においてのみ可能である。先に述べた様に、熱
膨張係数と電子伝導度の点からはNiの平均粒径だけを
細かくして酸素イオン導伝体の平均粒径を大きくするこ
とが好ましい。
[0007] By the way, Ni is mixed with an oxygen ion conductor at the fuel electrode so that it is in close contact with the electrolyte, and near the interface with the electrolyte, a three-phase reaction gas, electrons and ions necessary for an electrochemical reaction coexist. Provides an interface. This electrochemical reaction is possible only in a limited area (three-phase interface) on the electrolyte-electrode interface. As described above, it is preferable to increase the average particle diameter of the oxygen ion conductor by reducing only the average particle diameter of Ni from the viewpoint of the thermal expansion coefficient and the electron conductivity.

【0008】しかし、微細なNi粒は粒成長を起こし易
く、この様な粒成長は三相界面の減少を招き電極性能の
劣化につながる。微細なNiの粒と同程度の微細な酸素
イオン伝導体を共に混合することで粒成長が抑えられ、
微細な構造を高温でも保つことが可能となる。この様に
三相界面を増やし電極性能を向上させる点からは、Ni
と酸素イオン伝導体との平均粒径比はほぼ同じであるこ
とが必要となる。
However, fine Ni grains tend to cause grain growth, and such grain growth leads to a decrease in the three-phase interface, leading to deterioration of electrode performance. By mixing together a fine oxygen ion conductor of the same size as the fine Ni grains, grain growth is suppressed,
A fine structure can be maintained even at high temperatures. From the viewpoint of increasing the three-phase interface and improving the electrode performance in this manner, Ni
It is necessary that the average particle diameter ratio between the oxygen ion conductor and the oxygen ion conductor be substantially the same.

【0009】これまで、燃料極内のNiと酸素イオン伝
導体との平均粒径比に対する以上の要求を同時に満足す
ることが難しかった。
Heretofore, it has been difficult to simultaneously satisfy the above requirements for the average particle size ratio between Ni and the oxygen ion conductor in the fuel electrode.

【0010】[0010]

【本発明の目的】本発明は固体電解質型燃料電池用燃料
極に関するもので、電解質に接する部分について従来の
燃料極に比べ微細な構造を持つ電極反応層とこれに隣接
する電子伝導層からなる2層構造からなる燃料極を作製
することで、高い性能の燃料極を提供しつつ、電子伝導
度、熱膨張係数は従来の特性を保つことを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a fuel electrode for a solid oxide fuel cell, and comprises an electrode reaction layer having a finer structure than a conventional fuel electrode at a portion in contact with the electrolyte, and an electron conductive layer adjacent thereto. By producing a fuel electrode having a two-layer structure, it is an object to provide a high-performance fuel electrode while maintaining the conventional characteristics of electron conductivity and thermal expansion coefficient.

【0011】[0011]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明の固体電解質型燃料電池用燃料極は、固体
電解質とそれに隣接して設けられた多孔質な空気極およ
び燃料極からなるセル、そして、それら電極を電気的に
接続するインターコネクタを有し、燃料ガスと空気また
は酸素ガスとの化学反応を電気エネルギーに変換する固
体燃料電池の固体電解質型燃料電池用燃料極において、
構造が固体電解質に隣接する電極反応層とこの層に隣接
する電子伝導層との2層からなり、電極反応層は微細な
Niと微細な酸素イオン伝導体との混合体で、且つこれ
らの平均粒径が共に0.5ミクロン以下であり、電子伝
導層は微細なNiと酸化物粉末の混合体で且つその平均
粒径比がNi:酸化物=1:2と1:20の間で且つ酸
化物の平均粒径が1ミクロン以上あることを特徴とす
る。
Means for Solving the Problems In order to solve the above problems, a fuel electrode for a solid oxide fuel cell according to the present invention comprises a solid electrolyte and a porous air electrode and a fuel electrode provided adjacent thereto. In the fuel electrode for a solid oxide fuel cell of a solid fuel cell having a cell, and an interconnector for electrically connecting the electrodes, and converting a chemical reaction between the fuel gas and air or oxygen gas into electric energy,
The structure is composed of two layers, an electrode reaction layer adjacent to the solid electrolyte and an electron conductive layer adjacent to this layer, and the electrode reaction layer is a mixture of fine Ni and fine oxygen ion conductor, and an average of these. Both have a particle size of 0.5 micron or less, and the electron conductive layer is a mixture of fine Ni and oxide powder, and the average particle size ratio is between Ni: oxide = 1: 2 and 1:20 and The average particle size of the oxide is 1 micron or more.

【0012】本発明によれば、燃料極を、電解質に直接
接合され平均粒径比が近い微細なNiと酸素イオン伝導
体との複合体からなる非常に薄い電極反応層と、これに
接合された平均粒径比が大きく異なるNiと酸化物との
混合体からなる電子伝導層とすることで、従来難しかっ
た電極特性、熱膨張係数そして電子導伝性の3つの要求
を同時に満足させることができる。
According to the present invention, a fuel electrode is bonded to an extremely thin electrode reaction layer composed of a composite of fine Ni and an oxygen ion conductor which is directly bonded to an electrolyte and has a close average particle size ratio. By using an electron conductive layer made of a mixture of Ni and an oxide having a significantly different average particle size ratio, it is possible to simultaneously satisfy the three requirements of electrode characteristics, thermal expansion coefficient, and electron conductivity, which were conventionally difficult. it can.

【0013】以下に本発明を説明する。本発明において
は、燃料極を微細な構造を持つ電極反応層と比較的粗大
な構造を持つ電子伝導層の2層とする。すなわち、燃料
極の電解質に接する部分は、0.5ミクロン以下の非常
に微細な粒のNiと酸素イオン伝導体の混合体からなる
厚みが0.01から10ミクロンと非常に薄い電極反応
層とする。微細なNiの粒と同程度の微細な酸素イオン
伝導体を共に混合することで粒成長が抑えられ、微細な
構造を高温でも保つことが可能となるが、Niと酸素イ
オン伝導体の平均粒径が 0.5ミクロンを越えると、
三相界面が大きくならず、電極反応層としての効果が低
くなる恐れがある。
The present invention will be described below. In the present invention, the fuel electrode has two layers, an electrode reaction layer having a fine structure and an electron conductive layer having a relatively coarse structure. That is, the portion of the anode in contact with the electrolyte is an electrode reaction layer having a very small thickness of 0.01 to 10 μm, which is made of a mixture of Ni and oxygen ion conductors of very fine particles of 0.5 μm or less. I do. By mixing together a fine oxygen ion conductor of the same size as the fine Ni grains, the grain growth can be suppressed, and the fine structure can be maintained even at high temperatures, but the average grain size of the Ni and the oxygen ion conductor can be maintained. If the diameter exceeds 0.5 micron,
There is a possibility that the three-phase interface does not become large and the effect as an electrode reaction layer is reduced.

【0014】上記の構成を採用することにより、電極反
応に有効な表面積が極めて広くなり、電極特性が大幅に
改善される。この電極反応層は伝導度および熱膨張係数
の整合性の点で従来の燃料極に比べやや劣るが、10ミ
クロン以下と非常に薄いので、実効的には問題にならな
い。この電極反応層の厚さは、好ましくは0.05から
5ミクロン、さらに最も好ましくは、0.1から2ミク
ロンである。あまり厚いとガスが透過しにくくなり、ま
た電子伝導もしにくくなり、また隣接する電子伝導層の
粒径に比較して薄くなりすぎると、横方向の電流が流れ
て電気抵抗が増し、電極特性が低下するおそれがあるか
らである。
By adopting the above configuration, the effective surface area for the electrode reaction becomes extremely large, and the electrode characteristics are greatly improved. This electrode reaction layer is slightly inferior to the conventional fuel electrode in terms of matching of the conductivity and the coefficient of thermal expansion. However, since it is as thin as 10 μm or less, it is not a problem in practice. The thickness of the electrode reaction layer is preferably 0.05 to 5 microns, and most preferably 0.1 to 2 microns. If the thickness is too large, the gas will be difficult to permeate and it will be difficult to conduct electrons.If the thickness is too small compared to the particle size of the adjacent electron conductive layer, a current will flow in the lateral direction and the electrical resistance will increase, resulting in poor electrode characteristics. This is because there is a possibility that it will decrease.

【0015】ここで、電極反応層のNiと酸素イオン伝
導体との体積比は4:1から1:4とすることで、焼成
の過程で平均粒径比の近い混合体が得られ易くなる。こ
れにより、Ni、酸素イオン伝導体どちらの粒成長も抑
制される。さらに好ましくは、2:1から1:3、最も
好ましくは 1.5:1から1:2である。1:1付近
で最も粒成長が抑制できるためである。
Here, when the volume ratio between Ni and the oxygen ion conductor in the electrode reaction layer is from 4: 1 to 1: 4, a mixture having a close average particle size ratio is easily obtained in the firing process. . Thereby, the grain growth of both Ni and the oxygen ion conductor is suppressed. More preferably from 2: 1 to 1: 3, most preferably from 1.5: 1 to 1: 2. This is because the grain growth can be suppressed most in the vicinity of 1: 1.

【0016】また電子伝導層は、微細なNiと酸化物粉
末の混合体で且つその平均粒径比がNi:酸化物=1:
2と1:20の間で且つ酸化物の平均粒径が1ミクロン
以上ある。またこの電子伝導層の厚さは、好ましくは2
0ミクロン以上である。酸化物粉末の平均粒径が微細な
Niの平均粒径より20倍を越えると、Niの粒成長が
起こりやすくなり、また酸化物の粒が大きくなりすぎて
機械的強度が低下する恐れがあるからである。また2倍
未満であると、酸化物を覆っているNi粒子が分断され
電流が流れにくくなり電極としての性能が劣化する恐れ
があるからである。
The electron conductive layer is a mixture of fine Ni and oxide powder and has an average particle size ratio of Ni: oxide = 1: 1.
Between 2 and 1:20 and an average particle size of the oxide of 1 micron or more. The thickness of the electron conducting layer is preferably 2
0 microns or more. If the average particle diameter of the oxide powder exceeds 20 times the average particle diameter of fine Ni, Ni grain growth is likely to occur, and the oxide grains may become too large and mechanical strength may be reduced. Because. On the other hand, if the ratio is less than twice, the Ni particles covering the oxide will be cut off, making it difficult for current to flow, and possibly deteriorating the performance as an electrode.

【0017】また電子伝導層の厚さが20ミクロン未満
であると、電流画面方向にも流れ、抵抗が高くなり電極
としての性能が劣化する恐れがある。
If the thickness of the electron conductive layer is less than 20 microns, the current also flows in the direction of the screen, the resistance increases, and the performance as an electrode may be deteriorated.

【0018】この電子伝導層は、電極反応に寄与しない
ので必ずしも酸素イオン伝導体を使用する必要はなく電
極反応層の物質に悪影響を与えなければ何でも良く、1
000℃付近の高温でもジルコニアやセリアと共存でき
るアルミナやムライト(SiO2を添加したアルミナ)
などを用いることもできる。この様に熱膨張係数の低い
酸化物を使用できるため、電子伝導層の熱膨張係数を従
来よりも低減することができ、固体電解質との整合性を
改善することが可能である。
Since the electron conductive layer does not contribute to the electrode reaction, it is not always necessary to use an oxygen ion conductor, and any material may be used as long as it does not adversely affect the material of the electrode reaction layer.
Alumina and mullite (alumina added with SiO 2 ) that can coexist with zirconia and ceria even at high temperatures around 000 ° C
Etc. can also be used. Since an oxide having a low coefficient of thermal expansion can be used as described above, the coefficient of thermal expansion of the electron conductive layer can be reduced as compared with the conventional case, and the consistency with the solid electrolyte can be improved.

【0019】[0019]

【実施例】以下に本発明の実施例を説明する。なお、当
然のことであるが本発明は以下の実施例に限定されるも
のではない。
Embodiments of the present invention will be described below. Note that, needless to say, the present invention is not limited to the following embodiments.

【0020】[0020]

【実施例1】本発明の効果を示すために、図1に示す構
造の単セルで試験を行なった。本発明において、1は燃
料極、2は固体電解質、3は空気極、4は集電メッシ
ュ、5は白金端子、6はガスシールである。
EXAMPLE 1 In order to show the effect of the present invention, a test was conducted with a single cell having the structure shown in FIG. In the present invention, 1 is a fuel electrode, 2 is a solid electrolyte, 3 is an air electrode, 4 is a current collecting mesh, 5 is a platinum terminal, and 6 is a gas seal.

【0021】固体電解質としてSASZ((ZrO2
0.89(Sc230.105(Al23 0.005)なる組成の
電解質シートを、空気極にLa0.8Sr0.2MnO3を用
いた。
As a solid electrolyte, SASZ ((ZrOTwo)
0.89(ScTwoOThree)0.105(AlTwoOThree) 0.005)
Lay the electrolyte sheet on the air electrode0.8Sr0.2MnOThreeFor
Was.

【0022】比較のために用いたセル(セル#0−1)
は、燃料極に平均粒径2ミクロンのSASZと平均粒径
0.5ミクロンのNiOとの混合体をPVA水溶液に分
散させたスラリを用意し、6mm径の円形に塗布後、1
100℃で焼成し、厚み40ミクロンの燃料極を得た。
裏面にはLSM空気極(6mm径)を、そしてシートの
端に白金参照極を塗布し、900℃で焼成し単セルとし
た。ここで、燃料極と空気極の集電には白金メッシュを
用いた。
Cell used for comparison (cell # 0-1)
Prepared a slurry in which a mixture of SASZ having an average particle diameter of 2 μm and NiO having an average particle diameter of 0.5 μm was dispersed in an aqueous PVA solution at the fuel electrode, and applied in a circular shape having a diameter of 6 mm.
It was fired at 100 ° C. to obtain a fuel electrode having a thickness of 40 μm.
An LSM air electrode (6 mm diameter) was applied to the back surface, and a platinum reference electrode was applied to the end of the sheet, and baked at 900 ° C. to form a single cell. Here, platinum mesh was used for current collection of the fuel electrode and the air electrode.

【0023】本発明の例として、以下の方法で燃料極を
作製した。まず電極反応層をr.fスパッタリング法に
より作製した。ここでは、Ni−SASZ混合体を得る
ために、Ni金属のターゲットとSASZターゲットを
用いた同時スパッタを行った。ここで、NiとSASZ
の混合の体積比が、1:1になるように堆積速度の比を
調整した。この上に前述の比較例と同様の燃料極を塗布
し、1100℃の熱処理を行ったところ、固体電解質上
に平均粒径0.2ミクロン、層厚2.0ミクロン、電極
反応層とその上に平均粒径2ミクロンのSASZと、平
均粒径0.5ミクロンのNiOの混合体からなる40ミ
クロン厚の電子伝導層が得られた。
As an example of the present invention, a fuel electrode was manufactured by the following method. First, the electrode reaction layer was r. It was produced by the f sputtering method. Here, in order to obtain a Ni-SASZ mixture, simultaneous sputtering was performed using a Ni metal target and a SASZ target. Here, Ni and SASZ
The ratio of the deposition rates was adjusted such that the volume ratio of the mixture became 1: 1. The same fuel electrode as that of the above-mentioned comparative example was coated thereon and heat-treated at 1100 ° C., and the average particle size was 0.2 μm, the layer thickness was 2.0 μm, the electrode reaction layer and the An electron conductive layer having a thickness of 40 μm and comprising a mixture of SASZ having an average particle diameter of 2 μm and NiO having an average particle diameter of 0.5 μm was obtained.

【0024】これらのセル(セル#1、セル#0−1)
を図1に示す様にセル測定系を用い、それぞれ800℃
にて発電試験を行った。表2−1に実験条件をまとめ
た。この単セルの800℃における過電圧(電流密度1
A/cm2時)を表2−2のセル#1に示す。ここで燃
料極には水素、空気極には酸素を供給した。ここで燃料
極におけるNiOの還元は測定温度で燃料である水素を
流すことで行った。電流密度は、燃料極の面積を基にし
て求めた値である。過電圧は電流遮断法、すなわちリレ
ーにより電流を遮断し、この応答から過電圧を求めた。
These cells (cell # 1, cell # 0-1)
Using a cell measurement system as shown in FIG.
A power generation test was performed. Table 2-1 summarizes the experimental conditions. Overvoltage of this single cell at 800 ° C. (current density 1
A / cm 2 ) is shown in cell # 1 of Table 2-2. Here, hydrogen was supplied to the fuel electrode, and oxygen was supplied to the air electrode. Here, the reduction of NiO at the fuel electrode was performed by flowing hydrogen as a fuel at the measurement temperature. The current density is a value obtained based on the area of the fuel electrode. The overvoltage was determined by a current interruption method, that is, the current was interrupted by a relay, and the overvoltage was determined from this response.

【0025】比較のために上記の単セルの燃料極だけを
従来のものとしたセルの特性も同時に示す。ここで、過
電圧は電流密度が1.0A/cm2時の値である。本発
明の燃料極を用いたセルは、従来の燃料極を用いたセル
(セル♯0−1)に比べ良好な過電圧特性を示した。
For the sake of comparison, the characteristics of a cell in which only the fuel electrode of the above-mentioned single cell is a conventional one are also shown. Here, the overvoltage is a value when the current density is 1.0 A / cm 2 . The cell using the fuel electrode of the present invention exhibited better overvoltage characteristics than the cell using the conventional fuel electrode (cell # 0-1).

【0026】[0026]

【実施例2】実施例1のセル#1において、固体電解質
シート、燃料極の電極反応層、電子伝導層におけるSA
SZをYSZに変えたセル(セル#2)、およびSDC
に変えたセル(セル#3)を作製した。そして、比較例
として実施例1で使用したセル#0−1のSASZ固体
電解質シートをYSZシート、SASZ粉末をYSZ粉
末に変えたセル(セル#0−2)、さらにSASZ固体
電解質シートをSDCシート、SASZ粉末をSDC粉
末に変えたセル(セル#0−3)を作製した。これらの
セルについて実施例1と同様の実験を行った。表2−2
に示す様に実施例1における対応する標準セル(セル#
0−2、セル#0−3)に比べて、それぞれ過電圧特性
が改善された。
Example 2 In the cell # 1 of Example 1, the SA in the solid electrolyte sheet, the electrode reaction layer of the fuel electrode, and the electron conductive layer
A cell in which SZ is changed to YSZ (cell # 2), and SDC
(Cell # 3) was prepared. Then, as a comparative example, the SASZ solid electrolyte sheet of cell # 0-1 used in Example 1 was a YSZ sheet, the SASZ powder was changed to YSZ powder (cell # 0-2), and the SASZ solid electrolyte sheet was an SDC sheet. And a cell (Cell # 0-3) in which the SASZ powder was changed to the SDC powder. The same experiment as in Example 1 was performed on these cells. Table 2-2
As shown in the figure, the corresponding standard cell (cell #
0-2, cell # 0-3), respectively, the overvoltage characteristics were improved.

【0027】[0027]

【実施例3】実施例1に挙げた燃料極の電子伝導層にお
いて、NiOの平均粒径を0.5ミクロンに固定し、N
iOとSASZとの平均粒径比を1:2、1:8、1:
20と変化させて単セルを作製した。ここで、NiOの
SASZに対する重量比は70:30、電子伝導層の厚
みは100ミクロンとなるように調整した。このセル
(セル#4−1、セル#4−2、セル#4−3)を用い
て、実施例1と同様の実験を行った。表2−2に示す様
に実施例1における標準セル(セル#0−1)に比べ
て、過電圧特性が改善された。
Example 3 In the electron conductive layer of the fuel electrode described in Example 1, the average particle diameter of NiO was fixed at 0.5 μm, and
The average particle size ratio between iO and SASZ was 1: 2, 1: 8, 1:
A single cell was manufactured by changing it to 20. Here, the weight ratio of NiO to SASZ was adjusted to be 70:30, and the thickness of the electron conductive layer was adjusted to be 100 microns. Using this cell (cell # 4-1, cell # 4-2, cell # 4-3), an experiment similar to that of the first embodiment was performed. As shown in Table 2-2, the overvoltage characteristics were improved as compared with the standard cell (cell # 0-1) in Example 1.

【0028】[0028]

【実施例4】実施例1に挙げた燃料極の電極反応層にお
いて、層の厚みを0.01ミクロン、0.1ミクロン、
1ミクロン、10ミクロンと変化させた単セルを作製し
た。ここで、NiのSASZに対する重量比は70:3
0、電子伝導層の厚みは100ミクロンとなるように調
整した。このセル(セル#5−1、セル#5−2、セル
#5−3、セル#5−4)を用いて、実施例1と同様の
実験を行った。表2−2に示す様に実施例1における標
準セル(セル#0−1)に比べて、過電圧特性が改善さ
れた。
Example 4 In the electrode reaction layer of the fuel electrode described in Example 1, the thickness of the layer was 0.01 μm, 0.1 μm,
A single cell having a thickness of 1 micron or 10 microns was manufactured. Here, the weight ratio of Ni to SASZ is 70: 3.
0, the thickness of the electron conductive layer was adjusted to be 100 microns. Using the cells (cell # 5-1, cell # 5-2, cell # 5-3, cell # 5-4), an experiment similar to that of the first embodiment was performed. As shown in Table 2-2, the overvoltage characteristics were improved as compared with the standard cell (cell # 0-1) in Example 1.

【0029】[0029]

【実施例5】実施例1に挙げた燃料極の電極反応層にお
いて、NiとSASZとの体積比を4:1、1:1、
1:4と変化させて単セルを作製した。ここで、Niと
SASZの体積比はNiとSASZとの同時スパッタに
おいて、堆積速度の比を調節することで変化させた。こ
れらのセル(セル#6−1、セル#6−2、セル#6−
3)を用いて、実施例1と同様の実験を行った。表2−
2に示す様に実施例1における標準セル(セル#0−
1)に比べて、過電圧特性が改菩された。
Embodiment 5 In the electrode reaction layer of the fuel electrode described in Embodiment 1, the volume ratio of Ni to SASZ was 4: 1, 1: 1 and
A single cell was prepared with the ratio changed to 1: 4. Here, the volume ratio of Ni and SASZ was changed by adjusting the ratio of the deposition rates in the simultaneous sputtering of Ni and SASZ. These cells (cell # 6-1, cell # 6-2, cell # 6-
The same experiment as in Example 1 was performed using 3). Table 2-
As shown in FIG. 2, the standard cell (cell # 0-
The overvoltage characteristic was improved compared to 1).

【0030】[0030]

【実施例6】実施例1に挙げた燃料極の電子伝導層にお
いて、酸化物の種類をSASZ粉末からアルミナ(Al
23)粉末、ムライト(0.6Al23−0.4SiO
2)粉末に替えて単セルを作製した。ここで、NiOの
SASZに対する重量比は70:30、電子伝導層の厚
みは40ミクロンとなるように調整した。このセル(セ
ル#7−1、セル#7−2)を用いて、実施例1と同様
の実験を行った。表2−2に示す様に実施例1における
標準セル(セル#0−1)に比べて過電圧特性が改善さ
れ、熱膨張係数における燃料極と電解質との不整合も改
善された。
Embodiment 6 In the electron conductive layer of the fuel electrode described in Embodiment 1, the kind of oxide was changed from SASZ powder to alumina (Al).
2 O 3 ) powder, mullite (0.6 Al 2 O 3 -0.4 SiO)
2 ) A single cell was prepared in place of the powder. Here, the weight ratio of NiO to SASZ was adjusted to 70:30, and the thickness of the electron conductive layer was adjusted to 40 microns. Using this cell (cell # 7-1, cell # 7-2), the same experiment as in Example 1 was performed. As shown in Table 2-2, the overvoltage characteristics were improved as compared with the standard cell (cell # 0-1) in Example 1, and the mismatch between the fuel electrode and the electrolyte in the coefficient of thermal expansion was also improved.

【0031】表1 Table 1

【0032】表2−1 Table 2-1

【0033】表2−2 Table 2-2

【0034】[0034]

【発明の効果】以上説明したように、固体電解質燃料電
池の燃料極を、本発明で示した電極反応層と電子伝導層
とに分けることにより、従来に比べ電極特性に優れ、熱
膨張特性についても十分に優れた電極を得ることに成功
した。本発明は固体燃料電池の高効率動作に大きな貢献
をなすものである。
As described above, by dividing the fuel electrode of the solid electrolyte fuel cell into the electrode reaction layer and the electron conductive layer shown in the present invention, the electrode characteristics are superior to those of the prior art and the thermal expansion characteristics are improved. Succeeded in obtaining a sufficiently excellent electrode. The present invention makes a great contribution to high efficiency operation of a solid fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いた燃料電池の模式図。FIG. 1 is a schematic diagram of a fuel cell used in an example.

【図2】実施例に用いた単セルの平面図。FIG. 2 is a plan view of a single cell used in an example.

【符号の説明】[Explanation of symbols]

1 燃料極 2 固体電解質 3 空気極 1 fuel electrode 2 solid electrolyte 3 air electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5H018 AA06 AS02 CC06 DD08 EE04 EE12 HH01 HH03 HH05 5H026 AA06 CC06 CV01 CX04 EE02 EE12 HH01 HH03 HH05  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoji Sakurai 2-3-1 Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation F-term (reference) 5H018 AA06 AS02 CC06 DD08 EE04 EE12 HH01 HH03 HH05 5H026 AA06 CC06 CV01 CX04 EE02 EE12 HH01 HH03 HH05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質とそれに隣接して設けられた
多孔質な空気極および燃料極からなるセル、そして、そ
れら電極を電気的に接続するインターコネクタを有し、
燃料ガスと空気または酸素ガスとの化学反応を電気エネ
ルギーに変換する固体燃料電池の固体電解質型燃料電池
用燃料極において、構造が固体電解質に隣接する電極反
応層とこの層に隣接する電子伝導層との2層からなり、
電極反応層は微細なNiと微細な酸素イオン伝導体との
混合体で、且つこれらの平均粒径が共に0.5ミクロン
以下であり、電子伝導層は微細なNiと酸化物粉末の混
合体で且つその平均粒径比がNi:酸化物=1:2と
1:20の間で且つ酸化物の平均粒径が1ミクロン以上
あることを特徴とする固体電解質型燃料電池用燃料極。
1. A cell comprising a solid electrolyte, a porous air electrode and a fuel electrode provided adjacent to the solid electrolyte, and an interconnector for electrically connecting the electrodes.
In a fuel electrode for a solid oxide fuel cell of a solid fuel cell that converts a chemical reaction between a fuel gas and air or oxygen gas into electric energy, an electrode reaction layer having a structure adjacent to the solid electrolyte and an electron conductive layer adjacent to this layer Consists of two layers,
The electrode reaction layer is a mixture of fine Ni and a fine oxygen ion conductor, both of which have an average particle size of 0.5 μm or less, and the electron conductive layer is a mixture of fine Ni and oxide powder. A fuel electrode for a solid oxide fuel cell, characterized in that the average particle size ratio is between Ni: oxide = 1: 2 and 1:20 and the average particle size of the oxide is 1 micron or more.
【請求項2】 請求項1において、電極反応層の厚みが
0.01から10ミクロンで、電子伝導層の厚みが20
ミクロン以上であることを特徴とする固体電解質型燃料
電池用燃料極。
2. The method according to claim 1, wherein the thickness of the electrode reaction layer is 0.01 to 10 μm and the thickness of the electron conductive layer is 20 μm.
A fuel electrode for a solid oxide fuel cell, having a diameter of at least one micron.
【請求項3】 請求項2において、電極反応層における
Niと酸素イオン導伝体との体積比が4:1から1:4
の間であることを特徴とする固体電解質型燃料電池用燃
料極。
3. The electrode reaction layer according to claim 2, wherein the volume ratio of Ni to the oxygen ion conductor in the electrode reaction layer is from 4: 1 to 1: 4.
And a fuel electrode for a solid oxide fuel cell.
【請求項4】 請求項1から3のいずれかにおいて、電
子伝導層の酸化物がアルミナ、またはムライトであるこ
とを特徴とする固体電解質型燃料電池用燃料極。
4. The fuel electrode for a solid oxide fuel cell according to claim 1, wherein the oxide of the electron conductive layer is alumina or mullite.
JP28104399A 1999-10-01 1999-10-01 Fuel pole for solid electrolyte fuel electrode Pending JP2001102060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28104399A JP2001102060A (en) 1999-10-01 1999-10-01 Fuel pole for solid electrolyte fuel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28104399A JP2001102060A (en) 1999-10-01 1999-10-01 Fuel pole for solid electrolyte fuel electrode

Publications (1)

Publication Number Publication Date
JP2001102060A true JP2001102060A (en) 2001-04-13

Family

ID=17633512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28104399A Pending JP2001102060A (en) 1999-10-01 1999-10-01 Fuel pole for solid electrolyte fuel electrode

Country Status (1)

Country Link
JP (1) JP2001102060A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109827A1 (en) * 2003-06-03 2004-12-16 Ngk Insulator5S Ltd. Substrate for electrochemical cell and electrochemical cell
JP2006252796A (en) * 2005-03-08 2006-09-21 Tokyo Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell
WO2006101136A1 (en) 2005-03-23 2006-09-28 Nippon Shokubai Co., Ltd. Fuel electrode material for solid oxide fuel cell, fuel electrode using same, fuel-cell cell
JP2007073336A (en) * 2005-09-07 2007-03-22 Toto Ltd Solid oxide fuel cell
JP2010225363A (en) * 2009-03-23 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2010282896A (en) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
WO2012128201A1 (en) * 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
JP5090575B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP5091346B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109827A1 (en) * 2003-06-03 2004-12-16 Ngk Insulator5S Ltd. Substrate for electrochemical cell and electrochemical cell
JP2006252796A (en) * 2005-03-08 2006-09-21 Tokyo Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell
WO2006101136A1 (en) 2005-03-23 2006-09-28 Nippon Shokubai Co., Ltd. Fuel electrode material for solid oxide fuel cell, fuel electrode using same, fuel-cell cell
JP2007073336A (en) * 2005-09-07 2007-03-22 Toto Ltd Solid oxide fuel cell
JP4596158B2 (en) * 2005-09-07 2010-12-08 Toto株式会社 Solid oxide fuel cell
JP2010225363A (en) * 2009-03-23 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2010282896A (en) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
WO2012128201A1 (en) * 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
JP5090575B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP5091346B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
EP2688128A1 (en) * 2011-03-18 2014-01-22 NGK Insulators, Ltd. Solid oxide fuel cell
EP2688128A4 (en) * 2011-03-18 2014-08-20 Ngk Insulators Ltd Solid oxide fuel cell
US8945789B2 (en) 2011-03-18 2015-02-03 Ngk Insulators, Ltd. Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US7553573B2 (en) Solid state electrochemical composite
JPH10302812A (en) Solid oxide fuel cell stack having composite electrode and production thereof
KR20000059873A (en) Single Cell and Stack Structure of Solid Oxide Fuel Cell
JP2011119178A (en) Solid oxide fuel cell
JP2003115301A (en) Single cell for fuel cell and solid electrolyte-type fuel cell
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP2001102060A (en) Fuel pole for solid electrolyte fuel electrode
JP5127437B2 (en) Electrolyte / electrode assembly and method for producing the same
JPH09274921A (en) Fuel electrode for solid electrolyte fuel cell
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
JP3218555B2 (en) Ceria based solid electrolyte with protective layer
JP5127438B2 (en) Electrolyte / electrode assembly
JP3259756B2 (en) Multilayer solid electrolyte for solid fuel cells
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP3894103B2 (en) Current collector material for solid oxide fuel cells
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JP3342621B2 (en) Solid oxide fuel cell
JP5077633B2 (en) Electrode for solid oxide fuel cell and solid oxide fuel cell
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP3342610B2 (en) Solid oxide fuel cell
JP2005005025A (en) Electrode for fuel cell, solid oxide fuel cell using this, and its manufacturing method
JP3714659B2 (en) Fabrication method of anode for solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JP7278241B2 (en) electrochemical reaction single cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914