JP2008081804A - Heat resistant alloy member, current collecting member for fuel cell, fuel cell stack, and fuel cell - Google Patents

Heat resistant alloy member, current collecting member for fuel cell, fuel cell stack, and fuel cell Download PDF

Info

Publication number
JP2008081804A
JP2008081804A JP2006264095A JP2006264095A JP2008081804A JP 2008081804 A JP2008081804 A JP 2008081804A JP 2006264095 A JP2006264095 A JP 2006264095A JP 2006264095 A JP2006264095 A JP 2006264095A JP 2008081804 A JP2008081804 A JP 2008081804A
Authority
JP
Japan
Prior art keywords
fuel cell
layer
current collecting
porous layer
diffusion preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006264095A
Other languages
Japanese (ja)
Other versions
JP5072305B2 (en
Inventor
Tatsu Miyaji
達 宮地
Masahiko Azuma
昌彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006264095A priority Critical patent/JP5072305B2/en
Publication of JP2008081804A publication Critical patent/JP2008081804A/en
Application granted granted Critical
Publication of JP5072305B2 publication Critical patent/JP5072305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a heat resistant alloy member which has Cr-diffusion preventing effect and can effectively prevent exfoliation even in the case that a member having a thermal expansion coefficient largely different from a Cr-diffusion preventing layer to the heat resistant alloy member; a current collecting member for a fuel cell; a fuel cell stack; and the fuel cell. <P>SOLUTION: In the current collecting member, the surface of a current collecting base material 201 containing Cr is covered with a dense Cr-diffusion preventing layer 202a composed of an oxide and a porous layer 202b composed of an oxide is formed on the surface of the Cr-diffusion preventing layer 202a. It is preferable that the porous layer 202b contains the same components as those of the Cr-diffusion preventing layer 202a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、Crを含有する合金の表面をCr拡散防止層により被覆してなる耐熱性合金部材及び燃料電池用集電部材並びに燃料電池セルスタック、燃料電池に関する。   The present invention relates to a heat-resistant alloy member formed by coating the surface of an alloy containing Cr with a Cr diffusion preventing layer, a current collecting member for a fuel cell, a fuel cell stack, and a fuel cell.

次世代エネルギーとして、近年、例えば、燃料電池セルのスタックを収納容器に収容した燃料電池が種々提案されている。固体電解質形燃料電池は、複数の燃料電池セルを電気的に接続した燃料電池セルスタックを収納容器に収容して構成され、燃料電池セルの燃料極側に燃料ガス(水素)を流し、空気極(酸素極ともいう)側に空気(酸素)を流して600〜900℃の高温で発電する。燃料電池セル間を電気的に接続するためには、従来からフェルト状や板状の燃料電池用集電部材(以下、特に断らない限り集電部材ともいう)が用いられている。   In recent years, for example, various fuel cells in which a stack of fuel cells is accommodated in a storage container have been proposed as next-generation energy. A solid oxide fuel cell is configured by storing a fuel cell stack in which a plurality of fuel cells are electrically connected in a storage container, and flowing fuel gas (hydrogen) to the fuel electrode side of the fuel cell, Electric power is generated at a high temperature of 600 to 900 ° C. by flowing air (oxygen) to the side (also referred to as an oxygen electrode). In order to electrically connect the fuel cells, a felt-shaped or plate-shaped current collecting member for a fuel cell (hereinafter also referred to as a current collecting member unless otherwise specified) has been used.

このような集電部材としては導電率の高い合金が採用され、さらに高温下で使用されることから、耐熱性合金が望ましく採用され、このような導電率の高い耐熱性合金として、Crを10〜30質量%含有する合金が一般的に用いられる。しかしながら、Crを含有する合金からなる集電部材を燃料電池セル間に介装し、複数の燃料電池セルを電気的に接続した場合、燃料電池を長期間発電させると、集電部材中のCrが集電部材の外部に拡散してしまい、拡散したCrは空気極と固体電解質との界面に達し、活性を劣化させてしまう。この現象は、いわゆるCr被毒といわれ、燃料電池セルの発電能力の低下をまねくこととなる。   As such a current collecting member, an alloy having a high conductivity is adopted, and since it is used at a high temperature, a heat-resistant alloy is preferably adopted. As such a heat-resistant alloy having a high conductivity, 10% of Cr is used. An alloy containing -30% by mass is generally used. However, when a current collecting member made of an alloy containing Cr is interposed between the fuel cells and a plurality of fuel cells are electrically connected, if the fuel cell generates power for a long time, Cr in the current collecting member Diffuses to the outside of the current collector, and the diffused Cr reaches the interface between the air electrode and the solid electrolyte and degrades the activity. This phenomenon is referred to as so-called Cr poisoning and leads to a decrease in the power generation capacity of the fuel cell.

このようなCr被毒を防止するため、従来、Crを含有する合金の表面をMn、Fe、Co、Niで被覆することが行われている(特許文献1参照)。
特表平11−501764号公報
In order to prevent such Cr poisoning, conventionally, the surface of an alloy containing Cr is coated with Mn, Fe, Co, and Ni (see Patent Document 1).
Japanese National Patent Publication No. 11-501764

しかしながら、Crの拡散を防止するため、上記特許文献1に記載されているようにCr含有合金の表面をMn、Fe、Co、Niで被覆して集電部材を構成した場合、Cr含有合金中のCrが外部に拡散することをある程度抑制することができるものの、これらの被覆層はCrの外部への拡散を防止すべく、緻密層として形成される。   However, in order to prevent the diffusion of Cr, when the current collecting member is configured by coating the surface of the Cr-containing alloy with Mn, Fe, Co, Ni as described in Patent Document 1, the Cr-containing alloy contains Although the diffusion of Cr to the outside can be suppressed to some extent, these coating layers are formed as dense layers in order to prevent the Cr from diffusing to the outside.

従って、このような集電部材を燃料電池セル間に配置し、集電部材と燃料電池セルとを導電性接着材により接合した場合、Crを拡散するための緻密な被覆層と導電性接着材との熱膨張差が大きい場合、この熱膨張差によって生じる応力により、集電部材と燃料電池セルとが剥離し、燃料電池セル間の電気的接続ができなくなるおそれがあった。   Accordingly, when such a current collecting member is disposed between the fuel cells and the current collecting member and the fuel cells are joined by the conductive adhesive, a dense coating layer and a conductive adhesive for diffusing Cr are provided. When the difference in thermal expansion between the current collector and the fuel cell is large, there is a possibility that the current collecting member and the fuel cell are peeled off due to the stress generated by the difference in thermal expansion, and the electrical connection between the fuel cells is not possible.

それゆえ、本発明は、Cr拡散防止効果を有し、かつCr拡散防止層と熱膨張率が大きく異なる部材を耐熱性合金部材に接合する場合でも、剥離を有効に防止することができる耐熱性合金部材及び燃料電池用集電部材並びに燃料電池セルスタック、燃料電池を提供することを目的とする。   Therefore, the present invention has a heat resistance which can effectively prevent peeling even when a member having a Cr diffusion preventing effect and having a coefficient of thermal expansion greatly different from that of the Cr diffusion preventing layer is joined to a heat resistant alloy member. An object is to provide an alloy member, a current collecting member for a fuel cell, a fuel cell stack, and a fuel cell.

本発明の耐熱性合金部材は、Crを含有する合金の表面を酸化物からなる緻密なCr拡散防止層で被覆し、該Cr拡散防止層の表面に、酸化物からなる多孔質層を設けてなることを特徴とする。   The heat-resistant alloy member of the present invention is obtained by coating the surface of an alloy containing Cr with a dense Cr diffusion preventing layer made of an oxide, and providing a porous layer made of an oxide on the surface of the Cr diffusion preventing layer. It is characterized by becoming.

本発明の耐熱性合金部材では、Crを含有する合金の表面を、酸化物からなる緻密なCr拡散防止層により覆うことで、Crの拡散を防止することができるとともに、Cr拡散防止層の表面には、酸化物からなる多孔質層が形成されているため、多孔質層に熱膨張率が大きく異なる導電性セラミック等の導電性接着材などを接合しても、多孔質層で熱膨張差によって生じる応力を緩和できる。   In the heat resistant alloy member of the present invention, by covering the surface of the alloy containing Cr with a dense Cr diffusion preventing layer made of oxide, it is possible to prevent the diffusion of Cr and the surface of the Cr diffusion preventing layer. Since a porous layer made of oxide is formed, even if a conductive adhesive such as a conductive ceramic having a significantly different coefficient of thermal expansion is joined to the porous layer, the difference in thermal expansion Can relieve the stress caused by

即ち、Cr拡散防止層と熱膨張率が大きく異なる部材を、耐熱性合金部材のCr拡散防止層表面に直接接合する場合には、昇降温等の温度履歴により熱膨張率差に基づく剥離が生じる場合がある。本発明においては、酸化物からなる緻密なCr拡散防止層の表面に、酸化物からなる多孔質層を形成することで、その上に熱膨張率が大きく異なる導電性セラミック等の導電性接着材などを接合しても、多孔質層で熱膨張差によって生じる応力を緩和でき、Cr拡散防止層と熱膨張率が大きく異なる部材を耐熱性合金部材の表面に接合する場合でも、剥離を有効に防止することができる。   That is, when a member having a coefficient of thermal expansion significantly different from that of the Cr diffusion prevention layer is directly bonded to the surface of the Cr diffusion prevention layer of the heat resistant alloy member, peeling based on the difference in thermal expansion coefficient occurs due to temperature history such as temperature rise and fall. There is a case. In the present invention, by forming a porous layer made of an oxide on the surface of a dense Cr diffusion preventing layer made of an oxide, a conductive adhesive such as a conductive ceramic having a significantly different coefficient of thermal expansion. Even if bonded, etc., the stress caused by the difference in thermal expansion in the porous layer can be relieved, and even when a member having a thermal expansion coefficient significantly different from that of the Cr diffusion prevention layer is bonded to the surface of the heat resistant alloy member, peeling is effectively performed. Can be prevented.

さらに、耐熱性合金部材の表面には多孔質層が形成されているため、例えば導電性セラミック等の導電性接着材との接触面積が増加し、多孔質層と導電性セラミック等の導電性接着材の接合強度を向上できる。   Furthermore, since the porous layer is formed on the surface of the heat-resistant alloy member, the contact area with the conductive adhesive such as a conductive ceramic increases, and the porous layer and the conductive adhesive such as the conductive ceramic increase. The joint strength of the material can be improved.

また、本発明の耐熱性合金部材は、前記多孔質層は前記Cr拡散防止層と同一成分を含有することを特徴とする。このような耐熱性合金部材では、Cr拡散防止層と多孔質層との接合強度を向上することができるとともに、熱膨張率を近似させることができる。熱膨張率を近似させるという点から、多孔質層は、Cr拡散防止層と同一成分を主成分とすることが望ましい。   In the heat resistant alloy member of the present invention, the porous layer contains the same component as the Cr diffusion preventing layer. In such a heat resistant alloy member, the bonding strength between the Cr diffusion preventing layer and the porous layer can be improved, and the thermal expansion coefficient can be approximated. From the viewpoint of approximating the thermal expansion coefficient, the porous layer is preferably composed mainly of the same component as the Cr diffusion preventing layer.

また、本発明の耐熱性合金部材は、前記Cr拡散防止層はZnを含有する酸化物からなることを特徴とする。本発明の耐熱性合金部材は、Crを含有する合金の表面に、例えばZnを含有するスラリーを塗布し、熱処理することにより、酸化物からなるCr拡散防止層が形成される。それにより、合金からのCrの拡散が抑制され、いわゆるCr被毒を抑制できる。その理由は明確ではないが、熱力学的な安定性により合金の表面層にCrが固溶しにくいためと考えられる。   In the heat resistant alloy member of the present invention, the Cr diffusion preventing layer is made of an oxide containing Zn. In the heat-resistant alloy member of the present invention, for example, a Zn-containing slurry is applied to the surface of an alloy containing Cr and heat-treated, thereby forming a Cr diffusion prevention layer made of an oxide. Thereby, the diffusion of Cr from the alloy is suppressed, and so-called Cr poisoning can be suppressed. The reason is not clear, but it is considered that Cr is difficult to dissolve in the surface layer of the alloy due to thermodynamic stability.

さらに、本発明の耐熱性合金部材は、前記多孔質層はZnを含有する酸化物からなることを特徴とする。多孔質層にZnを含有することで、Znを含有するCr拡散防止層と多孔質層とが化学的に結合し、接合がより強固となる。   Furthermore, the heat resistant alloy member of the present invention is characterized in that the porous layer is made of an oxide containing Zn. By containing Zn in the porous layer, the Cr diffusion preventing layer containing Zn and the porous layer are chemically bonded, and the bonding becomes stronger.

さらに、本発明の耐熱性合金部材は、前記多孔質層は導電性であることを特徴とする。導電性を有する耐熱性合金部材では、導電性を向上するため、熱膨張率が大きく異なる部材を耐熱性合金部材の多孔質層表面に接合することが行われるため、本発明を有効に用いることができる。また、耐熱性合金部材の表面には導電性の多孔質層が形成されているため、例えば導電性セラミック等の導電性接着材との接触面積が増加し、多孔質層と導電性セラミック等の導電性接着材との接触面積が増加し、導電性を向上することができる。   Furthermore, the heat resistant alloy member of the present invention is characterized in that the porous layer is conductive. In the heat-resistant alloy member having conductivity, in order to improve the conductivity, a member having a significantly different coefficient of thermal expansion is joined to the surface of the porous layer of the heat-resistant alloy member, so that the present invention is effectively used. Can do. In addition, since a conductive porous layer is formed on the surface of the heat resistant alloy member, for example, the contact area with a conductive adhesive such as a conductive ceramic increases, and the porous layer and the conductive ceramic The contact area with the conductive adhesive increases, and the conductivity can be improved.

本発明の燃料電池用集電部材は上記耐熱性合金部材が燃料電池の集電部材として用いられることを特徴とする。   The current collecting member for a fuel cell according to the present invention is characterized in that the heat resistant alloy member is used as a current collecting member for a fuel cell.

本発明の燃料電池セルスタックは、複数の燃料電池セルの間に、上記燃料電池用集電部材をそれぞれ介装し、前記複数の燃料電池セルを電気的に接続してなることを特徴とする。このような燃料電池セルスタックでは、導電性を有する燃料電池用集電部材により、複数の燃料電池セルを電気的に接続することができる。   The fuel cell stack of the present invention is characterized in that the fuel cell current collecting member is interposed between a plurality of fuel cells, and the plurality of fuel cells are electrically connected. . In such a fuel cell stack, a plurality of fuel cells can be electrically connected by a current collecting member for a fuel cell having conductivity.

燃料電池用集電部材と燃料電池セルは、例えば後述のように導電性セラミック等の導電性接着材を介して接合される。しかしながら、酸化物からなる緻密なCr拡散防止層は燃料電池セルに用いられるLa、Fe、Mn等を含む複合ペロブスカイト構造からなる空気極材料や導電性接着材と比較して原子間結合力が大きく、熱膨張率が小さいものが多いため、燃料電池用集電部材を構成する合金の表面を被覆した緻密なCr拡散防止層と、導電性セラミック等の導電性接着材との熱膨張差が大きく、昇降温等の温度履歴により燃料電池用集電部材と燃料電池セルとの間で剥離が生じる場合があるが、本発明においては、酸化物からなる緻密なCr拡散防止層の表面に、酸化物からなる多孔質層を形成することで、その上に熱膨張の大きな導電性セラミック等の導電性接着材などを接合しても多孔質層で熱膨張差によって生じる応力を緩和でき、燃料電池用集電部材と燃料電池セルとの剥離をより有効に防止することができる。   The current collecting member for a fuel cell and the fuel cell are joined via a conductive adhesive such as a conductive ceramic as described later. However, the dense Cr diffusion prevention layer made of oxide has a larger interatomic bonding force than air electrode materials and conductive adhesives made of a composite perovskite structure containing La, Fe, Mn, etc. used in fuel cells. Since many of them have a small coefficient of thermal expansion, there is a large difference in thermal expansion between the dense Cr diffusion prevention layer covering the surface of the alloy constituting the current collector for fuel cells and the conductive adhesive such as conductive ceramic. In some cases, peeling may occur between the current collecting member for fuel cell and the fuel cell due to temperature history such as temperature rise / fall. In the present invention, the surface of the dense Cr diffusion preventing layer made of oxide is oxidized. By forming a porous layer made of a material, even if a conductive adhesive such as a conductive ceramic having a large thermal expansion is bonded to the porous layer, the stress caused by the thermal expansion difference in the porous layer can be relieved, and the fuel cell Current collector It is possible to prevent the separation of the wood and the fuel cell more effectively.

また、本発明の燃料電池セルスタックは、前記燃料電池セルと前記燃料電池用集電部材とが導電性接着材により接合されていることを特徴とする。このような燃料電池セルスタックでは、燃料電池セルと燃料電池用集電部材との電気的導通をさらに向上することができる。   Further, the fuel cell stack of the present invention is characterized in that the fuel cell and the fuel cell current collecting member are joined by a conductive adhesive. In such a fuel cell stack, the electrical continuity between the fuel cell and the fuel cell current collector can be further improved.

また、本発明の燃料電池セルスタックは、前記燃料電池用集電部材の前記多孔質層は、前記燃料電池セルと接合される部分の前記Cr拡散防止層の表面にのみ設けられていることを特徴とする。このような燃料電池セルスタックでは、燃料電池セルと接合されるCr拡散防止層の表面にのみ多孔質層を設け、燃料電池セルと接合されない領域はCr拡散防止層の表面に多孔質層を形成しないため、例えば、板状の燃料電池用集電部材の片側面だけに多孔質層を形成すればよいこととなる。それゆえ、燃料電池用集電部材の製造工程を一部省略でき、本発明の燃料電池集電部材の製造が容易となるとともに、接着材料を低減できることから、製造にかかるコストを低減することができる。多孔質層を形成しないCr拡散防止層の表面には、他の層、例えば、Cr拡散防止機能を有する絶縁材料層を形成することができる。   In the fuel cell stack of the present invention, the porous layer of the fuel cell current collecting member is provided only on the surface of the Cr diffusion preventing layer in a portion joined to the fuel cell. Features. In such a fuel cell stack, a porous layer is provided only on the surface of the Cr diffusion prevention layer bonded to the fuel cell, and a porous layer is formed on the surface of the Cr diffusion prevention layer in a region not bonded to the fuel cell. Therefore, for example, the porous layer may be formed only on one side surface of the plate-shaped fuel cell current collecting member. Therefore, a part of the manufacturing process of the fuel cell current collecting member can be omitted, the manufacturing of the fuel cell current collecting member of the present invention is facilitated, and the adhesive material can be reduced, thereby reducing the manufacturing cost. it can. Another layer, for example, an insulating material layer having a Cr diffusion preventing function, can be formed on the surface of the Cr diffusion preventing layer on which the porous layer is not formed.

さらに、本発明の燃料電池セルスタックは、前記多孔質層と前記導電性接着材との間に、前記多孔質層を構成する成分と前記導電性接着材を構成する成分とが混合された中間層が設けられていることを特徴とする。前記中間層は、Znを含有する酸化物と、La及びFe、又はLa及びMnを含有するペロブスカイト型複合酸化物とを含有することを特徴とする。このような燃料電池セルスタックは、例えば、多孔質層の表面に、多孔質層を構成する成分と導電性接着材を構成する成分とを含有するスラリーを塗布し、熱処理することにより、中間層が形成される。中間層は多孔質層を構成する成分と導電性接着材を構成する成分を含有するので、熱膨張率が多孔質層と導電性接着材との間の値となり、多孔質層と導電性接着材との熱膨張差が低減され、これにより、多孔質層と導電性接着材との接続信頼性を向上できる。なお、多孔質層と導電性接着材とを直接接合しても、十分に接続信頼性が確保される場合は、中間層の形成は省略してもかまわない。   Furthermore, the fuel cell stack of the present invention is an intermediate in which a component constituting the porous layer and a component constituting the conductive adhesive are mixed between the porous layer and the conductive adhesive. A layer is provided. The intermediate layer includes an oxide containing Zn and a perovskite complex oxide containing La and Fe, or La and Mn. For example, such a fuel cell stack is formed by applying a slurry containing a component constituting the porous layer and a component constituting the conductive adhesive on the surface of the porous layer, and heat-treating the intermediate layer. Is formed. Since the intermediate layer contains the component constituting the porous layer and the component constituting the conductive adhesive, the coefficient of thermal expansion becomes a value between the porous layer and the conductive adhesive, and the porous layer and the conductive adhesive The difference in thermal expansion from the material is reduced, thereby improving the connection reliability between the porous layer and the conductive adhesive. In addition, even if the porous layer and the conductive adhesive are directly joined, the formation of the intermediate layer may be omitted if sufficient connection reliability is ensured.

本発明の燃料電池は、上記燃料電池セルスタックを収納容器に収納してなることを特徴とする。このような燃料電池では、燃料電池用集電部材と燃料電池セルとを強固に接続でき、これらの間の電気的接続信頼性を向上でき、電圧低下を低減し、長期信頼性を向上できる。   The fuel cell of the present invention is characterized in that the fuel cell stack is stored in a storage container. In such a fuel cell, the fuel cell current collector and the fuel cell can be firmly connected, the electrical connection reliability between them can be improved, the voltage drop can be reduced, and the long-term reliability can be improved.

本発明の耐熱性合金部材は、Crを含有する合金の表面を酸化物からなる緻密なCr拡散防止層で被覆し、該Cr拡散防止層の表面に、酸化物からなる多孔質層を設けていることから、Crの拡散を防止できるとともに、熱膨張率が大きく異なる導電性セラミック等の導電性接着材などを耐熱性合金部材に接合しても、多孔質層で熱膨張差によって生じる応力を緩和でき、Cr拡散防止層と熱膨張率が大きく異なる部材を耐熱性合金部材の表面に接合する場合でも、剥離を有効に防止することができる。   The heat-resistant alloy member of the present invention is obtained by coating the surface of an alloy containing Cr with a dense Cr diffusion preventing layer made of an oxide, and providing a porous layer made of an oxide on the surface of the Cr diffusion preventing layer. Therefore, it is possible to prevent the diffusion of Cr, and even when a conductive adhesive such as a conductive ceramic having a significantly different thermal expansion coefficient is joined to the heat-resistant alloy member, the stress caused by the thermal expansion difference in the porous layer can be prevented. Even when a member having a thermal expansion coefficient significantly different from that of the Cr diffusion preventing layer can be bonded to the surface of the heat resistant alloy member, peeling can be effectively prevented.

図1は本発明の燃料電池用集電部材の一形態を示す斜視図であり、図2及び図3は図1に示す燃料電池用集電部材20のCr拡散防止層202a、多孔質層202bおよび中間層202cの被覆状態を示す断面図である。図2は図1に示すA−A線断面図であり、図3は図1に示すB−B線断面図である。燃料電池用集電部材20は、図1に示すように、例えば板状の耐熱性合金を櫛刃状に加工し、隣り合う刃を交互に反対側に折り曲げて構成される。   FIG. 1 is a perspective view showing an embodiment of a current collecting member for a fuel cell according to the present invention, and FIGS. 2 and 3 are Cr diffusion preventing layers 202a and porous layers 202b of the current collecting member 20 for a fuel cell shown in FIG. It is sectional drawing which shows the covering state of the intermediate | middle layer 202c. 2 is a cross-sectional view taken along line AA shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB shown in FIG. As shown in FIG. 1, the fuel cell current collecting member 20 is formed, for example, by processing a plate-like heat-resistant alloy into a comb blade shape and alternately bending adjacent blades to the opposite side.

この集電部材20は、Crを含有する耐熱性合金(以下、集電基材という。)201の表面に、酸化物(例えばセラミックス等、以下同じ)からなる緻密なCr拡散防止層202aが被覆されており、さらにその表面に、例えば、導電性を有するセラミックス等からなる導電性の多孔質層202bが形成されている。ここで、本発明においては、Cr拡散防止層202aは、集電基材201の全周面を隙間なく被覆している。なお、本発明の燃料電池用集電部材20は、図1に示すような形状のものに限定されるものではなく、例えば、円筒状、メッシュ状のものであってもよい。   In the current collecting member 20, a dense Cr diffusion prevention layer 202a made of an oxide (such as ceramics, the same applies hereinafter) is coated on the surface of a heat-resistant alloy (hereinafter referred to as a current collecting base material) 201 containing Cr. Further, a conductive porous layer 202b made of, for example, conductive ceramics is formed on the surface thereof. Here, in the present invention, the Cr diffusion preventing layer 202a covers the entire circumferential surface of the current collecting base material 201 without any gaps. The fuel cell current collecting member 20 of the present invention is not limited to the shape shown in FIG. 1, and may be, for example, a cylindrical shape or a mesh shape.

ここで集電基材201の材料としては、導電性および耐熱性の高いCrを10〜30質量%含有する合金、例えばFe−Cr系合金、Ni−Cr系合金等を用いることができる。   Here, as a material of the current collecting base material 201, an alloy containing 10 to 30% by mass of Cr having high conductivity and heat resistance, for example, Fe—Cr alloy, Ni—Cr alloy, or the like can be used.

そして、この集電基材201の表面に、酸化物からなる緻密なCr拡散防止層202aを被覆し、さらにCr拡散防止層202aの表面に多孔質層202b、更に中間層202cを形成して、本発明の燃料電池用集電部材20が構成されている。多孔質層202bはCr拡散防止層202aの全周面に形成され、多孔質層202bの全周面に中間層202が形成されている。   Then, the surface of the current collecting base material 201 is covered with a dense Cr diffusion preventing layer 202a made of an oxide, and further a porous layer 202b and an intermediate layer 202c are formed on the surface of the Cr diffusion preventing layer 202a, A current collecting member 20 for a fuel cell of the present invention is configured. The porous layer 202b is formed on the entire circumferential surface of the Cr diffusion preventing layer 202a, and the intermediate layer 202 is formed on the entire circumferential surface of the porous layer 202b.

Cr拡散防止層202aを構成する酸化物としては、例えば、Zn、Mn、Fe、Co、Ni等の金属酸化物等を適宜選択して用いることができる。ここで、酸化物からなる緻密なCr拡散防止層202aは、Crの拡散を防止する点から、その緻密度が、相対密度が93%以上、特には95%以上であるのが好ましい。   As an oxide constituting the Cr diffusion preventing layer 202a, for example, a metal oxide such as Zn, Mn, Fe, Co, and Ni can be appropriately selected and used. Here, the dense Cr diffusion preventing layer 202a made of an oxide preferably has a relative density of 93% or more, particularly 95% or more from the viewpoint of preventing the diffusion of Cr.

また、多孔質層202bは、Cr拡散防止層202aよりも多孔質であれば良いが、特には、断面のSEM(走査型電子顕微鏡)写真を画像解析して得られる気孔率が5〜60%となるよう設定するのが好ましく、さらには10〜40%とするのが好ましい。なお、画像解析には、Scion Image Corporation 製のScion Image for Windows(Windowsは登録商標)等の画像解析ソフトを用いる。尚、集電部材20の導電性を高めるためには、多孔質層202bは気孔率が小さい方が望ましい。   The porous layer 202b may be more porous than the Cr diffusion preventing layer 202a. In particular, the porosity obtained by image analysis of a cross-sectional SEM (scanning electron microscope) photograph is 5 to 60%. It is preferable to set so as to be, and more preferably 10 to 40%. Note that image analysis software such as Scion Image for Windows (Windows is a registered trademark) manufactured by Scion Image Corporation is used for image analysis. In order to increase the conductivity of the current collecting member 20, the porous layer 202b preferably has a low porosity.

中間層202cは、多孔質層202bと導電性接着材25との間に形成されるように、多孔質層202bの表面に、多孔質層202bを構成する成分と導電性接着材25を構成する成分とを混合して形成されている。このような中間層202cは、多孔質層202bの表面に、多孔質層202bを構成する成分と導電性接着材25を構成する成分を含有するスラリーを塗布し、熱処理することにより、中間層202cが形成される。中間層202cは多孔質層202bを構成する成分と導電性接着材25を構成する成分を含有するので、熱膨張率が多孔質層202bと導電性接着材25との間の値となり、多孔質層202bと導電性接着材25との熱膨張差が低減され、これにより、多孔質層202bと導電性接着材25との接続信頼性を向上できる。特には、中間層202cは、Znを含有する酸化物と、La及びFe、又はLa及びMnを含有するペロブスカイト型複合酸化物とを含有して構成されている。このような中間層202cは、例えばZnを含有する酸化物と、Laと、Fe又はMnを含有するペロブスカイト型複合酸化物とを含有するスラリーを、多孔質層202bの表面に塗布し、熱処理をすることにより形成することができ、このような中間層202cにより、多孔質層202bと導電性接着材25との熱膨張差をさらに低減でき、導電性を向上できる。   The intermediate layer 202c constitutes the conductive adhesive 25 with the components constituting the porous layer 202b on the surface of the porous layer 202b so as to be formed between the porous layer 202b and the conductive adhesive 25. It is formed by mixing ingredients. Such an intermediate layer 202c is formed by applying a slurry containing a component constituting the porous layer 202b and a component constituting the conductive adhesive 25 on the surface of the porous layer 202b, followed by heat treatment. Is formed. Since the intermediate layer 202c contains a component constituting the porous layer 202b and a component constituting the conductive adhesive 25, the coefficient of thermal expansion becomes a value between the porous layer 202b and the conductive adhesive 25, and the porous layer 202b is porous. The difference in thermal expansion between the layer 202b and the conductive adhesive 25 is reduced, whereby the connection reliability between the porous layer 202b and the conductive adhesive 25 can be improved. In particular, the intermediate layer 202c is configured to contain an oxide containing Zn and a perovskite complex oxide containing La and Fe, or La and Mn. Such an intermediate layer 202c is formed by applying a slurry containing, for example, an oxide containing Zn, La, and a perovskite complex oxide containing Fe or Mn to the surface of the porous layer 202b, and performing a heat treatment. By such an intermediate layer 202c, the difference in thermal expansion between the porous layer 202b and the conductive adhesive 25 can be further reduced, and the conductivity can be improved.

なお、多孔質層202bと導電性接着材25とを直接接合しても、十分に接続信頼性が確保される場合は、中間層202cの形成は省略してもかまわない。   Even if the porous layer 202b and the conductive adhesive 25 are directly joined, the formation of the intermediate layer 202c may be omitted if sufficient connection reliability is ensured.

Cr拡散防止層202aは、集電基材201に含有されるCrが拡散することを有効に防止するため、集電基材201の全周面を覆うように緻密な層として形成される。ここで、Cr拡散防止層202aとしては、例えば、スピネル構造、コランダム構造、ウルツ鉱構造および岩塩構造のうち少なくとも1種、またはこれらと類似の構造を持つZnを含有する金属酸化物を用いることにより、緻密なCr拡散防止層202aを形成することができる。さらに、Cr拡散防止層202aは、緻密な層として形成されるため、集電基材201からのCr拡散を有効に防止でき、燃料電池セルの発電能力の低下を有効に防止することができる。   The Cr diffusion preventing layer 202a is formed as a dense layer so as to cover the entire circumferential surface of the current collecting base material 201 in order to effectively prevent Cr contained in the current collecting base material 201 from diffusing. Here, as the Cr diffusion preventing layer 202a, for example, by using a metal oxide containing Zn having at least one of a spinel structure, a corundum structure, a wurtzite structure and a rock salt structure, or a similar structure thereto. A dense Cr diffusion preventing layer 202a can be formed. Furthermore, since the Cr diffusion preventing layer 202a is formed as a dense layer, it is possible to effectively prevent Cr diffusion from the current collecting base material 201 and to effectively prevent a decrease in power generation capacity of the fuel cell.

ここで、集電部材20は、後述する図7に示すように、導電性セラミック等の導電性接着材25を介して燃料電池セル1と接合される。しかしながら、上述したように集電基材201の表面には、緻密な酸化物からなるCr拡散防止層202aが形成されている。緻密な酸化物からなるCr拡散防止層202aに導電性セラミック等の導電性接着材25を接合した場合は、Cr拡散防止層202aと導電性セラミック等の導電性接着材25との熱膨張率差が大きく、昇降温などの温度履歴等により熱膨張率差に起因する応力が発生し、集電部材20と燃料電池セル1とが剥離する場合があった。   Here, the current collecting member 20 is joined to the fuel cell 1 via a conductive adhesive 25 such as a conductive ceramic, as shown in FIG. 7 described later. However, as described above, the Cr diffusion preventing layer 202a made of a dense oxide is formed on the surface of the current collecting base material 201. When the conductive adhesive 25 such as conductive ceramic is bonded to the Cr diffusion preventing layer 202a made of a dense oxide, the difference in thermal expansion coefficient between the Cr diffusion preventing layer 202a and the conductive adhesive 25 such as conductive ceramic. In some cases, stress due to a difference in thermal expansion coefficient occurs due to a temperature history such as temperature rise and fall, and the current collecting member 20 and the fuel battery cell 1 may be separated.

本発明においては、酸化物からなるCr拡散防止層202aの表面に、導電性の多孔質層202bを形成したことから、Cr拡散防止層202aと燃料電池セルとの接合に用いる多孔質の導電性セラミック等の導電性接着材25との熱膨張差に起因する応力を緩和することができ、多孔質層202bと導電性セラミック等の導電性接着材25とが強固に接合される。   In the present invention, since the conductive porous layer 202b is formed on the surface of the Cr diffusion prevention layer 202a made of oxide, the porous conductivity used for joining the Cr diffusion prevention layer 202a and the fuel cell. The stress caused by the difference in thermal expansion from the conductive adhesive 25 such as ceramic can be relieved, and the porous layer 202b and the conductive adhesive 25 such as conductive ceramic are firmly bonded.

したがって、本発明の集電部材20によれば、集電部材20と燃料電池セル1とを強固に接合でき、集電部材20と燃料電池セルとの剥離をより有効に防止することができる。   Therefore, according to the current collecting member 20 of the present invention, the current collecting member 20 and the fuel battery cell 1 can be firmly joined, and separation between the current collecting member 20 and the fuel battery cell can be more effectively prevented.

また多孔質層202bの表面に多孔質層202bと導電性接着材25の成分からなる中間層202cを設けることにより、多孔質層202bと導電性セラミック等の導電性接着材25の導電性が高くなり、燃料電池セルと集電部材20との導電性を高めることができると考えられる。   Further, by providing the intermediate layer 202c composed of the components of the porous layer 202b and the conductive adhesive 25 on the surface of the porous layer 202b, the conductive adhesive 25 such as the porous layer 202b and the conductive ceramic has high conductivity. Therefore, it is considered that the conductivity between the fuel cell and the current collecting member 20 can be increased.

図4および図5は、本発明の燃料電池用集電部材20の他の実施形態を示すもので、図4および図5においては、燃料電池セルと接合されるCr拡散防止層202aの表面にのみ多孔質層202b、中間層202cが設けられている。   4 and 5 show another embodiment of the current collecting member 20 for a fuel cell of the present invention. In FIGS. 4 and 5, the surface of the Cr diffusion preventing layer 202a joined to the fuel cell is shown. Only the porous layer 202b and the intermediate layer 202c are provided.

燃料電池用集電部材20に含有されるCrの拡散は確実に防止する必要があるため、Cr拡散防止層202aは、集電基材201の全面を覆うように形成する必要がある。しかしながら、多孔質層202b、中間層202cは、燃料電池セルとの接合を強固にするものであるため、燃料電池セルと接合されるCr拡散防止層202aの表面に設けられていればよく、その場合にあっては、本発明の燃料電池用集電部材20の製造工程の一部を省略することができるとともに、燃料電池セルと接合されない面には、多孔質層202bを形成しなくてよいことから、コスト低減にもつながる。   Since it is necessary to reliably prevent Cr contained in the fuel cell current collecting member 20 from diffusing, the Cr diffusion preventing layer 202 a needs to be formed so as to cover the entire surface of the current collecting base material 201. However, since the porous layer 202b and the intermediate layer 202c strengthen the bonding with the fuel cell, it is only necessary to be provided on the surface of the Cr diffusion preventing layer 202a bonded to the fuel cell. In some cases, a part of the manufacturing process of the current collecting member 20 for a fuel cell of the present invention can be omitted, and the porous layer 202b need not be formed on the surface that is not joined to the fuel cell. This leads to cost reduction.

なお、本実施形態においては、燃料電池セルと接合されるCr拡散防止層202aの表面にのみ多孔質層202bを設けることとしたが、例えば、集電部材20が図1に示すような櫛刃状である場合に、燃料電池セルに接合される集電部材20の片側面(接合面)にのみ多孔質層202b、中間層202cを形成してもよい。この場合には、燃料電池セルと一部接合されない部分にも多孔質層202b、中間層202cが形成されていることになる。これにより、集電部材20の片側面が多孔質層202b、中間層202cを有することから、複雑なマスキング工程をすることなく、多孔質層202b、中間層202cの製造ができるため、多孔質層202b並びに中間層202cの製造工程を簡易化することができる。さらには、燃料電池セルに接合される集電部材20の片側面全体に多孔質層202b、中間層202cが形成されていることから、燃料電池セルとの接合時に、位置ずれ等を生じても、燃料電池セルと集電部材20とを強固に接合できる。   In the present embodiment, the porous layer 202b is provided only on the surface of the Cr diffusion preventing layer 202a joined to the fuel battery cell. For example, the current collecting member 20 has a comb blade as shown in FIG. In this case, the porous layer 202b and the intermediate layer 202c may be formed only on one side surface (joint surface) of the current collecting member 20 joined to the fuel cell. In this case, the porous layer 202b and the intermediate layer 202c are also formed in the part that is not partly joined to the fuel cell. Accordingly, since one side surface of the current collecting member 20 has the porous layer 202b and the intermediate layer 202c, the porous layer 202b and the intermediate layer 202c can be manufactured without performing a complicated masking process. The manufacturing process of 202b and the intermediate | middle layer 202c can be simplified. Furthermore, since the porous layer 202b and the intermediate layer 202c are formed on the entire one side surface of the current collecting member 20 to be joined to the fuel battery cell, misalignment or the like may occur during joining with the fuel battery cell. The fuel cell and the current collecting member 20 can be firmly joined.

したがって、集電部材20と燃料電池セルとを強固に接合できることから、集電部材20と燃料電池セルとの剥離をより有効に防止することができる。   Therefore, since the current collecting member 20 and the fuel cell can be firmly joined, it is possible to more effectively prevent the current collecting member 20 and the fuel cell from being separated.

また、Cr拡散防止層202aは、Znを含有する酸化物からなることが好ましい。   The Cr diffusion preventing layer 202a is preferably made of an oxide containing Zn.

上述したように、Cr拡散防止層202aは、集電基材201に含有されるCrが拡散することを有効に防止するため、例えば、スピネル構造を有する金属酸化物により形成される。ここで、Crの拡散を防止する上で、Cr拡散防止層202aは、特に、Zn系スピネルからなるものであるのが好ましく、例えばZn−Mn系スピネルからなるのがより好ましい。Zn−Mn系スピネルにおいては、Fe、Cr等の元素を含有してもよい。具体的には、Zn−Mn系スピネル、例えば、(Zn,Fe)Mnからなる、ZnとMnを含む金属酸化物は、Crを固溶しにくいために、Crの拡散を抑制する効果を有している。 As described above, the Cr diffusion preventing layer 202a is formed of, for example, a metal oxide having a spinel structure in order to effectively prevent Cr contained in the current collector base material 201 from diffusing. Here, in order to prevent Cr from diffusing, the Cr diffusion preventing layer 202a is particularly preferably made of Zn-based spinel, and more preferably made of, for example, Zn-Mn spinel. The Zn—Mn spinel may contain elements such as Fe and Cr. Specifically, a metal oxide containing Zn and Mn composed of a Zn—Mn spinel, for example, (Zn, Fe) Mn 2 O 4 , suppresses Cr diffusion because it is difficult to dissolve Cr. Has an effect.

なお、本発明においては、例えば集電基材201にMnが含有されている場合には、酸化物からなるCr拡散防止層202aを設ける際、Cr拡散防止層202a、多孔質層202bとして、例えばZnを含有するがMnを含有しない酸化物も用いることができる。この場合において、多孔質層はZnOを含有するものであり、純粋なZnOは絶縁体であるが、Zn1+δOは陽イオン過剰型のn型半導体となり、価数の高い不純物元素を添加することによっても、n型の不純物半導体となる。ここで、ZnO中のZnは、+2価のイオンとなっているため、+3価以上のイオンとなる金属元素を固溶させることによって導電性が付与される。+3価以上のイオンとなる金属元素としては、特にAl、Feが望ましい。Al、Feを固溶させた酸化亜鉛からなる導電層は、大気中、発電温度近傍550℃〜900℃で、1S・cm−1以上の導電率を有することが好ましい。 In the present invention, for example, when Mn is contained in the current collecting base material 201, when providing the Cr diffusion prevention layer 202a made of oxide, as the Cr diffusion prevention layer 202a and the porous layer 202b, An oxide containing Zn but not Mn can also be used. In this case, the porous layer contains ZnO, and pure ZnO is an insulator, but Zn 1 + δ O becomes a cation-rich n-type semiconductor, and an impurity element having a high valence is added. As a result, an n-type impurity semiconductor is formed. Here, since Zn in ZnO is a +2 valent ion, conductivity is imparted by dissolving a metal element that becomes +3 or higher ion. As the metal element that becomes +3 or more ions, Al and Fe are particularly desirable. The conductive layer made of zinc oxide in which Al and Fe are solid-solved preferably has a conductivity of 1 S · cm −1 or more at 550 ° C. to 900 ° C. near the power generation temperature in the atmosphere.

Cr拡散防止層202aは5μm以下、特には2μm以下であれば、ある程度絶縁性であっても集電部材20としての導電性に影響を与えることがない。また、多孔質層202bは、集電基材201の耐用時間にもよるが、Cr拡散防止層202aとあわせて、10〜100μmが好ましく、10〜50μmとなるように形成するのが好ましい。厚さを10μm以上とすることにより、エアーの巻き込みなどによる空隙発生を防止できる。また、厚さを50μm以下とすることにより、集電基材201との熱膨張差による内部応力を最小限に抑制できると共に、導電性の低下を抑制し、形成を容易にすることができる。   If the Cr diffusion preventing layer 202a is 5 μm or less, particularly 2 μm or less, the conductivity as the current collecting member 20 is not affected even if it is insulating to some extent. Further, the porous layer 202b is preferably formed to have a thickness of 10 to 100 μm, preferably 10 to 50 μm, together with the Cr diffusion preventing layer 202a, although it depends on the lifetime of the current collecting base material 201. By setting the thickness to 10 μm or more, it is possible to prevent the generation of voids due to air entrainment. Moreover, by making thickness 50 micrometers or less, while being able to suppress the internal stress by the thermal expansion difference with the current collection base material 201 to the minimum, a conductive fall can be suppressed and formation can be made easy.

本発明のCr拡散防止層202aは、例えば、スプレーにて形成する場合は、ZnまたはZnOを含有するスラリーを、Mnを含有する集電基材201にスプレーし、熱処理することにより形成することができる。また、浸漬塗布法(ディッピング)による場合は、ZnまたはZnOを含有するペースト中にMnを含有する集電基材201を浸漬し、熱処理により、或いは発電時の加熱により形成することができる。   For example, when the Cr diffusion preventing layer 202a of the present invention is formed by spraying, the slurry containing Zn or ZnO is sprayed on the current collecting base material 201 containing Mn and heat-treated. it can. In the case of the dip coating method (dipping), the current collecting substrate 201 containing Mn is immersed in a paste containing Zn or ZnO, and can be formed by heat treatment or heating during power generation.

ここで、本発明のCr拡散防止層202aを、スプレーにて作製する場合は、以下のようにして作製することができる。   Here, when the Cr diffusion preventing layer 202a of the present invention is produced by spraying, it can be produced as follows.

即ち、例えば、ZnまたはZnOと、FeまたはAlと、溶剤、結合バインダー、分散剤等を所定の割合で混合し、スラリーを作製する。この際、溶剤は、例えばトルエン等の即乾性の有機溶剤を用いるのが好ましく、結合バインダーは、500℃以下の熱処理温度で、熱分解する必要があることから、例えば、アクリル系樹脂を用いるのが好ましい。 That is, for example, Zn or ZnO, Fe 2 O 3 or Al 2 O 3 , a solvent, a binder, a dispersant, and the like are mixed at a predetermined ratio to produce a slurry. In this case, it is preferable to use a quick-drying organic solvent such as toluene, for example, and the binder needs to be thermally decomposed at a heat treatment temperature of 500 ° C. or lower. For example, an acrylic resin is used. Is preferred.

続いて、作製したスラリーをスプレーにより、Mn、Crを含有する集電基材の表面に噴霧する。ここで用いるスプレーノズルとしては、集電基材201の表面に微細な液滴が形成できるものであれば特に限定はないが、例えば、圧縮空気と混合して噴霧する2流体式のノズルや、2MPa以上の高圧を利用した1流体式のノズルが好ましい。   Subsequently, the prepared slurry is sprayed on the surface of the current collecting base material containing Mn and Cr. The spray nozzle used here is not particularly limited as long as fine droplets can be formed on the surface of the current collecting base 201. For example, a two-fluid nozzle that mixes and sprays with compressed air, A one-fluid type nozzle using a high pressure of 2 MPa or more is preferable.

そして、集電基材201の表面に均一に塗膜を形成するため、集電基材201およびノズルを適度に搖動させ、所定の時間スプレーすることにより、スラリーの塗布を完了する。この際、スプレーに充填されたスラリーを集電基材201に噴霧するが、集電基材201の表面にムラ無く均一な塗布膜を形成するため、出来るだけ、スプレーより噴霧される液滴が、微細な液滴となるよう、スプレー圧力を高圧として噴霧することが好ましい。この方法により、Cr拡散防止層202aとなる層が形成される。   And in order to form a coating film uniformly on the surface of the current collection base material 201, application | coating of a slurry is completed by shaking the current collection base material 201 and a nozzle moderately, and spraying for a predetermined time. At this time, the slurry filled in the spray is sprayed on the current collecting base material 201. In order to form a uniform coating film without unevenness on the surface of the current collecting base material 201, droplets sprayed from the spray as much as possible. It is preferable to spray at a high spray pressure so as to form fine droplets. By this method, a layer to be the Cr diffusion preventing layer 202a is formed.

このようにして形成されるCr拡散防止層202aは、集電基材201中に含有されるMnと、Cr拡散防止層202aを作製するためのスラリー中に含まれるZnとが反応して、Zn−Mn系スピネルとして形成されるため、集電基材201に含有されるCrの拡散を有効に防止することができる。   The Cr diffusion preventing layer 202a formed in this manner is obtained by reacting Mn contained in the current collecting base material 201 with Zn contained in the slurry for producing the Cr diffusion preventing layer 202a. Since it is formed as a -Mn-based spinel, diffusion of Cr contained in the current collecting base material 201 can be effectively prevented.

また、あわせて、Cr拡散防止層202aの表面にZnを含有する多孔質層202bを設けることができる。   In addition, a porous layer 202b containing Zn can be provided on the surface of the Cr diffusion preventing layer 202a.

多孔質層202bを設けるにあたっては、集電基材201に塗布するZnの量を、集電基材201に含有されるMnの量よりも多くなるように調整して、集電基材201に塗布することにより、Zn−Mn系スピネルからなるCr拡散防止層202aの表面に、Znを含有する多孔質層202bを設けることができる。   In providing the porous layer 202b, the amount of Zn applied to the current collecting base material 201 is adjusted to be larger than the amount of Mn contained in the current collecting base material 201. By applying, the porous layer 202b containing Zn can be provided on the surface of the Cr diffusion preventing layer 202a made of Zn—Mn spinel.

したがって、例えば、Cr拡散防止層202aをスプレー法にて作製する場合は、そのスプレー量を増加する、またはスラリーに含有するZnの量を増加することにより、Cr拡散防止層202aを作製すると同時に多孔質層202bを形成することができる。   Therefore, for example, when the Cr diffusion prevention layer 202a is produced by a spray method, the Cr diffusion prevention layer 202a is produced at the same time as the production of the Cr diffusion prevention layer 202a by increasing the spray amount or increasing the amount of Zn contained in the slurry. A quality layer 202b can be formed.

なお、多孔質層202bの導電性をより高めるために、Cr拡散防止層202aを作製するためのスラリー中にFeやAlといった導電性を有する成分を含有させることもでき、多くの場合その方がより好ましい。   In order to further increase the conductivity of the porous layer 202b, it is possible to include a conductive component such as Fe or Al in the slurry for producing the Cr diffusion preventing layer 202a, and in many cases, this is the case. More preferred.

多孔質層202bの気孔率の調整は、スプレーより噴霧される液滴の大きさにより行う。すなわち、液滴が比較的大きくなるようスプレー圧力を調節して噴霧することが好ましい。この方法により、多孔質層202bの気孔率が調整される。   The porosity of the porous layer 202b is adjusted according to the size of droplets sprayed from the spray. That is, it is preferable to spray by adjusting the spray pressure so that the droplets are relatively large. By this method, the porosity of the porous layer 202b is adjusted.

なお、図4および図5に示したように、多孔質層202bを燃料電池セル1と接合されるCr拡散防止層の表面に設ける場合にあっては、例えば、Cr拡散防止層202aの燃料電池セル1と接合する部分以外に、板状の部材等を用いてマスキングする。その後、所定の時間スプレーにて噴霧することにより、燃料電池セル1と接合されるCr拡散防止層の表面にのみ、多孔質層202bを形成することができる。なお、この場合、マスキングに用いた板状の部材等に付着したスラリーを回収して、再使用することができる。この場合においては、スラリーの使用量を減量することができ、コスト低減を図ることができる。   As shown in FIGS. 4 and 5, when the porous layer 202b is provided on the surface of the Cr diffusion prevention layer joined to the fuel cell 1, for example, the fuel cell of the Cr diffusion prevention layer 202a. Masking is performed using a plate-like member or the like in addition to the portion joined to the cell 1. Thereafter, the porous layer 202b can be formed only on the surface of the Cr diffusion preventing layer bonded to the fuel cell 1 by spraying with a spray for a predetermined time. In this case, the slurry adhered to the plate-like member used for masking can be recovered and reused. In this case, the amount of slurry used can be reduced, and the cost can be reduced.

そして、上記のように塗布した後、例えば、温度100℃で1時間溶剤を乾燥し、温度800℃〜1100℃の温度で2時間、炉内で熱処理を行うことで、集電基材201の表面に、Zn−Mn系スピネルからなるCr拡散防止層202aを形成し、その表面に多孔質層202bが形成される。   And after apply | coating as mentioned above, for example, the solvent is dried at a temperature of 100 ° C. for 1 hour, and heat treatment is performed in a furnace at a temperature of 800 ° C. to 1100 ° C. for 2 hours. A Cr diffusion prevention layer 202a made of Zn—Mn spinel is formed on the surface, and a porous layer 202b is formed on the surface.

一方、Cr拡散防止層202aを、浸漬塗布法(ディッピング)にて作製する場合には、以下の方法により作製することができる。   On the other hand, when the Cr diffusion preventing layer 202a is produced by a dip coating method (dipping), it can be produced by the following method.

上記したCr拡散防止層202aをスプレー法にて作製した場合と同様の成分を含むスラリー中に集電基材201を浸漬し、それを引き上げた後、乾燥固化させ、集電基材表面にCr拡散防止層202aとなる塗膜を形成する。   The current collecting base material 201 is immersed in a slurry containing the same components as those in the case where the Cr diffusion preventing layer 202a is produced by the spray method, and after lifting it, it is dried and solidified, and Cr is applied to the surface of the current collecting base material. A coating film to be the diffusion preventing layer 202a is formed.

この場合において、多孔質層202bを形成するにあたっては、前記スラリーに、例えば球状のアクリル樹脂等の造孔剤を添加し、混合したスラリー中に、Cr、Mnを含有する集電基材201を浸漬し、それを引き上げた後、乾燥固化させる。   In this case, when forming the porous layer 202b, for example, a pore forming agent such as a spherical acrylic resin is added to the slurry, and the current collecting base material 201 containing Cr and Mn is mixed in the mixed slurry. After dipping and pulling it up, it is dried and solidified.

この後、例えば、温度800℃〜1100℃の温度で2時間、炉内で熱処理を行うことで、集電基材201の表面に、Zn−Mn系スピネルからなるCr拡散防止層202aおよびその表面に多孔質層202bが形成される。   Thereafter, for example, by performing heat treatment in a furnace at a temperature of 800 ° C. to 1100 ° C. for 2 hours, a Cr diffusion preventing layer 202a made of Zn—Mn spinel and its surface are formed on the surface of the current collecting base material 201. A porous layer 202b is formed.

これらの作製方法によれば、Crを含有する合金の表面に酸化物からなる緻密なCr拡散防止層202aが被覆され、Cr拡散防止層202aの表面に多孔質層202bが形成された燃料電池用集電部材20を作製することができる。   According to these production methods, a dense Cr diffusion preventing layer 202a made of an oxide is coated on the surface of an alloy containing Cr, and a porous layer 202b is formed on the surface of the Cr diffusion preventing layer 202a. The current collecting member 20 can be manufactured.

Mnを含有しない集電基材201を用いる場合は、Cr拡散防止層202aのスラリーとして、上述したスラリーにMnを含有するものを用いればよい。なお、その際、Zn−Mn系スピネルを効率よく作製するために、ZnとMnの量が同じモル数となるようにスラリーを作製することが好ましい。   When using the current collecting base material 201 that does not contain Mn, a slurry containing Mn in the above-described slurry may be used as the slurry of the Cr diffusion preventing layer 202a. At that time, in order to efficiently produce a Zn—Mn spinel, it is preferable to produce a slurry so that the amounts of Zn and Mn have the same number of moles.

この場合において、ZnとMnの量を同じモル数となるようにしてスラリーを作製していることから、多孔質層202bが形成されないこととなる。   In this case, since the slurry is prepared with the same amount of Zn and Mn as the number of moles, the porous layer 202b is not formed.

したがって、この場合において多孔質層202bを設けるには、例えば、集電基材201の表面にCr拡散防止層202aを形成し、そのCr拡散防止層202aの表面上に、Znを含むスラリーをスプレー法や浸漬塗布法により塗布し、熱処理することで、多孔質層202bを形成する。   Therefore, in order to provide the porous layer 202b in this case, for example, a Cr diffusion preventing layer 202a is formed on the surface of the current collecting base material 201, and a slurry containing Zn is sprayed on the surface of the Cr diffusion preventing layer 202a. The porous layer 202b is formed by applying and heat-treating using a method or a dip coating method.

図6は燃料電池セルの斜視図であり、図7は燃料電池セルを集電部材により電気的に接続してなるセルスタックを示す断面図である。本発明によるセルスタックは、図7に示すように、燃料電池用集電部材20が、図6に示す中空平板形の燃料電池セル1間に配置されて複数の燃料電池セル1を電気的に接続する構成を有する。   FIG. 6 is a perspective view of the fuel cell, and FIG. 7 is a cross-sectional view showing a cell stack in which the fuel cells are electrically connected by a current collecting member. In the cell stack according to the present invention, as shown in FIG. 7, a fuel cell current collecting member 20 is disposed between the hollow flat plate fuel cells 1 shown in FIG. It has a configuration to connect.

燃料電池セル1は、図6に示すように、平板状の支持基板10と、平板状の支持基板10の周囲に設けられた多孔質の燃料極層2、緻密な固体電解質層3、多孔質の酸素極層4、緻密なインターコネクタ5、及び酸素極材料層14とを備え、支持基板10は、さらに内部に、燃料電池セル1の積層方向に交わる方向(セル長さ方向)に伸びた複数の燃料ガス通路16を有するように構成される。   As shown in FIG. 6, the fuel battery cell 1 includes a flat support substrate 10, a porous fuel electrode layer 2 provided around the flat support substrate 10, a dense solid electrolyte layer 3, a porous The oxygen electrode layer 4, the dense interconnector 5, and the oxygen electrode material layer 14, and the support substrate 10 further extends in the direction intersecting with the stacking direction of the fuel cells 1 (cell length direction). A plurality of fuel gas passages 16 are provided.

支持基板10は、例えば、多孔質かつ導電性の材料からなり、図6に示すように横断面が平坦部と平坦部の両端の弧状部とからなっている。平坦部の対向する面の一方とその両端の弧状部を覆うように多孔質の燃料極層2が設けられており、この燃料極層2を覆うように、緻密質な固体電解質層3が積層されており、さらに、この固体電解質層3の上には、燃料極層2に対向するように、多孔質の導電性セラミックからなる酸素極層4が積層されている。また、支持基板10の電極層2、4が設けられた面に対向する面には、緻密なインターコネクタ5が形成されている。このインターコネクタ5の表面には、酸素極材料からなる酸素極材料層14が形成されている。ここで、酸素極材料は、例えばペロブスカイト構造のLaFeO系やLaMnO系等(例えば、La(Fe,Mn)O、(La,Sr)(Co,Fe)O等)の酸化物(導電性セラミックス)からなる。ただし、酸素極材料層14については、必ずしも形成する必要はない。図6に示すように、燃料極層2及び固体電解質層3は、インターコネクタ5の両サイドまで延び、支持基板10の表面が外部に露出しないように構成されている。 The support substrate 10 is made of, for example, a porous and conductive material, and has a flat section and arc-shaped portions at both ends of the flat portion as shown in FIG. A porous fuel electrode layer 2 is provided so as to cover one of the opposing surfaces of the flat portion and arc-shaped portions at both ends thereof, and a dense solid electrolyte layer 3 is laminated so as to cover the fuel electrode layer 2. Further, an oxygen electrode layer 4 made of a porous conductive ceramic is laminated on the solid electrolyte layer 3 so as to face the fuel electrode layer 2. A dense interconnector 5 is formed on the surface of the support substrate 10 that faces the surface on which the electrode layers 2 and 4 are provided. An oxygen electrode material layer 14 made of an oxygen electrode material is formed on the surface of the interconnector 5. Here, the oxygen electrode material is an oxide (for example, La (Fe, Mn) O 3 , (La, Sr) (Co, Fe) O 3, etc.) having a perovskite structure such as LaFeO 3 or LaMnO 3. Conductive ceramic). However, the oxygen electrode material layer 14 is not necessarily formed. As shown in FIG. 6, the fuel electrode layer 2 and the solid electrolyte layer 3 extend to both sides of the interconnector 5 and are configured so that the surface of the support substrate 10 is not exposed to the outside.

このような構造の燃料電池セル1は、燃料極層2の酸素極層4と対面している部分が燃料極として作動して発電する。即ち、酸素極層4の外側に空気等の酸素含有ガスを流し、且つ支持基板10内のガス通路16に燃料ガス(水素)を流し、所定の作動温度まで加熱することにより、酸素極層4で下記の式(1)の電極反応が生じ、また燃料極層2の燃料極となる部分では例えば下記の式(2)の電極反応が生じることによって発電する。   In the fuel cell 1 having such a structure, the portion of the fuel electrode layer 2 facing the oxygen electrode layer 4 operates as a fuel electrode to generate electric power. That is, an oxygen-containing gas such as air is allowed to flow outside the oxygen electrode layer 4 and a fuel gas (hydrogen) is supplied to the gas passage 16 in the support substrate 10 and heated to a predetermined operating temperature. Then, an electrode reaction of the following formula (1) occurs, and power is generated by, for example, an electrode reaction of the following formula (2) occurring in the portion that becomes the fuel electrode of the fuel electrode layer 2.

酸素極: 1/2O+2e → O (固体電解質) (1)
燃料極: O (固体電解質)+ H → HO+2e (2)
かかる電極反応によって発生した電流は、支持基板10に取り付けられているインターコネクタ5を介して集電される。
Oxygen electrode: 1 / 2O 2 + 2e → O 2 (solid electrolyte) (1)
Fuel electrode: O 2 (solid electrolyte) + H 2 → H 2 O + 2e (2)
The current generated by the electrode reaction is collected through the interconnector 5 attached to the support substrate 10.

このような複数の燃料電池セルの間には、図7に示すように、集電部材20が介装されて電気的に接続され、これによりセルスタックが構成されている。即ち、集電部材20が、一方の燃料電池セル1の酸素極層4に多孔質の導電性セラミック等の導電性接着材25により接合されると共に、隣設する他方の燃料電池セル1の酸素極材料層14に導電性接着材25により接合され、これにより、複数の燃料電池セル1が電気的に直列に接続され、セルスタックが構成されている。   As shown in FIG. 7, a current collecting member 20 is interposed and electrically connected between the plurality of fuel cells as described above, thereby constituting a cell stack. That is, the current collecting member 20 is joined to the oxygen electrode layer 4 of one fuel battery cell 1 by a conductive adhesive 25 such as a porous conductive ceramic, and the oxygen of the other fuel battery cell 1 adjacent thereto is joined. The electrode material layer 14 is joined by a conductive adhesive 25, whereby the plurality of fuel cells 1 are electrically connected in series to form a cell stack.

セルスタックの製造は、燃料電池セル1と集電部材20を交互に積層することによって行われる。   The cell stack is manufactured by alternately stacking the fuel cells 1 and the current collecting members 20.

初めに、導電性接着材25をスクリーン印刷法により燃料電池セル1の電極部(酸素極層4、酸素極材料層14)に塗布する。次に燃料電池セル1の電極部に燃料電池用集電部材20を載置し、さらにその上に次の燃料電池セル1を載置する。これを必要数繰り返して、燃料電池セル1と燃料電池用集電部材20の積層体を作製する。   First, the conductive adhesive 25 is applied to the electrode portions (the oxygen electrode layer 4 and the oxygen electrode material layer 14) of the fuel cell 1 by screen printing. Next, the fuel cell current collecting member 20 is placed on the electrode portion of the fuel cell 1, and the next fuel cell 1 is placed thereon. This is repeated as many times as necessary to produce a laminate of the fuel cell 1 and the fuel cell current collecting member 20.

次に、該積層体を900℃〜1100℃の温度に加熱して、導電性接着材25を燃料電池セル1の電極部と集電部材20に焼き付け、セルスタックを作製する。   Next, the laminated body is heated to a temperature of 900 ° C. to 1100 ° C., and the conductive adhesive 25 is baked on the electrode part of the fuel cell 1 and the current collecting member 20 to produce a cell stack.

なお、導電性接着材25としては、通常、酸素極材料、又は酸素極材料とCr拡散防止層202aの材料を含有する材料が用いられる。尚、酸素極材料層14を形成しない場合にはインターコネクタに接合される。   As the conductive adhesive 25, an oxygen electrode material or a material containing the oxygen electrode material and the Cr diffusion preventing layer 202a is usually used. When the oxygen electrode material layer 14 is not formed, it is joined to the interconnector.

燃料電池用集電部材20表面のCr拡散防止層202cの表面には、多孔質層202bが形成されていることから、酸素極材料を含有する導電性接着材25が多孔質層202bの表面に接合され、また酸素極層4の凹凸に入り込んで接合される。したがって、導電性接着材25と多孔質層202b、酸素極層4が、アンカー効果により強固に接合されるため、集電部材20と燃料電池セル1とを強固に接合でき、集電部材20と燃料電池セル1との剥離をより有効に防止することができる。   Since the porous layer 202b is formed on the surface of the Cr diffusion preventing layer 202c on the surface of the current collecting member 20 for the fuel cell, the conductive adhesive 25 containing the oxygen electrode material is formed on the surface of the porous layer 202b. The oxygen electrode layer 4 is joined to the projections and depressions. Therefore, since the conductive adhesive 25, the porous layer 202b, and the oxygen electrode layer 4 are firmly bonded by the anchor effect, the current collecting member 20 and the fuel cell 1 can be strongly bonded. Separation from the fuel cell 1 can be more effectively prevented.

ここで図6において、燃料電池セル1は中空平板型の燃料電池セル1を示したが、例えば円筒形等の燃料電池セルを用いることもできる。ただし、本発明においては、燃料電池セル1と燃料電池用集電部材20との剥離を防止するため、両者を面と面とで接合することが好ましい。なお、面と面とで接合するとは、燃料電池セル1と燃料電池用集電部材20との対向する面同士が、導電性接着材等により接合される状態を意味する。これにより、燃料電池セル1と燃料電池用集電部材20とが、十分な接合面積にて接合されることとなる。   Here, in FIG. 6, the fuel cell 1 is a hollow plate type fuel cell 1, but a cylindrical fuel cell can also be used, for example. However, in the present invention, in order to prevent the fuel cell 1 and the fuel cell current collecting member 20 from being peeled off, it is preferable to join both of them face to face. In addition, joining with a surface means the state by which the surfaces where the fuel cell 1 and the current collecting member 20 for fuel cells oppose are joined by a conductive adhesive or the like. Thereby, the fuel cell 1 and the fuel cell current collecting member 20 are joined with a sufficient joining area.

したがって、燃料電池セル1としては、中空平板型の燃料電池セルを用いることが好ましい。これにより、燃料電池セル1と板状の燃料電池用集電部材20とを強固に接合することができ、これら両者の剥離を有効に防止することができる。   Therefore, it is preferable to use a hollow plate type fuel cell as the fuel cell 1. Thereby, the fuel cell 1 and the plate-shaped fuel cell current collecting member 20 can be firmly bonded, and separation of both of them can be effectively prevented.

ここで、各部材の熱膨張率について説明すると、750℃において、燃料電池セルの酸素極材料として一般に用いられるLaFeO系の熱膨張率は15〜17×10−6/℃、LaMnO系は10〜11×10−6/℃であり、インターコネクタとして用いられるLaCrO系は14×10−6/℃程度であり、集電部材20については、集電基材201は11×10−6/℃程度、Zn−Mn系スピネルからなるCr拡散防止層202a、Cr拡散防止層202aの表層に形成されるZnO中にFe又はAlを含有する多孔質層202bは6〜8×10−6/℃である。 Here, the thermal expansion coefficient of each member will be described. At 750 ° C., the thermal expansion coefficient of the LaFeO 3 system generally used as the oxygen electrode material of the fuel cell is 15 to 17 × 10 −6 / ° C., and the LaMnO 3 system is 10 to 11 × 10 −6 / ° C., LaCrO 3 system used as an interconnector is about 14 × 10 −6 / ° C., and for the current collecting member 20, the current collecting substrate 201 is 11 × 10 −6. The porous layer 202b containing Fe or Al in ZnO formed on the surface layer of the Cr diffusion preventing layer 202a and the Cr diffusion preventing layer 202a made of Zn / Mn spinel is about 6-8 × 10 −6 / ° C.

従って、燃料電池セル1と集電部材20を接合した場合には、その界面に熱膨張差に基づき多少の応力が発生するが、多孔質層202bが、応力を緩和することから、集電部材20と燃料電池セルの接合を強固にすることができ、これらの剥離を防止することができる。   Accordingly, when the fuel cell 1 and the current collecting member 20 are joined, some stress is generated at the interface based on the difference in thermal expansion. However, the porous layer 202b relieves the stress, so that the current collecting member The bonding between the fuel cell 20 and the fuel battery cell can be strengthened, and peeling of these can be prevented.

また、燃料電池セルが集電部材20を介して接合されてなるセルスタックは、図示しないが燃料ガスが供給されるマニホールドに立設され、マニホールド内に供給された燃料ガスが燃料電池セル1のガス通路16内を通過していくことになる。   In addition, a cell stack in which fuel cells are joined via a current collecting member 20 is erected on a manifold to which fuel gas is supplied (not shown), and the fuel gas supplied in the manifold is the fuel cell 1. It passes through the gas passage 16.

燃料電池は、上記のセルスタックを収納容器に収容し、この収納容器に、都市ガス等の燃料ガスを供給する燃料ガス導入管及び空気を供給するための空気導入管を配設することにより構成される。   A fuel cell is configured by housing the cell stack in a storage container, and disposing a fuel gas introduction pipe for supplying a fuel gas such as city gas and an air introduction pipe for supplying air to the storage container. Is done.

初めに、平均粒径1.0μmのZnO粉末に平均粒径1.5μmのFe粉末をFe換算で2mol%、溶剤、結合バインダー、及び分散剤を、ボールミルで約24時間混練して、スラリーを作製した。 First, 2 mol% of Fe 2 O 3 powder with an average particle diameter of 1.5 μm was mixed with ZnO powder with an average particle diameter of 1.0 μm in terms of Fe, a solvent, a binder, and a dispersant by a ball mill for about 24 hours. A slurry was prepared.

このようにして作製したスラリーを、スプレーノズルに供給し、ZnO等の粉末が凝集した5〜50μm程度の微細な液滴となるようスプレー圧力を調整し、Mnを含有する集電基材の表面に噴霧した。この際、Cr拡散防止層を形成すべく0.5MPaの圧力でスプレーした後、多孔質層を形成すべく0.1MPaの圧力でスプレーした。また、集電基材およびノズルを適度に搖動させ、所定の時間スプレーし、集電基材の表面に均一に塗膜を形成した。   The slurry thus prepared is supplied to a spray nozzle, and the spray pressure is adjusted to form fine droplets of about 5 to 50 μm in which powders such as ZnO are aggregated, and the surface of the current collecting base material containing Mn Sprayed on. At this time, spraying was performed at a pressure of 0.5 MPa to form a Cr diffusion preventing layer, and then spraying was performed at a pressure of 0.1 MPa to form a porous layer. Further, the current collecting base material and the nozzle were appropriately shaken and sprayed for a predetermined time to form a uniform coating film on the surface of the current collecting base material.

スラリーを塗布した後、100℃で1時間乾燥し、続いて温度1000℃で2時間、炉内で焼付を行い、Cr拡散防止層202aおよび多孔質層202bを形成した。集電部材の断面SEM(走査型電子顕微鏡)写真を図8に示す。なお、右下に示すバーは10μmを示しており、該写真は(a)、(b)ともに倍率を1000倍として撮影したものである。   After applying the slurry, the slurry was dried at 100 ° C. for 1 hour, and then baked in a furnace at a temperature of 1000 ° C. for 2 hours to form a Cr diffusion preventing layer 202a and a porous layer 202b. A cross-sectional SEM (scanning electron microscope) photograph of the current collecting member is shown in FIG. The bar shown at the lower right indicates 10 μm, and both the photographs (a) and (b) were taken at a magnification of 1000 times.

(a)は、上記方法にて作製した集電部材の断面写真であり、集電基材201の表面に、酸化物からなる緻密なCr拡散防止層202aが被覆されており、その表面に多孔質層202bが形成されている。多孔質層202bの気孔率を、図9に示すように、断面のSEM(走査型電子顕微鏡)写真を画像解析して算出したところ5%であった。   (A) is a cross-sectional photograph of the current collecting member produced by the above method, and the surface of the current collecting base material 201 is covered with a dense Cr diffusion preventing layer 202a made of oxide, and the surface is porous. A quality layer 202b is formed. As shown in FIG. 9, the porosity of the porous layer 202b was calculated by image analysis of a cross-sectional SEM (scanning electron microscope) photograph and found to be 5%.

図8(b)は、上記方法にて作製した集電部材の表面に、(La,Sr)(Co,Fe)Oからなる導電性接着材25を印刷し、温度1000℃で2時間、炉内で焼付を行った断面写真である。この断面写真より、導電性接着材25と多孔質層202bが、アンカー効果により強固に接合できることが明らかである。 FIG. 8B shows a case where a conductive adhesive 25 made of (La, Sr) (Co, Fe) O 3 is printed on the surface of the current collecting member produced by the above method, and the temperature is 1000 ° C. for 2 hours. It is the cross-sectional photograph which baked in the furnace. From this cross-sectional photograph, it is clear that the conductive adhesive 25 and the porous layer 202b can be firmly joined by the anchor effect.

多孔質層202bはポーラスとなっていることから、集電部材25と導電性セラミックからなる導電性接着材((La,Sr)(Co,Fe)O)との熱膨張差に起因する応力を緩和でき、集電部材と燃料電池セルとの接合信頼性を向上できることが明らかである。 Since the porous layer 202b is porous, the stress caused by the difference in thermal expansion between the current collecting member 25 and the conductive adhesive ((La, Sr) (Co, Fe) O 3 ) made of conductive ceramic. It is clear that the joint reliability between the current collecting member and the fuel cell can be improved.

また、断面を切り出し導電性接着材のEPMAによる半定量分析を行った。EPMA分析には、日本電子製のJXA−8100を用いた。測定条件として、加速電圧15kV、プローブ電流2.0×10−7A、分析エリア50μm×50μm、分光結晶にLIFを用いた。その結果、Cr拡散防止層の外側の導電性接着材ではCrの拡散量が検出限界の0.5質量%以下であった。従って、Cr拡散防止層202aが、集電基材201を被覆しており、Cr拡散を有効に防止していることが明らかとなった。 Moreover, the cross section was cut out and the semi-quantitative analysis by EPMA of the conductive adhesive was performed. For the EPMA analysis, JXA-8100 manufactured by JEOL Ltd. was used. As measurement conditions, an acceleration voltage of 15 kV, a probe current of 2.0 × 10 −7 A, an analysis area of 50 μm × 50 μm, and LIF were used for the spectroscopic crystal. As a result, in the conductive adhesive material outside the Cr diffusion prevention layer, the Cr diffusion amount was 0.5% by mass or less of the detection limit. Therefore, it has been clarified that the Cr diffusion preventing layer 202a covers the current collecting base material 201 and effectively prevents Cr diffusion.

初めに、平均粒径1.0μmのZnO粉末に平均粒径1.5μmのFe粉末をFe換算で2mol%、溶剤、結合バインダー、及び分散剤、並びに原料粉末100質量部に対して10質量部のアクリル樹脂からなる球状の造孔材を添加し、これを、ボールミルで約24時間混練して、浸漬(ディップ)用のスラリーを作製した。 First, 2 mol% of Fe 2 O 3 powder with an average particle diameter of 1.5 μm in ZnO powder with an average particle diameter of 1.0 μm in terms of Fe, solvent, binder, dispersant, and 100 parts by mass of the raw material powder A spherical pore former made of 10 parts by mass of an acrylic resin was added, and this was kneaded with a ball mill for about 24 hours to prepare a slurry for dipping.

このようにして作製した浸漬用のスラリー中に、Mnを含有する集電基材を浸漬し、乾燥させ、続いて温度1000℃で2時間、炉内で焼付を行い、Cr拡散防止層202aおよび多孔質層202bを形成した。この後、(La,Sr)(Co,Fe)Oからなる導電性接着材25を印刷し、温度1000℃で2時間、炉内で焼付を行った。その断面写真及び画像解析したものを図10に示す。尚、(a)は集電基材をスラリー中へ乾燥を挟んで2回浸漬し、多孔質層の焼付後の厚みを約20μmとしたもので、(b)は集電基材をスラリー中へ1回浸漬し、多孔質層の焼付後の厚みを約15μmとしたものである。これらの多孔質層の気孔率を上記と同様に算出したところ、(a)が34%、(b)が31%であった。 The current collecting base material containing Mn is immersed in the slurry for immersion thus prepared, dried, and subsequently baked in a furnace at a temperature of 1000 ° C. for 2 hours, and the Cr diffusion preventing layer 202a and A porous layer 202b was formed. Thereafter, a conductive adhesive 25 made of (La, Sr) (Co, Fe) O 3 was printed and baked in a furnace at a temperature of 1000 ° C. for 2 hours. The cross-sectional photograph and image analysis are shown in FIG. In addition, (a) is the current collector base material immersed in the slurry twice with the drying sandwiched, and the thickness after baking of the porous layer is about 20 μm. (B) is the current collector base material in the slurry. The thickness after baking of the porous layer is about 15 μm. When the porosity of these porous layers was calculated in the same manner as above, (a) was 34% and (b) was 31%.

また、比較例として、Cr拡散防止層202aに多孔質層を形成せず、直接、導電性接着材を形成して作製したところ、導電性接着材と中間層との間に一部剥離が生じていた。その断面のSEM写真を図11に示す。この比較例の集電部材を用いて燃料電池セルに導電性接着材で接合し、750℃で燃料電池セルの発電試験を行ったところ、上記実施例1、2のように多孔質層を有する集電部材を用いて導電性接着材で燃料電池セルに接合した場合と比較して、出力電圧が約10%低いものであった。   In addition, as a comparative example, when a porous adhesive layer was not formed on the Cr diffusion preventing layer 202a, and a conductive adhesive was directly formed, partial peeling occurred between the conductive adhesive and the intermediate layer. It was. An SEM photograph of the cross section is shown in FIG. When the fuel cell was joined to the fuel cell using the current collecting member of this comparative example with a conductive adhesive and a power generation test of the fuel cell was performed at 750 ° C., it had a porous layer as in Examples 1 and 2 above. The output voltage was about 10% lower than when the current collecting member was used to join the fuel cell with a conductive adhesive.

本発明の燃料電池用集電部材の一例を示す斜視図である。It is a perspective view which shows an example of the current collection member for fuel cells of this invention. 図1に示すA−A線に沿った燃料電池用集電部材の断面図である。It is sectional drawing of the current collection member for fuel cells along the AA line shown in FIG. 図1に示すB−B線に沿った燃料電池用集電部材の断面図である。It is sectional drawing of the current collection member for fuel cells along the BB line shown in FIG. 本発明の燃料電池用集電部材の他の形態を示すものであり、図1に示すA−A線に沿った断面図である。The other form of the current collection member for fuel cells of this invention is shown, and it is sectional drawing along the AA shown in FIG. 図4の断面図である。FIG. 5 is a cross-sectional view of FIG. 4. 燃料電池セルの断面斜視図である。It is a cross-sectional perspective view of a fuel battery cell. 本発明の燃料電池セルスタックの縦断面図である。It is a longitudinal cross-sectional view of the fuel cell stack of the present invention. (a)は、集電基材の表面にCr拡散防止層および多孔質層を設けた燃料電池用集電部材の断面SEM写真であり、(b)は(a)の多孔質層の上面に導電性接着材を接着した断面SEM写真である。(A) is a cross-sectional SEM photograph of a current collecting member for a fuel cell in which a Cr diffusion preventing layer and a porous layer are provided on the surface of the current collecting substrate, and (b) is an upper surface of the porous layer of (a). It is a cross-sectional SEM photograph which adhered the conductive adhesive. スプレー法によりCr拡散防止層および多孔質層を形成し、多孔質層の上面に導電性接着材を形成した断面のSEM写真、及び画像解析した状態を示す図である。It is a figure which shows the state which performed the SEM photograph of the cross section which formed Cr diffusion prevention layer and the porous layer by the spray method, and formed the electroconductive adhesive material on the upper surface of the porous layer, and the image analysis. ディップ法によりCr拡散防止層および多孔質層を形成し、多孔質層の上面に導電性接着材を形成した断面のSEM写真、及び画像解析した状態を示す図である。It is a figure which shows the SEM photograph of the cross section which formed the Cr diffusion prevention layer and the porous layer by the dip method, and formed the electroconductive adhesive on the upper surface of the porous layer, and the state which image-analyzed. Cr拡散防止層の上に直接導電性接着材を形成した断面SEM写真である。It is a cross-sectional SEM photograph which formed the conductive adhesive directly on the Cr diffusion prevention layer.

符号の説明Explanation of symbols

1 燃料電池セル
20 集電部材
25 導電性接着材
201 集電基材
202a Cr拡散防止層
202b 多孔質層
202c 中間層
DESCRIPTION OF SYMBOLS 1 Fuel cell 20 Current collecting member 25 Conductive adhesive material 201 Current collecting base material 202a Cr diffusion preventing layer 202b Porous layer 202c Intermediate layer

Claims (12)

Crを含有する合金の表面を酸化物からなる緻密なCr拡散防止層で被覆し、該Cr拡散防止層の表面に、酸化物からなる多孔質層を設けてなることを特徴とする耐熱性合金部材。 A heat-resistant alloy characterized in that the surface of an alloy containing Cr is covered with a dense Cr diffusion preventing layer made of an oxide, and a porous layer made of an oxide is provided on the surface of the Cr diffusion preventing layer. Element. 前記多孔質層は前記Cr拡散防止層と同一成分を含有することを特徴とする請求項1記載の耐熱性合金部材。 The heat resistant alloy member according to claim 1, wherein the porous layer contains the same component as the Cr diffusion preventing layer. 前記Cr拡散防止層はZnを含有する酸化物からなることを特徴とする請求項1又は2記載の耐熱性合金部材。 The heat resistant alloy member according to claim 1, wherein the Cr diffusion preventing layer is made of an oxide containing Zn. 前記多孔質層はZnを含有する酸化物からなることを特徴とする請求項1乃至3のうちいずれかに記載の耐熱性合金部材。 The heat-resistant alloy member according to any one of claims 1 to 3, wherein the porous layer is made of an oxide containing Zn. 前記多孔質層は導電性であることを特徴とする請求項1乃至4のうちいずれかに記載の耐熱性合金部材。 The heat-resistant alloy member according to any one of claims 1 to 4, wherein the porous layer is conductive. 請求項5記載の耐熱性合金部材が燃料電池の集電部材として用いられることを特徴とする燃料電池用集電部材。 6. A current collecting member for a fuel cell, wherein the heat resistant alloy member according to claim 5 is used as a current collecting member for a fuel cell. 複数の燃料電池セルの間に請求項6記載の燃料電池用集電部材をそれぞれ介装して、前記複数の燃料電池セルを電気的に接続してなることを特徴とする燃料電池セルスタック。 7. A fuel cell stack comprising a plurality of fuel cell current collectors interposed between the plurality of fuel cells and electrically connecting the plurality of fuel cells. 前記燃料電池セルと前記燃料電池用集電部材とが導電性接着材により接合されていることを特徴とする請求項7記載の燃料電池セルスタック。 The fuel cell stack according to claim 7, wherein the fuel cell and the current collecting member for the fuel cell are joined by a conductive adhesive. 前記燃料電池用集電部材の前記多孔質層は、前記燃料電池セルと接合される部分の前記Cr拡散防止層の表面にのみ設けられていることを特徴とする請求項8に記載の燃料電池セルスタック。 9. The fuel cell according to claim 8, wherein the porous layer of the current collecting member for the fuel cell is provided only on a surface of the Cr diffusion preventing layer in a portion joined to the fuel cell. Cell stack. 前記多孔質層と前記導電性接着材との間に、前記多孔質層を構成する成分と前記導電性接着材を構成する成分とが混合された中間層が設けられていることを特徴とする請求項8又は9記載の燃料電池セルスタック。 An intermediate layer in which a component constituting the porous layer and a component constituting the conductive adhesive are mixed is provided between the porous layer and the conductive adhesive. The fuel cell stack according to claim 8 or 9. 前記中間層は、Znを含有する酸化物と、La及びFe、又はLa及びMnを含有するペロブスカイト型複合酸化物とを含有することを特徴とする請求項10記載の燃料電池セルスタック。 The fuel cell stack according to claim 10, wherein the intermediate layer contains an oxide containing Zn and a perovskite complex oxide containing La and Fe, or La and Mn. 請求項7乃至11のうちいずれかに記載の燃料電池セルスタックを収納容器に収納してなることを特徴とする燃料電池。 A fuel cell comprising the fuel cell stack according to any one of claims 7 to 11 stored in a storage container.
JP2006264095A 2006-09-28 2006-09-28 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell Active JP5072305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264095A JP5072305B2 (en) 2006-09-28 2006-09-28 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264095A JP5072305B2 (en) 2006-09-28 2006-09-28 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell

Publications (2)

Publication Number Publication Date
JP2008081804A true JP2008081804A (en) 2008-04-10
JP5072305B2 JP5072305B2 (en) 2012-11-14

Family

ID=39352953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264095A Active JP5072305B2 (en) 2006-09-28 2006-09-28 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell

Country Status (1)

Country Link
JP (1) JP5072305B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087298A1 (en) * 2009-01-28 2010-08-05 京セラ株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
JP2012180550A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Method for repairing thermal barrier coating
JP2013069666A (en) * 2011-09-08 2013-04-18 Ngk Insulators Ltd Solid oxide type fuel cell
KR20140044772A (en) * 2011-02-15 2014-04-15 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Layer structure and use thereof to form a ceramic layer structure between an interconnect and a cathode of a high-temperature fuel cell
JP2014191928A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Manufacturing method of inter-cell connection member, inter-cell connection member, and cell for solid oxide type fuel battery
JP2015183252A (en) * 2014-03-25 2015-10-22 京セラ株式会社 Cell stack and electrolytic module, and electrolytic apparatus
WO2016072485A1 (en) * 2014-11-06 2016-05-12 京セラ株式会社 Conductive member, cell stack device, module, module housing device, and method for manufacturing conductive member
JP2017117743A (en) * 2015-12-25 2017-06-29 日本特殊陶業株式会社 Solid oxide fuel cell stack
JP2018170117A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Cell stack device, module and module housing device
JP2019215989A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Alloy member, cell stack, and cell stack device
JP2019215988A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Alloy member, cell stack, and cell stack device
JP2019215987A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Alloy member, cell stack, and cell stack device
WO2020050254A1 (en) * 2018-09-07 2020-03-12 日本碍子株式会社 Alloy member
JP2020064802A (en) * 2018-10-18 2020-04-23 日本碍子株式会社 Alloy member
JP7390648B2 (en) 2019-12-18 2023-12-04 日本特殊陶業株式会社 Interconnector member and method for manufacturing interconnector member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121060A (en) * 1991-07-02 1993-05-18 Tonen Corp Separator material for high temperature type fuel cell
JPH06223846A (en) * 1993-01-28 1994-08-12 Mitsui Eng & Shipbuild Co Ltd Joint method for solid electrolyte type fuel cell stack
JPH08185870A (en) * 1994-12-27 1996-07-16 Tonen Corp Separator for solid electrolyte fuel cell
JPH09129247A (en) * 1995-10-30 1997-05-16 Tonen Corp Separator for solid electrolyte fuel cell
JP2006092837A (en) * 2004-09-22 2006-04-06 Kyocera Corp Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP2006100007A (en) * 2004-09-28 2006-04-13 Kyocera Corp Fuel cell cell, fuel cell cell stack, and fuel cell
US20060099442A1 (en) * 2003-02-18 2006-05-11 Frank Tietz Protective coating for substrates that are subjected to high temperatures and method for producing said coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121060A (en) * 1991-07-02 1993-05-18 Tonen Corp Separator material for high temperature type fuel cell
JPH06223846A (en) * 1993-01-28 1994-08-12 Mitsui Eng & Shipbuild Co Ltd Joint method for solid electrolyte type fuel cell stack
JPH08185870A (en) * 1994-12-27 1996-07-16 Tonen Corp Separator for solid electrolyte fuel cell
JPH09129247A (en) * 1995-10-30 1997-05-16 Tonen Corp Separator for solid electrolyte fuel cell
US20060099442A1 (en) * 2003-02-18 2006-05-11 Frank Tietz Protective coating for substrates that are subjected to high temperatures and method for producing said coating
JP2006092837A (en) * 2004-09-22 2006-04-06 Kyocera Corp Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP2006100007A (en) * 2004-09-28 2006-04-13 Kyocera Corp Fuel cell cell, fuel cell cell stack, and fuel cell

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087298A1 (en) * 2009-01-28 2010-08-05 京セラ株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
CN102292859A (en) * 2009-01-28 2011-12-21 京瓷株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
JP5377519B2 (en) * 2009-01-28 2013-12-25 京セラ株式会社 Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module and fuel cell device
US8993189B2 (en) 2009-01-28 2015-03-31 Kyocera Corporation Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
KR20140044772A (en) * 2011-02-15 2014-04-15 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Layer structure and use thereof to form a ceramic layer structure between an interconnect and a cathode of a high-temperature fuel cell
JP2014509440A (en) * 2011-02-15 2014-04-17 プランゼー エスエー Layer structure forming ceramic layer structure between interconnector and cathode of high temperature fuel cell and use thereof
US9337497B2 (en) 2011-02-15 2016-05-10 Plansee Se Layer structure and use thereof to form a ceramic layer structure between an interconnect and a cathode of a high-temperature fuel cell
KR101951858B1 (en) 2011-02-15 2019-02-25 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Layer structure and use thereof to form a ceramic layer structure between an interconnect and a cathode of a high-temperature fuel cell
JP2012180550A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Method for repairing thermal barrier coating
JP2013069666A (en) * 2011-09-08 2013-04-18 Ngk Insulators Ltd Solid oxide type fuel cell
JP2014191928A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Manufacturing method of inter-cell connection member, inter-cell connection member, and cell for solid oxide type fuel battery
JP2015183252A (en) * 2014-03-25 2015-10-22 京セラ株式会社 Cell stack and electrolytic module, and electrolytic apparatus
CN106663822A (en) * 2014-11-06 2017-05-10 京瓷株式会社 Conductive member, cell stack device, module, module housing device, and method for manufacturing conductive member
JPWO2016072485A1 (en) * 2014-11-06 2017-07-20 京セラ株式会社 Conductive member, cell stack device, module, module storage device, and conductive member manufacturing method
WO2016072485A1 (en) * 2014-11-06 2016-05-12 京セラ株式会社 Conductive member, cell stack device, module, module housing device, and method for manufacturing conductive member
US10236515B2 (en) 2014-11-06 2019-03-19 Kyocera Corporation Electrically conductive member, cell stack device, module, module housing device, and method for manufacturing electrically conductive member
JP2017117743A (en) * 2015-12-25 2017-06-29 日本特殊陶業株式会社 Solid oxide fuel cell stack
JP2018170117A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Cell stack device, module and module housing device
JP2019215989A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Alloy member, cell stack, and cell stack device
JP2019215988A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Alloy member, cell stack, and cell stack device
JP2019215987A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Alloy member, cell stack, and cell stack device
WO2020050254A1 (en) * 2018-09-07 2020-03-12 日本碍子株式会社 Alloy member
US11081705B2 (en) 2018-09-07 2021-08-03 Ngk Insulators, Ltd. Alloy member
JP2020064802A (en) * 2018-10-18 2020-04-23 日本碍子株式会社 Alloy member
JP7390648B2 (en) 2019-12-18 2023-12-04 日本特殊陶業株式会社 Interconnector member and method for manufacturing interconnector member

Also Published As

Publication number Publication date
JP5072305B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5072305B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
JP5110816B2 (en) Current collecting member for fuel cell, fuel cell stack, and fuel cell
JP4368850B2 (en) Method for producing solid oxide fuel cell module
JP5175527B2 (en) Cell stack and fuel cell
US7338729B2 (en) Fuel cell collector structure and solid oxide fuel cell stack using the same
TW201011967A (en) Metal-supported, segmented-in-series high temperature electrochemical device
JP2011105582A (en) Bonding agent
JP5080749B2 (en) Current collecting member for fuel cell, cell stack, and fuel cell
JP5013750B2 (en) Cell stack and fuel cell
JP2008084716A (en) Fuel battery cell, fuel battery cell stack, and fuel cell
JP2015122224A (en) Solid oxide type fuel battery
JP4851692B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP2011108621A (en) Bonding agent
JP5294649B2 (en) Cell stack and fuel cell module
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP5943821B2 (en) Method for producing inter-cell connecting member and method for producing solid oxide fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JP4805642B2 (en) Fuel cell, fuel cell stack and fuel cell
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP5311931B2 (en) Fuel cell stack and fuel cell module using the same
JP6742104B2 (en) Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3