JP3915500B2 - THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME - Google Patents

THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME Download PDF

Info

Publication number
JP3915500B2
JP3915500B2 JP2001376886A JP2001376886A JP3915500B2 JP 3915500 B2 JP3915500 B2 JP 3915500B2 JP 2001376886 A JP2001376886 A JP 2001376886A JP 2001376886 A JP2001376886 A JP 2001376886A JP 3915500 B2 JP3915500 B2 JP 3915500B2
Authority
JP
Japan
Prior art keywords
film
thin film
precursor
thin
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001376886A
Other languages
Japanese (ja)
Other versions
JP2003178769A (en
Inventor
勝則 山田
一郎 許斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001376886A priority Critical patent/JP3915500B2/en
Publication of JP2003178769A publication Critical patent/JP2003178769A/en
Application granted granted Critical
Publication of JP3915500B2 publication Critical patent/JP3915500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜積層体およびその製造方法に関し、詳しくは、ガスセンサ、温度センサ、圧力センサ、固体酸化物型燃料電池の電解質−電極接合体等に用いられる薄膜積層体およびその製造方法に関する。
【0002】
【従来の技術】
近年、高温下で特定のイオンのみが伝導する固体電解質の研究・開発が進められており、なかでも、酸素イオン導電体は、ガスセンサ、温度センサ、圧力センサや固体酸化物型燃料電池(SOFC)等に広く使用されている。例えば、固体酸化物型燃料電池では、通常、酸素イオン導電体である固体電解質の両側に電子導電性を有する一対の電極を設けたセルを発電単位とし、一方の電極(空気極)に酸素ガスあるいは空気を供給し、他方の電極(燃料極)に水素やメタンガス等を供給して、約1000℃の高温下で電気化学的な反応を進行させる。ここで、セルを構成する電解質−電極接合体は、例えば、固体電解質の表面にスクリーン印刷法、ドクターブレード法等により電極を薄膜状に成膜し、1300〜1400℃の高温で焼成することにより製造される。
【0003】
このように、電解質−電極接合体は、その製造時、また長時間の電池作動時において高温にさらされる。そして、電解質−電極接合体は、電解質と電極という異なる材料を積層してなるものであるため、高温下における両者の反応が問題となる。つまり、高温下では、互いに接する材料間で元素拡散や化学反応が生じ易く、その結果、各材料が変質して機械的強度が低下したり、イオン導電性や電子導電性といった両材料の特性が損なわれ、材料の導電特性や界面での電極反応に影響を与えるのである。図1に、電解質と電極との接合状態をモデルで示す。図1に示すように、高温下では、イオン導電性膜である電解質1と電子導電性膜である電極2との間で、各々を構成する元素の拡散が生じ、それらが反応することによって反応生成物が生成する。通常、電解質はその膜厚が極めて薄いため、膜全体に反応が広がり、電解質が本来有するイオン導電性が損なわれてしまう。例えば、酸素イオン導電性の高い電解質に電子導電性が発現すると、酸素イオンと逆方向の短絡電流が電解質内に流れ、電解質の両端に生じる起電力が低下してしまう。
【0004】
互いに接する電解質と電極との高温下における反応を抑制するため、例えば、製造時における焼成を1100℃以下の低温で行う試みがなされている。また、電極材料であるLa1-xSrxMnO3等の酸化物の酸素不定比性が上記反応に影響することに着目し、材料組成や温度、酸素圧等を調整して反応を抑制する試みもなされている。
【0005】
【発明が解決しようとする課題】
しかしながら、接合する両材料間の反応を抑制するために焼成を低温で行った場合には、焼結が充分に進行せず緻密な電解質を得ることが困難となる。また、電極材料の反応性を低下させるため、用いる元素の種類や組成における元素の置換割合を変更すると、電極に接する電解質との熱膨張率の差が問題となる。熱膨張率が異なると、加熱あるいは冷却時において両材料の界面に熱応力が発生し、材料の剥離や亀裂等を生じる恐れがある。つまり、熱膨張率を考慮した場合には、使用できる材料は実質上制限されることになる。
【0006】
本発明は、上記実状に鑑みてなされたものであり、イオン導電性膜と電子導電性膜とを積層してなる薄膜積層体であって、両膜の反応を抑制し、イオン導電性と電子導電性という各々の膜の特性を発揮できる薄膜積層体を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明の薄膜積層体は、イオン導電性膜と電子導電性膜とからなる2つの薄膜と、該2つの薄膜の間に介在し、該2つの薄膜の一方の前駆体である第1薄膜前駆体と、該2つの薄膜の他方を構成する元素の少なくとも1種を含む中間膜前駆体とが重ね合わせられ、焼成することにより生成した中間膜と、を含む薄膜積層体であって、前記中間膜は、前記第1薄膜前駆体と前記中間膜前駆体とが反応することにより生成した、前記イオン導電性膜を構成する元素のいずれか1種以上と、前記電子導電性膜を構成する元素のいずれか1種以上とを含む反応生成物を含むことを特徴とする。
【0008】
図2に、本発明の薄膜積層体の一例をモデルで示す。図2に示すように、本発明の薄膜積層体3は、イオン導電性膜4と電子導電性膜5との間に中間膜6が介在する3層構造となっている。上述したように、イオン導電性膜と電子導電性膜との積層体を製造する場合等において、両者を互いに重ね合わせ高温で焼成すると、両材料間でイオンの拡散や化学反応が生じ、各材料の性質が変化することになる。本発明の薄膜積層体は、例えば、中間膜の表面にイオン導電性膜を高温で焼成して薄膜積層体を製造する場合であっても、中間膜は後述するように化学的に安定であるため、イオン導電性膜と中間膜およびイオン導電性膜と電子導電性膜の反応は各々抑制される。また、長時間の電池作動時においても、中間膜が介在しているため、イオン導電性膜と電子導電性膜との反応は抑制される。
【0009】
イオン導電性膜と電子導電性膜との間に介在する中間膜は、イオン導電性膜を構成する元素のいずれか1種以上と、電子導電性膜を構成する元素のいずれか1種以上とを含むものである。イオン導電性膜と電子導電性膜との反応は、各々の膜を構成する元素のいずれか1種以上が反応することにより生じるものである。中間膜は、各々の膜を構成する元素のいずれか1種以上を含む、つまり、イオン導電性膜と電子導電性膜とが反応した場合に生成すると考えられる反応生成物を含むものであるため、化学的に安定化した膜である。すなわち、中間膜は、イオン導電性膜と電子導電性膜との反応をブロックする膜となる。したがって、本発明の薄膜積層体は、中間膜が介在することにより、高温下においてもイオン導電性膜および電子導電性膜の各々の特性が損なわれることのない薄膜積層体となる。
【0010】
また、例えば、電子導電性膜の材料となるランタン−マンガン系酸化物は、イオン導電性膜を構成するイオン導電性酸化物材料との反応性が低い組成範囲と、熱膨張率の値がイオン導電性酸化物材料のそれと近くなる組成範囲とが一致しないことが知られている。通常、熱膨張率の値がイオン導電性酸化物材料のそれとより近くなるような組成のランタン−マンガン系酸化物が採用されることが多く、この場合には、特に両者の反応が問題となっていた。本発明の薄膜積層体では、イオン導電性膜と電子導電性膜との反応が抑制されるため、両膜の熱膨張率を優先的に考慮した材料を採用することができ、熱応力や熱衝撃による剥離や割れ等の少ない積層体とすることができる。
【0011】
本発明の固体酸化物型燃料電池は、上記本発明の薄膜積層体を電解質−電極接合体として用いた固体酸化物型燃料電池であって、2つの薄膜におけるイオン導電性膜が電解質となり、電子導電性膜が電極となるものである。本発明の薄膜積層体を電解質−電極接合体として用いることにより、その接合体を製造する際はもちろん、電池を高温で長時間作動させた場合であっても、電解質と電極との相互拡散や反応が抑制され、電池性能が良好で、かつ高耐久性の固体酸化物型燃料電池となる。
【0012】
上記本発明の薄膜積層体の製造方法は、特に限定されるものではないが、以下に示す本発明の方法により簡便に製造することができる。すなわち、本発明の薄膜積層体の製造方法は、2つの薄膜の一方の前駆体である第1薄膜前駆体の表面に、該2つの薄膜の他方を構成する元素の少なくとも1種を含む中間膜前駆体を成膜する中間膜前駆体成膜工程と、前記第1薄膜前駆体および前記中間膜前駆体を所定の温度で焼成することにより、該第1薄膜前駆体と該中間膜前駆体とを反応させ、前記一方の薄膜の表面に該反応により生成した反応生成物を含む中間膜を形成する焼成工程と、形成された前記中間膜の表面に前記2つの薄膜の他方を形成する第2薄膜形成工程とを含む。本製造方法では、最初に中間膜を焼成により形成しておくことがポイントとなる。予め、支持体となる2つの薄膜の一方の前駆体と、他方の薄膜を構成する元素の少なくとも1種を含む中間膜前駆体とを焼成し、両者を反応させて化学的に安定な中間膜を形成しておくことにより、その後に形成される他方の薄膜との反応を抑制することができる。したがって、本製造方法によれば、中間膜前駆体成膜工程、焼成工程、第2薄膜形成工程という3つの単純な工程により、上記本発明の薄膜積層体を簡便に製造することができる。
【0013】
【発明の実施の形態】
以下に、本発明の薄膜積層体、それを用いた固体酸化物型燃料電池および本発明の薄膜積層体の製造方法についてそれぞれ順に説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の薄膜積層体、その製造方法およびそれを用いた固体酸化物型燃料電池が下記の実施形態に限定されるものではない。下記実施形態を始めとして、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
【0014】
〈薄膜積層体〉
本発明の薄膜積層体は、イオン導電性膜と電子導電性膜とからなる2つの薄膜と、その2つの薄膜の間に介在した中間膜とを含むものである。イオン導電性膜は、本薄膜積層体を使用する条件下においてイオン導電率が高い膜であり、その導電種により種々の材料を用いることができる。例えば、酸素イオンを導電種とする材料として、緻密で酸素イオン導電率が高く、耐熱性、耐衝撃性および高温安定性に優れるという理由から、Zr、Ce、Sc、Y、La、Mn、In、Ba、Sr、Ca、Yb、Fe、Coから選ばれる少なくとも1種を含む酸化物を含む材料を用いることが望ましい。具体的には、ZrO2、ZrCeO3、Ce0.8Ln0.21.9(Ln:Y、Gd、Sa、Nd、La)、Ba(InSn)O、ZrO2−Y23、ZrO2−CeO、ZrO2−Yb23、Zr23−CaO、(LaSr)MgCaCoO3、LaGaO3、LaSrMgCoO3等が挙げられる。なかでも、イオン導電率が高く機械的特性に優れる上、高温、酸化・還元雰囲気で熱力学的に安定であるという理由から、ZrO2を主体とする複合材料を用いることが望ましい。特に、イオン導電性がより高く機械的特性や安定性が良好である等の理由から、ZrO2−Sc23系材料を含むものを用いることが望ましい。なお、イオン導電性膜の膜厚は、特に限定されるものではないが、抵抗を小さくしイオン導電率を大きくするという観点から、膜厚は100μm以下とすることが望ましい。より望ましくは30μm以下である。
【0015】
電子導電性膜は、本薄膜積層体を使用する条件下において電子導電率が高い膜である。電子導電性膜には、白金、金、ニッケル等の金属、ペロブスカイト型酸化物等の金属酸化物、またNi/YSZサーメット等の金属とイオン導電性膜の材料との混合物等、電子導電率の高い種々の材料を用いることができる。例えば、本薄膜積層体を固体酸化物型燃料電池の電解質−電極接合体として使用する場合であって、電極として空気極を想定した場合には、電子導電性膜にはペロブスカイト型酸化物を含む材料を用いることが望ましい。具体的には、LnMO3系(LnはLa、Sr、Pr、Nd、Sm、Gd、Ca、Gaから選ばれる1種以上、MはCa、Co、Fe、Cr、Ga、Gd、Mg、Mn、Ni、Ba、Tiから選ばれる1種以上)の材料が挙げられる。なかでも、電子導電率が高く、高温、酸化・還元雰囲気で熱力学的に安定であるという理由から、ランタン−マンガン系酸化物や、ランタン−鉄系酸化物、あるいはランタン−コバルト系酸化物を含む材料を用いることが望ましい。特に、熱膨張率、高温安定性、電極反応性、導電性等を考慮した場合には、組成式La1-xSrxMnO3(0≦x≦0.5)で表されるランタン−マンガン系酸化物や、組成式La(Fe1-xNix)O3、LaFeO3、(LaSr)(Fe,Co)Oで表されるランタン−鉄系酸化物を用いることが望ましい。
【0016】
中間膜は、上記イオン導電性膜を構成する元素のいずれか1種以上と、上記電子導電性膜を構成する元素のいずれか1種以上とを含むものである。上述の通り、イオン導電性膜および電子導電性膜の各々の膜を構成する元素の少なくとも1種ずつを含むということは、イオン導電性膜と電子導電性膜とが反応した場合に生成すると考えられる反応生成物を含むことを意味する。例えば、イオン導電性膜をZrO2膜と、電子導電性膜を(La、Sr)MnO3膜とした場合には、反応生成物としては、La2Zr27、SrZrO3等が考えられる。したがって、この場合における中間膜は、La2Zr27、SrZrO3等を含むものとなる。また、中間膜の膜厚は、特に限定されるものではないが、多量のイオンの授受をスムーズに行うという観点から、30μm以下であることが望ましい。さらに10μm以下とするとより好適である。
【0017】
中間膜は、その形成方法が特に限定されるものではない。例えば、上記2つの薄膜の一方の前駆体である第1薄膜前駆体と、上記2つの薄膜の他方を構成する元素の少なくとも1種を含む中間膜前駆体とが重ね合わせられ、焼成されることにより形成されたものである態様を採用することができる。言い換えると、上記第1薄膜前駆体と上記中間膜前駆体とが反応することにより中間膜が形成された態様である。後の本発明の製造方法において詳しく説明するが、2つの薄膜の一方の前駆体と、他方を構成する元素の少なくとも1種を含む中間膜前駆体とを重ね合わせて焼成することで、第1薄膜前駆体が上記一方の薄膜となるとともに、中間膜前駆体は中間膜となる。そして、形成された中間膜は、中間膜前駆体を構成する元素(他方の薄膜を構成する元素を含む)と、第1薄膜前駆体を構成する元素とが反応して生成された上記反応生成物を含み安定化した膜となる。なお、一方の薄膜と中間膜とは異なる2層として存在するが、両膜の界面は明確ではなく、両膜の界面には、反応生成物がある濃度勾配を有して存在すると考えられる。
【0018】
〈固体酸化物型燃料電池〉
本発明の固体酸化物型燃料電池は、上記本発明の薄膜積層体を電解質−電極接合体として用いたものであり、2つの薄膜におけるイオン導電性膜が電解質となり、電子導電性膜が電極となる。電子導電性膜は、その材料を適宜選択することにより燃料極または空気極となる。特に、空気極となる材料と電解質とが反応し易いため、反応をより抑制し、電池性能を向上させるという観点から、電子導電性膜である電極を空気極とする態様が望ましい。
【0019】
また、電解質−電極接合体として、イオン導電性膜である電解質の両側に、材料の異なる電子導電性膜である2種類の電極がそれぞれ設けられ、電解質と電極との間にはそれぞれ中間膜が介在している態様をも採用することができる。この場合、2種類の電極をそれぞれ燃料極、空気極とすることができる。ここで、イオン導電性膜を中心にして、その片側だけを考えると、イオン導電性膜−中間膜−電子導電性膜という本発明の薄膜積層体が構成されている。また、反対側についても同様の構成となっている。つまり、イオン導電性膜を共通にして、その両側に中間膜および電子導電性膜が積層されており、本態様は、本発明の薄膜積層体を2種類積層したものとして認識することができる。すなわち、本発明の薄膜積層体を用いた電解質−電極接合体として、イオン導電性膜の両側に電子導電性膜がそれぞれ設けられ、イオン導電性膜と電子導電性膜との間にはそれぞれ中間膜が介在した態様を採用することができる。
【0020】
固体酸化物型燃料電池は、一般に、一対の電極の間に固体電解質を挟んでなる電解質−電極接合体から構成されるセルを発電単位とし、円筒方式、平板方式、ハニカム方式、一体積層方式等、種々の構造を採用することができる。本発明の固体酸化物型燃料電池も、電解質−電極接合体に本発明の薄膜積層体を用いる他は、その一般的な構成に従えばよい。
【0021】
〈薄膜積層体の製造方法〉
本発明の薄膜積層体の製造方法は、中間膜前駆体成膜工程と、焼成工程と、第2薄膜形成工程とを含む。以下、各工程について詳しく説明する。
【0022】
(1)中間膜前駆体成膜工程
本工程は、2つの薄膜の一方の前駆体である第1薄膜前駆体の表面に、該2つの薄膜の他方を構成する元素の少なくとも1種を含む中間膜前駆体を成膜する工程である。2つの薄膜のうち、いずれか一方の前駆体を支持体となる第1薄膜前駆体とし、その表面に中間膜前駆体を成膜する。イオン導電性膜の前駆体を支持体としてもよく、また、電子導電性膜の前駆体を支持体としてもよい。イオン導電性膜を薄膜化して導電率の向上を図るという観点から、電子導電性膜の前駆体を支持体とすることが望ましい。ここで、支持体となる第1薄膜前駆体とは、一方の薄膜を構成する材料が、焼成により中間膜前駆体と反応する前の状態を意味するものである。したがって、第1薄膜前駆体は、一方の薄膜を構成する材料を、ある基材の表面に薄膜状に成膜した状態のものでもよく、成膜後に焼結させたものであってもよい。また、中間膜前駆体とは、2つの薄膜のうちの他方、つまり、前駆体となる薄膜とは別の薄膜を構成する元素の少なくとも1種を含む膜である。他方の薄膜を構成する元素のうち1種以上が含まれていればよく、他方の薄膜に用いる材料と同じ材料を用いてもよい。例えば、前駆体となる一方の薄膜を電子導電性膜とした場合には、中間膜前駆体として他方の薄膜、すなわちイオン導電性膜の材料を用いることができる。また、同様に前駆体となる一方の薄膜を電子導電性膜とした場合において、中間膜前駆体として電子導電性膜の材料とイオン導電性膜の材料との複合材料を用いることもできる。
【0023】
第1薄膜前駆体の表面に中間膜前駆体を成膜する方法は、表面が平滑な薄膜を成膜することができる方法であれば特に限定されるものではない。例えば、ドクターブレード法、スクリーン印刷法、テープキャスト法、押出し法等のスラリーコート法、スパッタ法、レーザアブレーション、蒸着、MOCVD、MBE等で成膜すればよい。
【0024】
また、電子導電性膜を一方の薄膜とする態様を採用した場合等には、第1薄膜前駆体が多孔質の材料からなる場合もある。この場合には、細孔を有する多孔質材料の表面に膜厚の薄い膜を均一に成膜するという観点から、以下に示すいわゆる転写法を用いて中間膜前駆体を成膜することが望ましい。すなわち、転写法は、成膜する中間膜前駆体の材料を含む原料ペーストを調製する原料ペースト調製工程と、調整した原料ペーストを成膜基板の表面に塗布して成膜し、その膜を成膜基板から剥離して中間膜前駆体を得る成膜剥離工程と、得られた中間膜前駆体の表面を第1薄膜前駆体の表面に重ね合わせる接合工程とを含んで構成される。
【0025】
ここで、原料ペーストは、例えば、中間膜前駆体の材料を粉末状にし、メタアクリル系樹脂等の有機バインダを混合して調製することができる。成膜基板は、特に制限されるものではなく、薄膜を成膜することができる緻密で表面が平滑な基板を用いればよい。また、原料ペーストから成膜する方法は、上述したスラリーコート法等で行えばよい。成膜後にその膜を成膜基板から剥離する方法は、特に限定されるものではない。例えば、予め水溶性の樹脂をコートした成膜基板の表面に成膜し、その後、成膜基板ごと水中に浸漬することにより、膜を成膜基板から剥離して中間膜前駆体を得る態様を採用することができる。この態様を採用する場合には、膜を保形するという理由から、成膜後、水中に浸漬させる前に、その膜の表出している面をアクリル樹脂等の非水溶性の樹脂で覆っておくことが望ましい。なお、この保護膜となる非水溶性の樹脂は、後に焼成することにより燃焼し消滅する。そして、得られた中間膜前駆体と第1薄膜前駆体とを、互いの表面を合わせて重ね合わせればよい。
【0026】
いずれの方法で成膜した場合であっても、成膜条件は、目的とする中間膜の膜厚等を考慮して適宜決定すればよい。例えば、中間膜を30μm以下とする場合には、中間膜前駆体の成膜時の膜厚は、40μm以下とすることが望ましい。
【0027】
(2)焼成工程
本工程は、中間膜前駆体成膜工程で得られた第1薄膜前駆体および中間膜前駆体を所定の温度で焼成することにより、該第1薄膜前駆体と該中間膜前駆体とを反応させ、一方の薄膜の表面に該反応により生成した反応生成物を含む中間膜を形成する工程である。焼成の温度は、第1薄膜前駆体と中間膜前駆体とが反応し、第1薄膜前駆体が一方の薄膜となり、その表面に上記反応により生成した反応生成物を含む中間膜が形成される温度であれば、特に限定されるものではない。第1薄膜前駆体と中間膜前駆体との間で予め元素を拡散させることにより反応物を生成させ安定化させるという観点から、1000℃以上とすることが望ましい。特に1200℃以上とすることが好適である。また、第1薄膜前駆体が多孔質材料である場合には、その所定の気孔率を確保するという観点から、1450℃以下とすることが望ましい。特に1400℃以下とすることが好適である。焼成は、一般に用いられる電気炉等を使用すればよく、焼成時間は0.5〜6時間程度とすればよい。
【0028】
また、第1薄膜前駆体は、上述の通り、一方の薄膜を構成する材料からなるものである。そして、中間膜前駆体は、他方の薄膜を構成する元素の少なくとも1種を含む膜である。したがって、焼成することにより形成される中間膜は、一方の薄膜を構成する元素のいずれか1種以上と、中間膜前駆体に含まれる他方の薄膜を構成する元素のいずれか1種以上とが反応して生成された反応生成物を含むものとなる。
【0029】
(3)第2薄膜形成工程
本工程は、焼成工程で形成された中間膜の表面に2つの薄膜の他方を形成する工程である。他方の薄膜は、一方の薄膜を電子導電性膜とした場合には、イオン導電性膜であり、反対に、一方の薄膜をイオン導電性膜とした場合には、電子導電性膜である。他方の薄膜の形成方法は、特に限定されるものではなく、表面が平滑な薄膜を形成することができる方法を用いればよい。例えば、上述したドクターブレード法、スクリーン印刷法、テープキャスト法、押出し法、転写法等を用いて成膜した後、焼成して形成する他、スパッタ法、プラズマ溶射法、蒸着法等で形成することができる。
【0030】
例えば、他方の薄膜を上記転写法により成膜し、得られた薄膜と中間膜とを互いの表面を重ね合わせて焼成することにより形成することができる。この場合、焼成は、中間膜と他方の薄膜との間の元素拡散を抑制するという理由から、前に行った焼成工程における焼成温度と同じ、あるいはそれより低い温度で行うことが望ましい。また、焼成時間は0.5〜10時間程度とすればよい。なお、成膜条件は、上記同様、目的とする薄膜の膜厚等を考慮して適宜決定すればよい。
【0031】
【実施例】
上記実施の形態に基づいて、本発明の薄膜積層体を製造した。そして、イオン導電性膜および電子導電性膜の室温での電気抵抗値をそれぞれ測定することによって、薄膜積層体を評価した。以下、薄膜積層体の製造および薄膜積層体の評価について説明する。
【0032】
〈薄膜積層体の製造〉
ZrO2に11mol%のScを固溶したZrO2/Sc23(以下「ScSZ」と示す。)膜をイオン導電性膜として、La0.8Sr0.2MnO3膜を電子導電性膜として薄膜積層体を製造した。なお、2つの薄膜のうち、一方をLa0.8Sr0.2MnO3膜とし、他方をScSZ膜とした。また、中間膜前駆体には他方の膜材料と同様のScSZを用いた。
【0033】
まず、中間体前駆体膜を転写法により成膜した。中間膜前駆体である粉末状のScSZと有機バインダであるメタアクリル系樹脂とを混合し、粘度が約0.06Pa・sである原料ペーストを調製した。調整した原料ペーストを、水溶性樹脂であるデキストリンをコートした成膜基板の表面にスクリーン印刷して成膜し、さらに、その膜表面全体を非水溶性樹脂であるアクリル系樹脂でコートした。なお、成膜した膜の厚さは、約5μmであった。このように成膜、コートした成膜基板を水中に浸漬し、成膜した膜を成膜基板から剥離して、アクリル系樹脂でコートされた中間膜前駆体(ScSZ膜)を得た。次いで、電子導電性膜であるLa0.8Sr0.2MnO3膜の前駆体であるLa0.8Sr0.2MnO3膜前駆体(φ20mm、厚さ1mm)の表面に、上記得られた厚さ5μmのScSZ膜を重ね合わせた。その後、温度1400℃にて4時間焼成して、La0.8Sr0.2MnO3膜の表面に中間膜を形成した。形成された中間膜の膜厚は3μmであった。
【0034】
次に、イオン導電性膜であるScSZを上記同様、転写法により成膜した。粉末状のScSZとメタアクリル系樹脂とを混合して粘度が約0.06Pa・sである原料ペーストを調製した。調整した原料ペーストを、デキストリンをコートした成膜基板の表面にスクリーン印刷して成膜し、さらに、その膜表面全体をアクリル系樹脂でコートした。なお、成膜した膜の厚さは、約5μmであった。このように成膜、コートした成膜基板を水中に浸漬し、成膜した膜を成膜基板から剥離して、アクリル系樹脂でコートされたScSZ膜を得た。得られたScSZ膜を上記形成された中間膜の表面に重ね合わせ、温度1400℃にて1時間焼成することにより、La0.8Sr0.2MnO3膜−中間膜−ScSZ膜からなる薄膜積層体を得た。形成されたScSZ膜の膜厚は3μmであった。なお、本薄膜積層体を実施例の薄膜積層体とする。
【0035】
なお、比較のため、上記電子導電性膜であるLa0.8Sr0.2MnO3膜の表面に、上記ScSZ膜を2回に分けて成膜し、温度1400℃にて1時間焼成して薄膜積層体を製造した。得られた薄膜積層体を比較例の薄膜積層体とする。
【0036】
〈薄膜積層体の評価〉
上記実施例および比較例の薄膜積層体を構成する2つの薄膜の室温での電気抵抗値をそれぞれ測定することにより薄膜積層体を評価した。電気抵抗は、イオン導電性膜であるScSZ膜内と中間膜との間、および電子導電性膜であるLa0.8Sr0.2MnO3膜内と中間膜との間でデジタルボルトメータを用いて測定した。測定結果を表1に示す。
【0037】
【表1】

Figure 0003915500
【0038】
表1から明らかなように、予め焼成により中間膜を形成した本発明の薄膜積層体では、イオン導電性膜であるScSZ膜の抵抗値は10MΩを超える大きな値であった。このように電気抵抗が大きいということは、電子導電率が極めて小さいことを示すものである。つまり、本来の特性であるイオン導電性が損なわれていないことがわかる。これに対し、比較例の薄膜積層体では、イオン導電性膜であるScSZ膜の抵抗値は2〜10kΩ程度と小さい値となった。これは、本来の特性であるイオン導電性が損なわれ電子導電性が発現していることを示すものである。すなわち、たとえイオン導電性膜を2層設けたとしても、電子導電性膜との間に化学的に安定な層が存在しないため、高温で焼成することにより電子導電性膜との間に相互拡散や化学反応が生じ、膜の電気的性質が変化してしまうと考えられる。一方、電子導電性膜の抵抗値は、実施例の薄膜積層体、比較例の薄膜積層体ともに同じ値となった。これは、電子導電性膜の膜厚が1mmと比較的厚かったため、反応による影響がそれほど強く表れなかったと考えられる。
【0039】
以上より、本発明の薄膜積層体は、イオン導電性膜と電子導電性膜との間に化学的に安定な中間膜が介在しているため、積層体を製造する際に高温で焼成した場合であっても、イオン導電性膜と電子導電性膜との反応が抑制されることが確認できた。
【0040】
【発明の効果】
本発明の薄膜積層体は、イオン導電性膜と電子導電性膜との間に中間膜が介在した積層体であり、その中間膜が、イオン導電性膜を構成する元素のいずれか1種以上と、電子導電性膜を構成する元素のいずれか1種以上とを含むものである。イオン導電性膜と電子導電性膜との間に化学的に安定化した中間膜が介在しているため、積層体の製造時等、高温にさらされた場合であっても、イオン導電性膜と電子導電性膜との反応は抑制される。また、本発明の固体酸化物型燃料電池は、本発明の薄膜積層体を電解質−電極接合体として用いたものである。接合体を製造する際はもちろん、電池を高温で長時間作動させた場合であっても、電解質と電極との相互拡散や反応が抑制され、また、電解質と電極との界面における熱膨張差による剥離も生じ難いため、電池性能の良好な電池となる。さらに、本発明の製造方法によれば、中間膜前駆体成膜工程、焼成工程、第2薄膜形成工程という3つの単純な工程により、上記本発明の薄膜積層体を簡便に製造することができる。
【図面の簡単な説明】
【図1】 電解質−電極接合体における電解質と電極との接合状態をモデルで示す。
【図2】 本発明の薄膜積層体の一例をモデルで示す。
【符号の説明】
1:電解質 2:電極
3:薄膜積層体 4:イオン導電性膜 5:電子導電性膜 6:中間膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film laminate and a method for producing the same, and more particularly to a thin film laminate used for a gas sensor, a temperature sensor, a pressure sensor, an electrolyte-electrode assembly of a solid oxide fuel cell, and the like, and a method for producing the same.
[0002]
[Prior art]
In recent years, research and development of solid electrolytes that conduct only specific ions at high temperatures have been promoted. Among them, oxygen ion conductors include gas sensors, temperature sensors, pressure sensors, and solid oxide fuel cells (SOFC). Widely used in etc. For example, in a solid oxide fuel cell, a cell in which a pair of electrodes having electronic conductivity is provided on both sides of a solid electrolyte that is an oxygen ion conductor is used as a power generation unit, and oxygen gas is applied to one electrode (air electrode). Or air is supplied and hydrogen, methane gas, etc. are supplied to the other electrode (fuel electrode), and an electrochemical reaction is advanced at a high temperature of about 1000 ° C. Here, the electrolyte-electrode assembly constituting the cell is formed, for example, by forming an electrode in a thin film on the surface of the solid electrolyte by a screen printing method, a doctor blade method, or the like, and firing it at a high temperature of 1300 to 1400 ° C. Manufactured.
[0003]
In this way, the electrolyte-electrode assembly is exposed to high temperatures during its manufacture and during long battery operation. And since an electrolyte-electrode assembly is formed by laminating different materials of an electrolyte and an electrode, the reaction of both at a high temperature becomes a problem. In other words, at high temperatures, element diffusion and chemical reaction are likely to occur between the materials in contact with each other. As a result, each material changes in quality and mechanical strength decreases, and the characteristics of both materials such as ionic conductivity and electronic conductivity are reduced. It is damaged and affects the conductive properties of the material and the electrode reaction at the interface. FIG. 1 shows a model of the joined state between the electrolyte and the electrode. As shown in FIG. 1, at high temperatures, diffusion of elements constituting each occurs between an electrolyte 1 that is an ion conductive film and an electrode 2 that is an electronic conductive film, and reacts by reacting them. A product is produced. Usually, since the electrolyte has a very thin film thickness, the reaction spreads over the entire film, and the ionic conductivity inherent in the electrolyte is impaired. For example, when electronic conductivity is exhibited in an electrolyte having high oxygen ion conductivity, a short-circuit current in a direction opposite to that of oxygen ions flows in the electrolyte, and electromotive force generated at both ends of the electrolyte is reduced.
[0004]
In order to suppress the reaction between the electrolyte and the electrode in contact with each other at a high temperature, for example, an attempt has been made to perform firing at a low temperature of 1100 ° C. or less. In addition, the electrode material La 1-x Sr x MnO Three Attention has been paid to the fact that the oxygen non-stoichiometry of oxides such as these affects the above reaction, and attempts have been made to suppress the reaction by adjusting the material composition, temperature, oxygen pressure and the like.
[0005]
[Problems to be solved by the invention]
However, when firing is performed at a low temperature in order to suppress the reaction between both materials to be joined, sintering does not proceed sufficiently and it becomes difficult to obtain a dense electrolyte. Further, if the element substitution rate in the type and composition of the element used is changed in order to reduce the reactivity of the electrode material, a difference in thermal expansion coefficient from the electrolyte in contact with the electrode becomes a problem. If the coefficients of thermal expansion are different, thermal stress is generated at the interface between the two materials during heating or cooling, and there is a risk of material peeling or cracking. That is, when the coefficient of thermal expansion is taken into consideration, the materials that can be used are substantially limited.
[0006]
The present invention has been made in view of the above circumstances, and is a thin film laminate formed by laminating an ion conductive film and an electron conductive film, and suppresses the reaction between the two films, thereby reducing the ion conductivity and the electrons. It is an object of the present invention to provide a thin film laminate that can exhibit the characteristics of each film as being conductive.
[0007]
[Means for Solving the Problems]
The thin film laminate of the present invention includes two thin films composed of an ion conductive film and an electron conductive film, and the two thin films between the two thin films. A first thin film precursor, which is one of the two thin films, and an intermediate film precursor containing at least one element constituting the other of the two thin films are superimposed and fired. An interlayer film produced by A thin film laminate including the intermediate film, Produced by the reaction between the first thin film precursor and the intermediate film precursor, Any one or more of the elements constituting the ion conductive film and any one or more of the elements constituting the electron conductive film Contains reaction products It is characterized by that.
[0008]
FIG. 2 shows an example of the thin film laminate of the present invention as a model. As shown in FIG. 2, the thin film laminate 3 of the present invention has a three-layer structure in which an intermediate film 6 is interposed between an ion conductive film 4 and an electronic conductive film 5. As described above, in the case of manufacturing a laminate of an ion conductive film and an electronic conductive film, when both are superposed on each other and fired at a high temperature, ion diffusion and chemical reaction occur between the two materials, and each material The nature of will change. In the thin film laminate of the present invention, for example, even when an ion conductive film is baked at a high temperature on the surface of the intermediate film to produce the thin film laminate, the intermediate film is chemically stable as described later. Therefore, the reactions of the ion conductive film and the intermediate film, and the ion conductive film and the electron conductive film are suppressed. In addition, even when the battery is operated for a long time, the reaction between the ion conductive film and the electron conductive film is suppressed because the intermediate film is interposed.
[0009]
The intermediate film interposed between the ion conductive film and the electron conductive film includes any one or more elements constituting the ion conductive film and any one or more elements constituting the electron conductive film. Is included. The reaction between the ion conductive film and the electron conductive film occurs when any one or more of the elements constituting each film react. The intermediate film contains any one or more of the elements constituting each film, that is, a reaction product that is considered to be generated when the ion conductive film reacts with the electron conductive film. Is a stable film. That is, the intermediate film is a film that blocks the reaction between the ion conductive film and the electron conductive film. Therefore, the thin film laminate of the present invention is a thin film laminate in which the properties of the ion conductive film and the electronic conductive film are not impaired even at high temperatures due to the intervening intermediate film.
[0010]
In addition, for example, a lanthanum-manganese oxide used as a material for an electron conductive film has a composition range having low reactivity with the ion conductive oxide material constituting the ion conductive film, and a coefficient of thermal expansion is an ion. It is known that the composition range close to that of the conductive oxide material does not match. Usually, a lanthanum-manganese oxide having a composition such that the coefficient of thermal expansion is closer to that of the ion conductive oxide material is often employed, and in this case, the reaction between the two is particularly problematic. It was. In the thin film laminate of the present invention, since the reaction between the ion conductive film and the electron conductive film is suppressed, a material in which the thermal expansion coefficient of both films is preferentially taken into consideration can be adopted, and thermal stress and heat It can be set as a laminated body with few peeling, a crack, etc. by an impact.
[0011]
The solid oxide fuel cell of the present invention is a solid oxide fuel cell using the thin film laminate of the present invention as an electrolyte-electrode assembly, wherein the ion conductive film in the two thin films serves as an electrolyte, and an electron The conductive film becomes an electrode. By using the thin film laminate of the present invention as an electrolyte-electrode assembly, not only when the assembly is manufactured, but also when the battery is operated at a high temperature for a long time, The reaction is suppressed, the battery performance is good, and a highly durable solid oxide fuel cell is obtained.
[0012]
Although the manufacturing method of the said thin film laminated body of this invention is not specifically limited, It can manufacture simply by the method of this invention shown below. That is, in the method for producing a thin film laminate of the present invention, the intermediate film includes at least one element constituting the other of the two thin films on the surface of the first thin film precursor which is one precursor of the two thin films. An intermediate film precursor film forming step for forming a precursor, and firing the first thin film precursor and the intermediate film precursor at a predetermined temperature, whereby the first thin film precursor and the intermediate film precursor And a second step of forming the other of the two thin films on the surface of the formed intermediate film, and a baking step of forming an intermediate film containing the reaction product generated by the reaction on the surface of the one thin film. Including a thin film forming step. In this manufacturing method, it is important to first form the intermediate film by firing. A chemically stable intermediate film obtained by firing one precursor of two thin films to be a support and an intermediate film precursor containing at least one element constituting the other thin film and reacting them in advance. By forming, reaction with the other thin film formed thereafter can be suppressed. Therefore, according to the present production method, the thin film laminate of the present invention can be easily produced by three simple steps: an intermediate film precursor film formation step, a baking step, and a second thin film formation step.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Below, the thin-film laminated body of this invention, the solid oxide fuel cell using the same, and the manufacturing method of the thin-film laminated body of this invention are each demonstrated in order. The embodiment to be described is merely one embodiment, and the thin film laminate of the present invention, its manufacturing method, and the solid oxide fuel cell using the same are not limited to the following embodiment. The present invention can be implemented in various forms including changes and improvements that can be made by those skilled in the art, including the following embodiment.
[0014]
<Thin film laminate>
The thin film laminate of the present invention includes two thin films composed of an ion conductive film and an electron conductive film, and an intermediate film interposed between the two thin films. The ion conductive film is a film having high ionic conductivity under the condition of using the thin film laminate, and various materials can be used depending on the conductive species. For example, as a material having oxygen ions as a conductive species, Zr, Ce, Sc, Y, La, Mn, In, and the like are dense, have high oxygen ion conductivity, and have excellent heat resistance, impact resistance, and high temperature stability. It is desirable to use a material containing an oxide containing at least one selected from Ba, Sr, Ca, Yb, Fe, and Co. Specifically, ZrO 2 , ZrCeO Three , Ce 0.8 Ln 0.2 O 1.9 (Ln: Y, Gd, Sa, Nd, La), Ba (InSn) O, ZrO 2 -Y 2 O Three , ZrO 2 -CeO, ZrO 2 -Yb 2 O Three , Zr 2 O Three -CaO, (LaSr) MgCaCoO Three LaGaO Three LaSrMgCoO Three Etc. Among these, ZrO has a high ionic conductivity, excellent mechanical properties, and is thermodynamically stable at high temperature in an oxidizing / reducing atmosphere. 2 It is desirable to use a composite material mainly composed of. In particular, for reasons such as higher ionic conductivity and better mechanical properties and stability, ZrO 2 -Sc 2 O Three It is desirable to use a material containing a system material. The film thickness of the ion conductive film is not particularly limited, but it is desirable that the film thickness be 100 μm or less from the viewpoint of reducing resistance and increasing ion conductivity. More desirably, it is 30 μm or less.
[0015]
The electronic conductive film is a film having a high electronic conductivity under the conditions in which the thin film laminate is used. The electron conductive film includes metals such as platinum, gold and nickel, metal oxides such as perovskite oxide, and a mixture of a metal such as Ni / YSZ cermet and an ion conductive film material. Various high materials can be used. For example, when the present thin film laminate is used as an electrolyte-electrode assembly of a solid oxide fuel cell and an air electrode is assumed as an electrode, the electron conductive film contains a perovskite oxide. It is desirable to use materials. Specifically, LnMO Three System (Ln is one or more selected from La, Sr, Pr, Nd, Sm, Gd, Ca, Ga, M is from Ca, Co, Fe, Cr, Ga, Gd, Mg, Mn, Ni, Ba, Ti 1 or more selected materials). Of these, lanthanum-manganese oxides, lanthanum-iron oxides, or lanthanum-cobalt oxides are used because they have high electronic conductivity and are thermodynamically stable at high temperatures and in oxidizing and reducing atmospheres. It is desirable to use a material that contains. In particular, when considering the coefficient of thermal expansion, high-temperature stability, electrode reactivity, conductivity, etc., the composition formula La 1-x Sr x MnO Three The lanthanum-manganese oxide represented by (0 ≦ x ≦ 0.5) and the composition formula La (Fe 1-x Ni x ) O Three LaFeO Three It is desirable to use a lanthanum-iron-based oxide represented by (LaSr) (Fe, Co) O.
[0016]
The intermediate film includes one or more elements constituting the ion conductive film and one or more elements constituting the electron conductive film. As described above, including at least one element constituting each of the ion conductive film and the electron conductive film is considered to be generated when the ion conductive film and the electron conductive film react with each other. Is included. For example, an ion conductive film is made of ZrO. 2 And (La, Sr) MnO Three In the case of a membrane, the reaction product is La 2 Zr 2 O 7 , SrZrO Three Etc. are considered. Therefore, the intermediate film in this case is La 2 Zr 2 O 7 , SrZrO Three Etc. are included. The film thickness of the intermediate film is not particularly limited, but is preferably 30 μm or less from the viewpoint of smoothly transferring a large amount of ions. Further, it is more preferable that the thickness is 10 μm or less.
[0017]
The formation method of the intermediate film is not particularly limited. For example, a first thin film precursor which is one precursor of the two thin films and an intermediate film precursor containing at least one element constituting the other of the two thin films are superposed and fired. An embodiment that is formed by the above can be adopted. In other words, the intermediate film is formed by the reaction between the first thin film precursor and the intermediate film precursor. As will be described in detail later in the production method of the present invention, the first precursor of one of the two thin films and the intermediate film precursor containing at least one element constituting the other are overlapped and fired, whereby the first The thin film precursor becomes the one thin film, and the intermediate film precursor becomes the intermediate film. The formed intermediate film is the reaction product generated by the reaction between the elements constituting the intermediate film precursor (including the elements constituting the other thin film) and the elements constituting the first thin film precursor. It becomes a stabilized film containing substances. Although one thin film and the intermediate film exist as two different layers, the interface between the two films is not clear, and the reaction product is considered to exist with a certain concentration gradient at the interface between the two films.
[0018]
<Solid oxide fuel cell>
The solid oxide fuel cell of the present invention uses the thin film laminate of the present invention as an electrolyte-electrode assembly, the ion conductive film in the two thin films serves as the electrolyte, and the electronic conductive film serves as the electrode. Become. The electron conductive film becomes a fuel electrode or an air electrode by appropriately selecting the material. In particular, since the material serving as the air electrode and the electrolyte are likely to react with each other, an aspect in which the electrode serving as the electronic conductive film is an air electrode is desirable from the viewpoint of further suppressing the reaction and improving battery performance.
[0019]
In addition, as an electrolyte-electrode assembly, two types of electrodes, which are electronic conductive films made of different materials, are provided on both sides of an electrolyte, which is an ion conductive film, respectively, and an intermediate film is provided between the electrolyte and the electrodes. An intervening aspect can also be employed. In this case, the two types of electrodes can be a fuel electrode and an air electrode, respectively. Here, considering only one side of the ion conductive film as a center, the thin film laminate of the present invention of an ion conductive film-intermediate film-electron conductive film is configured. The opposite side has the same configuration. That is, the ion conductive film is shared, and the intermediate film and the electronic conductive film are laminated on both sides thereof, and this aspect can be recognized as a laminate of the two thin film laminates of the present invention. That is, as an electrolyte-electrode assembly using the thin film laminate of the present invention, an electron conductive film is provided on each side of the ion conductive film, and an intermediate between the ion conductive film and the electron conductive film. A mode in which a film is interposed can be employed.
[0020]
Solid oxide fuel cells generally use a cell composed of an electrolyte-electrode assembly in which a solid electrolyte is sandwiched between a pair of electrodes as a power generation unit, such as a cylindrical method, a flat plate method, a honeycomb method, an integral lamination method, etc. Various structures can be employed. The solid oxide fuel cell of the present invention may also follow its general configuration except that the thin film laminate of the present invention is used for the electrolyte-electrode assembly.
[0021]
<Manufacturing method of thin film laminate>
The manufacturing method of the thin film laminated body of the present invention includes an intermediate film precursor film forming step, a firing step, and a second thin film forming step. Hereinafter, each step will be described in detail.
[0022]
(1) Intermediate film precursor film formation process
This step is a step of forming an intermediate film precursor containing at least one element constituting the other of the two thin films on the surface of the first thin film precursor which is one precursor of the two thin films. . One of the two thin films is used as a first thin film precursor serving as a support, and an intermediate film precursor is formed on the surface thereof. The precursor of the ion conductive film may be used as the support, and the precursor of the electron conductive film may be used as the support. From the viewpoint of improving the conductivity by reducing the thickness of the ion conductive film, it is desirable to use the precursor of the electronic conductive film as a support. Here, the 1st thin film precursor used as a support body means the state before the material which comprises one thin film reacts with an intermediate film precursor by baking. Therefore, the first thin film precursor may be a material in which one of the thin films is formed into a thin film on the surface of a certain base material, or may be sintered after film formation. In addition, the intermediate film precursor is a film containing at least one element constituting a thin film different from the other of the two thin films, that is, the thin film to be the precursor. It is sufficient that one or more elements included in the other thin film are included, and the same material as that used for the other thin film may be used. For example, when one thin film serving as a precursor is an electron conductive film, the other thin film, that is, an ion conductive film material can be used as an intermediate film precursor. Similarly, when one thin film serving as a precursor is an electron conductive film, a composite material of an electron conductive film material and an ion conductive film material can be used as the intermediate film precursor.
[0023]
The method for forming the intermediate film precursor on the surface of the first thin film precursor is not particularly limited as long as the method can form a thin film having a smooth surface. For example, the film may be formed by a doctor blade method, a screen printing method, a tape casting method, a slurry coating method such as an extrusion method, a sputtering method, laser ablation, vapor deposition, MOCVD, MBE, or the like.
[0024]
Moreover, when the aspect which uses an electronic conductive film as one thin film is employ | adopted, a 1st thin film precursor may consist of a porous material. In this case, from the viewpoint of uniformly forming a thin film on the surface of the porous material having pores, it is desirable to form the intermediate film precursor using a so-called transfer method described below. . That is, in the transfer method, a raw material paste preparation step for preparing a raw material paste containing an intermediate film precursor material to be formed, and the prepared raw material paste is applied to the surface of the film formation substrate to form a film. A film forming and peeling step for peeling the film from the film substrate to obtain an intermediate film precursor, and a bonding step for superimposing the surface of the obtained intermediate film precursor on the surface of the first thin film precursor.
[0025]
Here, the raw material paste can be prepared, for example, by making the material of the intermediate film precursor into a powder form and mixing an organic binder such as a methacrylic resin. The film formation substrate is not particularly limited, and a dense substrate with a smooth surface that can form a thin film may be used. Moreover, what is necessary is just to perform the film-forming method from a raw material paste by the slurry coat method mentioned above. A method for peeling the film from the deposition substrate after the film formation is not particularly limited. For example, a mode in which an intermediate film precursor is obtained by peeling a film from a film formation substrate by forming a film on the surface of a film formation substrate coated with a water-soluble resin in advance and then immersing the film formation substrate together with water. Can be adopted. When this mode is adopted, the surface of the film is covered with a water-insoluble resin such as an acrylic resin before being immersed in water after film formation because the film is retained. It is desirable to keep it. The water-insoluble resin that becomes the protective film burns and disappears when fired later. Then, the obtained intermediate film precursor and the first thin film precursor may be superposed with their surfaces aligned.
[0026]
Regardless of which method is used for film formation, the film formation conditions may be appropriately determined in consideration of the film thickness of the target intermediate film. For example, when the thickness of the intermediate film is 30 μm or less, it is desirable that the film thickness when forming the intermediate film precursor is 40 μm or less.
[0027]
(2) Firing process
In this step, the first thin film precursor and the intermediate film precursor obtained in the intermediate film precursor film forming step are baked at a predetermined temperature to react the first thin film precursor and the intermediate film precursor. And forming an intermediate film containing the reaction product generated by the reaction on the surface of one thin film. The firing temperature is such that the first thin film precursor and the intermediate film precursor react, the first thin film precursor becomes one thin film, and an intermediate film containing the reaction product generated by the above reaction is formed on the surface. If it is temperature, it will not specifically limit. From the viewpoint of generating and stabilizing a reactant by previously diffusing elements between the first thin film precursor and the intermediate film precursor, the temperature is desirably set to 1000 ° C. or higher. In particular, the temperature is preferably set to 1200 ° C. or higher. In addition, when the first thin film precursor is a porous material, it is desirable to set the temperature to 1450 ° C. or lower from the viewpoint of securing the predetermined porosity. In particular, the temperature is preferably 1400 ° C. or lower. For firing, a generally used electric furnace or the like may be used, and the firing time may be about 0.5 to 6 hours.
[0028]
Further, as described above, the first thin film precursor is made of a material constituting one of the thin films. The intermediate film precursor is a film containing at least one element constituting the other thin film. Therefore, the intermediate film formed by firing has one or more elements constituting one thin film and one or more elements constituting the other thin film included in the intermediate film precursor. The reaction product produced by the reaction is included.
[0029]
(3) Second thin film forming step
This step is a step of forming the other of the two thin films on the surface of the intermediate film formed in the firing step. The other thin film is an ion conductive film when one thin film is an electron conductive film, and conversely, it is an electronic conductive film when one thin film is an ion conductive film. The method for forming the other thin film is not particularly limited, and a method capable of forming a thin film with a smooth surface may be used. For example, the film is formed by using the doctor blade method, the screen printing method, the tape casting method, the extrusion method, the transfer method, etc., and then baked, or it is formed by sputtering, plasma spraying, vapor deposition, or the like. be able to.
[0030]
For example, the other thin film can be formed by the above transfer method, and the obtained thin film and the intermediate film can be formed by superimposing the surfaces of each other and firing. In this case, the firing is desirably performed at a temperature equal to or lower than the firing temperature in the previous firing step, for the purpose of suppressing element diffusion between the intermediate film and the other thin film. The firing time may be about 0.5 to 10 hours. Note that the film forming conditions may be appropriately determined in consideration of the film thickness of the target thin film and the like as described above.
[0031]
【Example】
Based on the said embodiment, the thin film laminated body of this invention was manufactured. And the thin film laminated body was evaluated by measuring the electrical resistance value in the room temperature of an ion conductive film and an electronic conductive film, respectively. Hereinafter, production of the thin film laminate and evaluation of the thin film laminate will be described.
[0032]
<Manufacture of thin film laminate>
ZrO 2 11 mol% Sc dissolved in ZrO 2 / Sc 2 O Three (Hereinafter referred to as “ScSZ”.) The film is an ion conductive film, and La 0.8 Sr 0.2 MnO Three A thin film laminate was manufactured using the film as an electronic conductive film. One of the two thin films is La 0.8 Sr 0.2 MnO Three The other was a ScSZ film. Moreover, ScSZ similar to the other film material was used for the intermediate film precursor.
[0033]
First, an intermediate precursor film was formed by a transfer method. Powdery ScSZ as an intermediate film precursor and methacrylic resin as an organic binder were mixed to prepare a raw material paste having a viscosity of about 0.06 Pa · s. The prepared raw material paste was screen-printed on the surface of a film-forming substrate coated with dextrin, which is a water-soluble resin, and the entire film surface was coated with an acrylic resin, which is a water-insoluble resin. In addition, the thickness of the formed film was about 5 μm. The film formation substrate thus formed and coated was immersed in water, and the formed film was peeled off from the film formation substrate to obtain an intermediate film precursor (ScSZ film) coated with an acrylic resin. Next, La, which is an electronic conductive film 0.8 Sr 0.2 MnO Three La, the precursor of the film 0.8 Sr 0.2 MnO Three The obtained ScSZ film having a thickness of 5 μm was superimposed on the surface of the film precursor (φ20 mm, thickness 1 mm). Then, it is baked at a temperature of 1400 ° C. for 4 hours, and La 0.8 Sr 0.2 MnO Three An intermediate film was formed on the surface of the film. The film thickness of the formed intermediate film was 3 μm.
[0034]
Next, ScSZ which is an ion conductive film was formed by the transfer method as described above. Powdered ScSZ and methacrylic resin were mixed to prepare a raw material paste having a viscosity of about 0.06 Pa · s. The prepared raw material paste was screen-printed on the surface of a film-forming substrate coated with dextrin to form a film, and the entire film surface was coated with an acrylic resin. In addition, the thickness of the formed film was about 5 μm. The film formation substrate thus formed and coated was immersed in water, and the formed film was peeled off from the film formation substrate to obtain an ScSZ film coated with an acrylic resin. By laminating the obtained ScSZ film on the surface of the formed intermediate film and firing at 1400 ° C. for 1 hour, La 0.8 Sr 0.2 MnO Three A thin film laminate comprising a film-intermediate film-ScSZ film was obtained. The film thickness of the formed ScSZ film was 3 μm. In addition, let this thin film laminated body be the thin film laminated body of an Example.
[0035]
For comparison, La is the electron conductive film. 0.8 Sr 0.2 MnO Three The ScSZ film was formed on the surface of the film in two steps and baked at a temperature of 1400 ° C. for 1 hour to produce a thin film laminate. Let the obtained thin film laminated body be the thin film laminated body of a comparative example.
[0036]
<Evaluation of thin film laminate>
The thin film laminate was evaluated by measuring the electrical resistance values at room temperature of the two thin films constituting the thin film laminates of the above Examples and Comparative Examples. The electrical resistance is between the ScSZ film, which is an ion conductive film, and the intermediate film, and La, which is an electronic conductive film. 0.8 Sr 0.2 MnO Three It measured using the digital voltmeter between the inside of a film | membrane and an intermediate film. The measurement results are shown in Table 1.
[0037]
[Table 1]
Figure 0003915500
[0038]
As is clear from Table 1, in the thin film laminate of the present invention in which the intermediate film was previously formed by firing, the resistance value of the ScSZ film, which is an ion conductive film, was a large value exceeding 10 MΩ. Such a large electrical resistance indicates that the electronic conductivity is extremely small. That is, it turns out that the ionic conductivity which is an original characteristic is not impaired. In contrast, in the thin film laminate of the comparative example, the resistance value of the ScSZ film, which is an ion conductive film, was as small as about 2 to 10 kΩ. This shows that the ionic conductivity which is the original characteristic is impaired and the electronic conductivity is expressed. That is, even if two ion conductive films are provided, there is no chemically stable layer between the electron conductive film, and therefore, mutual diffusion between the electron conductive film and the electron conductive film is achieved by baking at a high temperature. It is considered that a chemical reaction occurs and the electrical properties of the film change. On the other hand, the resistance value of the electronic conductive film was the same for both the thin film laminate of the example and the thin film laminate of the comparative example. This is probably because the influence of the reaction was not so strong because the thickness of the electron conductive film was relatively 1 mm.
[0039]
From the above, the thin film laminate of the present invention has a chemically stable intermediate film between the ion conductive film and the electron conductive film, and therefore when the laminate is fired at a high temperature. Even so, it was confirmed that the reaction between the ion conductive film and the electron conductive film was suppressed.
[0040]
【The invention's effect】
The thin film laminate of the present invention is a laminate in which an intermediate film is interposed between an ion conductive film and an electron conductive film, and the intermediate film is any one or more of elements constituting the ion conductive film. And any one or more of the elements constituting the electron conductive film. Since a chemically stabilized intermediate film is interposed between the ion conductive film and the electron conductive film, the ion conductive film can be used even when exposed to high temperatures, such as during the production of a laminate. And the electron conductive film are inhibited from reacting. The solid oxide fuel cell of the present invention uses the thin film laminate of the present invention as an electrolyte-electrode assembly. When manufacturing the joined body, of course, even when the battery is operated at a high temperature for a long time, mutual diffusion and reaction between the electrolyte and the electrode are suppressed, and also due to the difference in thermal expansion at the interface between the electrolyte and the electrode. Since peeling does not easily occur, the battery has good battery performance. Furthermore, according to the manufacturing method of the present invention, the thin film laminate of the present invention can be easily manufactured by three simple processes of an intermediate film precursor film forming process, a baking process, and a second thin film forming process. .
[Brief description of the drawings]
FIG. 1 shows a joined state of an electrolyte and an electrode in an electrolyte-electrode assembly as a model.
FIG. 2 shows an example of a thin film laminate of the present invention as a model.
[Explanation of symbols]
1: Electrolyte 2: Electrode
3: Thin film laminate 4: Ion conductive film 5: Electronic conductive film 6: Intermediate film

Claims (11)

イオン導電性膜と電子導電性膜とからなる2つの薄膜と、
該2つの薄膜の間に介在し、該2つの薄膜の一方の前駆体である第1薄膜前駆体と、該2つの薄膜の他方を構成する元素の少なくとも1種を含む中間膜前駆体とが重ね合わせられ、焼成することにより生成した中間膜と、を含む薄膜積層体であって、
前記中間膜は、前記第1薄膜前駆体と前記中間膜前駆体とが反応することにより生成した、前記イオン導電性膜を構成する元素のいずれか1種以上と、前記電子導電性膜を構成する元素のいずれか1種以上とを含む反応生成物を含むことを特徴とする薄膜積層体。
Two thin films consisting of an ion conductive film and an electronic conductive film;
A first thin film precursor which is interposed between the two thin films and is one precursor of the two thin films, and an intermediate film precursor containing at least one element constituting the other of the two thin films A thin film laminate including an intermediate film formed by superposition and firing ,
The intermediate film constitutes the electron conductive film with any one or more of the elements constituting the ion conductive film generated by the reaction between the first thin film precursor and the intermediate film precursor. A thin film laminate comprising a reaction product containing at least one of the above elements.
前記イオン導電性膜は、Zr、Ce、Sc、Y、La、Mn、In、Ba、Sr、Ca、Yb、Fe、Coから選ばれる少なくとも1種を含む酸化物を含む請求項1に記載の薄膜積層体。The said ion conductive film | membrane contains the oxide containing at least 1 sort (s) chosen from Zr, Ce, Sc, Y, La, Mn, In, Ba, Sr, Ca, Yb, Fe, Co. Thin film laminate. 前記イオン導電性膜は、ZrO2−Sc23系材料を含む請求項1又は請求項2に記載の薄膜積層体。The thin film laminate according to claim 1 , wherein the ion conductive film includes a ZrO 2 —Sc 2 O 3 based material. 前記電子導電性膜は、ペロブスカイト型酸化物を含む請求項1ないし請求項3のいずれかに記載の薄膜積層体。The thin film stack according to claim 1 , wherein the electron conductive film includes a perovskite oxide. 前記ペロブスカイト型酸化物は、ランタン−マンガン系酸化物を含む請求項4に記載の薄膜積層体。The thin film laminate according to claim 4 , wherein the perovskite oxide includes a lanthanum-manganese oxide. 前記ランタン−マンガン系酸化物は、組成式La1-xSrxMnO3(0≦x≦0.5)で表される請求項5に記載の薄膜積層体。The thin film laminate according to claim 5 , wherein the lanthanum-manganese oxide is represented by a composition formula La 1-x Sr x MnO 3 (0 ≦ x ≦ 0.5). 前記イオン導電性膜の膜厚は、100μm以下である請求項1ないし請求項6のいずれかに記載の薄膜積層体。The film thickness of the said ion conductive film is 100 micrometers or less, The thin film laminated body in any one of Claims 1 thru | or 6 . 前記中間膜の膜厚は、30μm以下である請求項1ないし請求項7のいずれかに記載の薄膜積層体。The thin film laminate according to claim 1, wherein the intermediate film has a thickness of 30 μm or less. 請求項1ないし請求項8のいずれかに記載の薄膜積層体を電解質−電極接合体として用いた固体酸化物型燃料電池であって、前記2つの薄膜における前記イオン導電性膜が電解質となり、前記電子導電性膜が電極となる固体酸化物型燃料電池。A solid oxide fuel cell using the thin film laminate according to any one of claims 1 to 8 as an electrolyte-electrode assembly, wherein the ion conductive film in the two thin films serves as an electrolyte, A solid oxide fuel cell in which an electron conductive film serves as an electrode. 前記電極が空気極である請求項9に記載の固体酸化物型燃料電池。The solid oxide fuel cell according to claim 9 , wherein the electrode is an air electrode. イオン導電性膜と電子導電性膜とからなる2つの薄膜と、該2つの薄膜の間に介在した中間膜とを含み、前記中間膜は、前記イオン導電性膜を構成する元素のいずれか1種以上と、前記電子導電性膜を構成する元素のいずれか1種以上とを含むことを特徴とする薄膜積層体の製造方法であって、
前記2つの薄膜の一方の前駆体である第1薄膜前駆体の表面に、該2つの薄膜の他方を構成する元素の少なくとも1種を含む中間膜前駆体を成膜する中間膜前駆体成膜工程と、
前記第1薄膜前駆体および前記中間膜前駆体を所定の温度で焼成することにより、該第1薄膜前駆体と該中間膜前駆体とを反応させ、前記一方の薄膜の表面に該反応により生成した反応生成物を含む中間膜を形成する焼成工程と、
形成された前記中間膜の表面に前記2つの薄膜の他方を形成する第2薄膜形成工程と
を含む薄膜積層体の製造方法。
Including two thin films composed of an ion conductive film and an electron conductive film, and an intermediate film interposed between the two thin films, wherein the intermediate film is any one of the elements constituting the ion conductive film A method for producing a thin film laminate, comprising at least one species and any one or more of the elements constituting the electron conductive film,
Forming an intermediate film precursor on the surface of a first thin film precursor that is one precursor of the two thin films, forming an intermediate film precursor containing at least one element constituting the other of the two thin films Process,
The first thin film precursor and the intermediate film precursor are baked at a predetermined temperature to cause the first thin film precursor and the intermediate film precursor to react with each other, and are generated by the reaction on the surface of the one thin film. A baking step for forming an intermediate film containing the reaction product,
And a second thin film forming step of forming the other of the two thin films on the surface of the formed intermediate film.
JP2001376886A 2001-12-11 2001-12-11 THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME Expired - Fee Related JP3915500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376886A JP3915500B2 (en) 2001-12-11 2001-12-11 THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376886A JP3915500B2 (en) 2001-12-11 2001-12-11 THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME

Publications (2)

Publication Number Publication Date
JP2003178769A JP2003178769A (en) 2003-06-27
JP3915500B2 true JP3915500B2 (en) 2007-05-16

Family

ID=19184987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376886A Expired - Fee Related JP3915500B2 (en) 2001-12-11 2001-12-11 THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME

Country Status (1)

Country Link
JP (1) JP3915500B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP4511165B2 (en) * 2003-12-16 2010-07-28 京セラ株式会社 Fluid separation filter
US20050221163A1 (en) * 2004-04-06 2005-10-06 Quanmin Yang Nickel foam and felt-based anode for solid oxide fuel cells
JP4737946B2 (en) * 2004-05-14 2011-08-03 日本特殊陶業株式会社 Solid electrolyte fuel cell
JP4560677B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Solid oxide fuel cell thermal transfer sheet and solid oxide fuel cell laminate
JP4560676B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Adhesive sheet for solid oxide fuel cell and method for producing the same
JP2006082039A (en) * 2004-09-17 2006-03-30 Noritake Co Ltd Oxygen separation membrane element, its manufacturing method, oxygen manufacturing method, and reactor
JP4620572B2 (en) * 2005-11-25 2011-01-26 日本電信電話株式会社 Solid oxide fuel cell and method for producing the same
JP5525463B2 (en) * 2011-01-18 2014-06-18 日本電信電話株式会社 Air electrode material for solid oxide fuel cell and solid oxide fuel cell
JP5882857B2 (en) * 2012-07-30 2016-03-09 京セラ株式会社 Solid oxide fuel cell, cell stack device, and fuel cell module
CN104795579A (en) * 2015-04-23 2015-07-22 常州联德电子有限公司 Single SOFC (solid oxide fuel cell) provided with cathode current collection layer and manufacturing method of single SOFC
JP6110524B2 (en) * 2016-01-27 2017-04-05 京セラ株式会社 Solid oxide fuel cell, cell stack device, and fuel cell module
JP2018010740A (en) * 2016-07-12 2018-01-18 日本特殊陶業株式会社 Electrochemical cell, electrochemical stack, and method for manufacturing electrochemical cell
JP6718386B2 (en) * 2017-01-12 2020-07-08 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP6718385B2 (en) * 2017-01-12 2020-07-08 日本特殊陶業株式会社 Gas sensor element and gas sensor

Also Published As

Publication number Publication date
JP2003178769A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
JP5762295B2 (en) New materials and structures for low temperature SOFC
US6682842B1 (en) Composite electrode/electrolyte structure
US6958196B2 (en) Porous electrode, solid oxide fuel cell, and method of producing the same
US5670270A (en) Electrode structure for solid state electrochemical devices
JP5489125B2 (en) All-ceramic solid oxide battery
US7740772B2 (en) Ceramic anodes and method of producing the same
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
US20070117006A1 (en) Direct Fabrication of Copper Cermet for Use in Solid Oxide Fuel Cell
JP4840718B2 (en) Solid oxide fuel cell
JP2014510014A (en) Sintering additive for ceramic devices obtained in low pO2 atmosphere
KR20030036966A (en) Electrode having microstructure of extended triple phase boundary by porous ion conductive ceria film coating and Method to manufacture the said electrode
JP4828104B2 (en) Fuel cell
JP3574439B2 (en) Microstructured electrode with extended three-phase interface by porous ion-conductive ceria membrane coating and method of manufacturing the same
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP4743949B2 (en) Solid electrolyte fuel cell
US8226858B2 (en) Interconnect material for solid oxide fuel cell and process for the preparation thereof
JPH0652869A (en) Solid electrolyte film of fuel cell and manufacture thereof
WO2020261935A1 (en) Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell
JP2020149796A (en) Method for manufacturing hydrogen electrode-solid electrolyte layer composite, method for manufacturing cell structure, and method for manufacturing fuel battery
JPH0945337A (en) Solid electrolyte fuel cell element
JP2006092896A (en) Complex electrode for solid oxide fuel cell and manufacturing method of the same
JP2005174583A (en) Fuel electrode for solid oxide fuel cell, and its manufacturing method
Visco et al. Solid state electrochemical composite
JP2000048837A (en) Interconnector film for solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees